
Starting 2019 SafeBet: Memory capabilities to enable safe, aggressive speculation in processors

Simon Moore, Jonathan Woodruff, Robert Watson **RISE Annual Conference, London**

14th November 2018

Motivation: new speculative execution attacks

All speculatively execute code that that leek secret information via a side-channel

Computer architecture definitely can help

Technical Report

Number 916

UCAM-CL-TR-916 ISSN 1476-2986

Computer Laboratory

URL for technical report:

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-916.pdf

Capability Hardware Enhanced RISC Instructions (CHERI): Notes on the Meltdown and Spectre Attacks

SafeBet Project RISE Annual Conference

Approach

- Ensure that the processor has more semantic knowledge of the code executed
 - Builds on ideas from CHERI: safe pointers and low-cost compartmentalisation
- Method:
 - Develop "RISCy" core illustrating speculative execution attacks
 - Measure vulnerabilities
 - Verify key security mitigations
- ons sand other results

open source processor, verification engine

- Example mitigations for more secure "RISCy" processor design:
 - No speculative memory access causes a cache miss if its address is illegal in the current context
 - Branch predictions must only be based on state derived from that instruction
 - Dereference of speculated capability pointers is not allowed

project web page