Leaky Processors and the RISE of Hardware-Based Trusted Computing

Jo Van Bulck

A imec-DistriNet, KU Leuven B4 jo.vanbulck@cs.kuleuven.be W jovanbulck

1st RISE Annual Conference, November 14, 2018

https://distrinet.cs.kuleuven.be/people/jo
mailto:jo.vanbulck@cs.kuleuven.be
https://twitter.com/jovanbulck

A primer on software security

Secure program: convert all input to expected output J

N

INPUT ——> —3» OUTPUT

1/21

A primer on software security

Buffer overflow vulnerabilities: trigger unexpected behavior J

@
<

uT ——> “’ —> OUTPUT

i

v

1/21

A primer on software security

Safe languages & formal verification: preserve expected behavior J

INPUT ———>

a8
=

.l ——» OUTPUT

1/21

A primer on software security

Side-channels: observe side-effects of the computation J

a

=4
0
<+
INPUT ——> My — OUTPUT

\/

1/21

A primer on software security

Constant-time code: eliminate secret-dependent side-effects J

@

INPUT ———>

o

—> OUTPUT

N\ -

L

1/21

A primer on software security

Transient execution: HW optimizations do not respect SW abstractions (!))

|

—>> OUTPUT

1/21

Evolution of “side-channel attack” occurrences in Google Scholar

A

4000 — (M
3000
2000

DO WE JUST SUCK

AT... COMPUTERS?

\iup. ESPECIALLY SHARED ONES,
1000 — S
T T T T T T T >
1990 1994 1998 2002 2006 2010 2014 2018

Based on github.com/Pol1d87/academic-keyword-occurrence and xkcd.com/1938/ 2701

github.com/Pold87/academic-keyword-occurrence
xkcd.com/1938/

Evolution of “side-channel attack” occurrences in Google Scholar

A
4000 — ‘ﬁ‘{} @’ @ V)

3000
2000
DO WE JUST SUCK
AT... COMPUTERS?
\iup. ESPECIALLY SHARED ONES,
1000 — S

.
I I I I I I I I -

1990 1994 1998 2002 2006 2010 2014 2018

Based on github.com/Pol1d87/academic-keyword-occurrence and xkcd.com/1938/

2/21

github.com/Pold87/academic-keyword-occurrence
xkcd.com/1938/

The bigger picture: The RISE of hardware-based trusted computing

A
25000 —
"trusted computing" evolution
15000 — \
"side—channel attack" evolution
5000 — \
T T T T T T T >
1990 1994 1998 2002 2006 2010 2014 2018

Based on github.com/Pol1d87/academic-keyword-occurrence

3/21

github.com/Pold87/academic-keyword-occurrence

The bigger picture: The RISE of hardware-based trusted computing

/

25000 —

15000 —

5000 —

\

"trusted computing" evolution

Intel SGX

CHERI
TrustLite

Sancus

TPM
\\\\\\\\~Eﬂfffr

ARM TrustZone

N

"side—channel attack" evolution

I
1990

I
1994

I I I I
1998 2002 2006 2010

Based on github.com/Pol1d87/academic-keyword-occurrence

I
2014

I
2018

N
o

3/21

github.com/Pold87/academic-keyword-occurrence

The bigger picture: The RISE of hardware-based trusted computing

A
25000 — Intel SGX
CHERI
TrustLite A
" " Sancus
trusted computing’ evolution
15000 —| TPM o
Wr /
ARM TrustZone
"side—channel attack" evolution Y
5000 — \
1 1 1 1 1 1 1 >
1990 1994 1998 2002 2006 2010 2014 2018

Based on github.com/Pol1d87/academic-keyword-occurrence

3/21

github.com/Pold87/academic-keyword-occurrence

Hay i A

Enclaved execution attack surface: TCB reduction

B,
Micrcanft Dffeeo 2001 -i-
Wirduwy 2000 -fﬁ\
Microsoft Office for Mac --
Srmbtan ’
Windows T f_
Jiy
windows KP -{ /
e R NI T
. _--
Windows Visto
Microsoft Visunl Stucio 2012 ----
Foochook:
LS sy Futuse Combat Syssom
Dherbrinn 50 condebame

Mag 05 % “Tiger™
SEeeee————ee. o e e e BRSNS

S _-------

https://informationisbeautiful.net/visualizations/million-lines-of-code/

4/21

https://informationisbeautiful.net/visualizations/million-lines-of-code/

Enclaved execution attack surface: TCB reduction

Ap@ App H Enclave app
OS kernel x

v A v A

—__

) Hypervisor

-

-

\ TPM } CPU&{ Mem H HDD

Intel SGX promise: hardware-level isolation and attestation

4/21

Enclaved execution attack surface: Privileged side-channel attacks

'd N

App M App HEnclaveapp

OS kernel

a
Hypervisor S /
TPM } CPU&{ Mem H HDD

Untrusted OS — new class of powerful side-channels

N

e

-

"

4/21

Enclaved execution attack surface:

Privileged side-channel attacks

-~

App App Enclave app E

TPM CPUd‘ Mem HDD

J

Untrusted OS — new class of powerful side-channels

Xu et al. “Controlled-channel attacks: Deterministic side-channels for untrusted operating systems”, IEEE S&P 2015 [XCP15]

4/21

Enclaved execution attack surface: Privileged side-channel attacks

App App Enclave app
> O 14, 0000 00 O0O0O0OOOOODO
Instruction (interrupt number)
TPM CPU & Mem HDD

Untrusted OS — new class of powerful side-channels

Van Bulck et al. “Nemesis: Studying Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic”, CCS 2018 [VBPS18]
4/21

Enclaved execution attack surface: Transient execution attacks

s

App App H Enclave app

(OS kernel] ° 9
\ Hypervisor /
TPM } %CPU Mem M HDD

Trusted CPU — exploit microarchitectural bugs/design flaws

~

N
J

e

e

N

Van Bulck et al. “Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution”, USENIX 2018 [VBMW+ 18]
4/21

Out-of-order and speculative execution

Key discrepancy:

@ Programmers write sequential instructions

A
Y

int area(int h, int w)

{
int triangle = (w*h)/2;
int square = (w*w);
return triangle + square;

}

5/21

Out-of-order and speculative execution

h
Key discrepancy:
@ Programmers write sequential instructions
< W > @ Modern CPUs are inherently parallel
) »

= Speculatively execute instructions ahead of time

int area(int h, int w)
{
int triangle = (w*h)/2;
int square = (w*w) ;
Creturn triangle + square;2
}

5/21

Out-of-order and speculative execution

h
Key discrepancy:
@ Programmers write sequential instructions
< w > @ Modern CPUs are inherently parallel
) »
Overflow = Speculatively execute instructions ahead of time
RO//—baCk exceptlon

)) s o
int area(int h, int w) Best-effort: What if triangle fails?

{ — Commit in-order, roll-back square
int triangle = (w*h)/2;
int square = (w*w) ;
return triangle + square;

But side-channels may leave traces (!)

}

5/21

Transient execution attacks: Welcome to the world of fun!

CPU executes ahead of time in transient world

@ Success — commit results to normal world ©

e Fail — discard results, compute again in normal world ©®

6 /21

Transient execution attacks: Welcome to the world of fun!

CPU executes ahead of time in transient world

@ Success — commit results to normal world ©

e Fail — discard results, compute again in normal world &

Transient world (microarchitecture) may temp bypass architectural software intentions:

Delayed exception handling Control flow prediction

6 /21

Transient execution attacks: Welcome to the world of fun!

Key finding of 2018 @
= Transmit secrets from transient to normal world |

Transient world (microarchitecture) may temp bypass architectural software intentions:

Delayed exception handling Control flow prediction

6 /21

Transient execution attacks: Welcome to the world of fun!

Key finding of 2018
= Transmit secrets from transient to normal world J

Transient world (microarchitecture) may temp bypass architectural software intentions:

7 2V

CPU access control bypass Speculative buffer overflow/ROP

6 /21

Inside” Inside” Inside”

Meltdown: Transiently encoding unauthorized memory

@
= N\
0=
=

Unauthorized access

Listing 1: x86 assembly Listing 2: C code.
1 meltdown: 1 void meltdown (
2 // %rdi: oracle 2 uint8_t xoracle ,
3 '/ %rsi: secret_ptr 3 uint8_t *xsecret_ptr)
4 4 {
5 movb (%rsi), %al 5 uint8_t v = xsecret_ptr;
6 shl $0xc, %rax 6 v = v x 0x1000;
7 movq (%rdi, %rax), %rdi 7 uint64_t o = oracle[v];
8 retq s }

7/21

Meltdown: Transiently encoding unauthorized memory

C]
= N\
ﬁ
=
=
Unauthorized access Transient out-of-order window
Listing 1: x86 assembly. Listing 2: C code.
1 meltdown: 1 void meltdown (oracle array
2 '/ %rdi: oracle 2 uint8_t xoracle , S x
3 %rsi: secret_ptr 3 uint8_t *secret_ptr) S
4 4 { S o
5 movb (%rsi), %al 5 uint8.t v = xsecret_ptr; o | S
6 shl $0xc, %rax 6 v = v x 0x1000; o 9
7 movq (%rdi, %rax), %rdi 7 uint64_t o = oracle[v];
8 retq s } ——__ .

7/21

Meltdown: Transiently encoding unauthorized memory

i S e
B N
)
= F

Unauthorized access Transient out-of-order window Exception
(discard architectural state)

Listing 1: x86 assembly. Listing 2: C code.
1 meltdown: 1 void meltdown (
2 / %rdi: oracle 2 uint8_t xoracle ,
3 %rsi: secret_ptr 3 uint8_t *secret_ptr)
4 4 {
5 movb (%rsi), %al 5 uint8_t v = xsecret_ptr;
6 shl $0xc, %rax 6 v = v x 0x1000;
7 movq (%rdi, %rax), %rdi 7 uint64_t o = oracle[v];
8 retq s }

7/21

Meltdown: Transiently encoding unauthorized memory

i S e
B N
)
= F

Unauthorized access Transient out-of-order window Exception handler
Listing 1: x86 assembly. Listing 2: C code.

1 meltdown: 1 void meltdown (oracle array
2 // %rdi: oracle 2 uint8_t xoracle, RS ‘
3 '/ %rsi: secret_ptr 3 uint8_t *secret_ptr) L — 4
A 4 | o
; . &
5 movb (%rsi), %al 5 uint8_t v = ksecret_ptr; O
6 shl $0xc, %rax 6 v =v x 0x1000; he hit
7 movq (%rdi, %rax), %rdi 7 uint64_t o = oracle[v]; cache i
8 retq s } G

7/21

Mitigating Meltdown: Unmap kernel addresses from user space

e OS software fix for faulty hardware (e future CPUs)

8 /21

Mitigating Meltdown: Unmap kernel addresses from user space

i e OS software fix for faulty hardware (e future CPUs)
@ Unmap kernel from user virtual address space

— Unauthorized physical addresses out-of-reach (“cookie jar)

| user > |] unmapped
| N |
0 context switch . -1
user >> |:i:| kernel | switch address space
0 _ -1
context switch [SMAP+SMEP) El kernel
0 —1

Gruss et al. “KASLR is dead: Long live KASLR", ESSoS 2017 [GLS*17]

8 /21

Inside” Inside” Inside”

Rumors: Meltdown immunity for SGX enclaves?

Meltdown melted down everything, except
for one thing

“[enclaves] remain protected and completely secure”
— International Business Times, February 2018

ANJUNA'S SECURE-RUNTIME CAN PROTECT CRITICAL APPLICATIONS
AGAINST THE MELTDOWN ATTACK USING ENCLAVES

“[enclave memory accesses]| redirected to an abort page, which has no value”
— Anjuna Security, Inc., March 2018

9/21

https://web.archive.org/web/20180617022540/https://www.ibtimes.co.uk/meltdown-melted-down-everything-except-one-thing-1663785
https://web.archive.org/web/20180720144203/https://www.anjuna.io/blog/2018/2/7/meltdown-spectre-sgx

SPECTRE-LIRE FLAW
UNDERMINES INTEL
PROCESSORS MOST SECURE
ELEMENT

ROBLEM —

Intel’s SGX blown w1de open by, you
guessed it, a speculative execution attack

Speculative execution attacks truly are the gift that keeps on giving.

https://wired.com and https://arstechnica.com

https://wired.com
https://arstechnica.com

Building Foreshadow

7

1. Cache secrets in L1 2. Unmap page table entry 3. Execute Meltdown

10/ 21

Building Foreshadow

e

_

7

1. Cache secrets in L1 2. Unmap page table entry

J

L1 terminal fault challenges

a

' Foreshadow can read unmapped physical addresses from the cache (!)

3. Execute Meltdown

10/ 21

Challenge: Reading unmapped secrets with Foreshadow

Untrusted world view Intra-enclave view

@ Enclaved memory reads OxFF @ Access enclaved + unprotected memory

11/ 21

Challenge: Reading unmapped secrets with Foreshadow

Untrusted world view Intra-enclave view

@ Enclaved memory reads OxFF @ Access enclaved + unprotected memory

@ SGXpectre in-enclave code abuse

11/ 21

Challenge: Reading unmapped secrets with Foreshadow

42‘*) ; :)

Untrusted world view Intra-enclave view
@ Enclaved memory reads OxFF @ Access enclaved + unprotected memory
e Meltdown “bounces back” (~ mirror) @ SGXpectre in-enclave code abuse

11/ 21

Building Foreshadow: Evade SGX abort page semantics

Note: SGX MMU sanitizes untrusted address translation

ok

SGX? @ow

o

Abort page semantics:
An attempt to read from a non-existent or disallowed resource returns all ones for data
(abort page). An attempt to write to a non-existent or disallowed physical resource is

dropped. This behavior is unrelated to exception type abort (the others being Fault and Trap).

https://software.intel.com/en-us/sgx-sdk-dev-reference-enclave-development-basics

12/ 21

https://software.intel.com/en-us/sgx-sdk-dev-reference-enclave-development-basics

Building Foreshadow: Evade SGX abort page semantics

Straw man: (Transient) accesses in non-enclave mode are dropped J

N 2
ok All
L___OVV

SGX?

Page fault Abort page
) %
Abort page semantics:

An attempt to read from a non-existent or disallowed resource returns all ones for data
(abort page). An attempt to write to a non-existent or disallowed physical resource is
dropped. This behavior is unrelated to exception type abort (the others being Fault and Trap).

https://software.intel.com/en-us/sgx-sdk-dev-reference-enclave-development-basics
12 /21

https://software.intel.com/en-us/sgx-sdk-dev-reference-enclave-development-basics

Building Foreshadow: Evade SGX abort page semantics

Stone man: Bypass abort page via untrusted page table J

SGX? ok Allow
o

o J

Xu et al. “Controlled-channel attacks: Deterministic side-channels for untrusted operating systems”, IEEE S&P 2015 [XCP15]
Van Bulck et al. “Telling your secrets without page faults: Stealthy page table-based attacks on enclaved execution”, USENIX 2017 [VBWKJr 17]

12 /21

Building Foreshadow: Evade SGX abort page semantics

Stone man: Bypass abort page via untrusted page table J

SGX? ok Allow
o

o J

Unprivileged system call
mprotect(secret ptr & OxFFF, 0x1000, PROT_NONE);

of

12/21

Foreshadow-NG: Breaking the virtual memory abstraction

CPU micro-architecture Q
>

Page fault

L1 cache design: Virtually-indexed, physically-tagged J

13 /21

Foreshadow-NG: Breaking the virtual memory abstraction

CPU micro-architecture Q
>

Page fault

Page fault: Early-out address translation J

13 /21

Foreshadow-NG: Breaking the virtual memory abstraction

CPU micro- archltecture

Page fault

L1-Terminal Fault: match unmapped physical address (!) J

13/ 21

Foreshadow-NG: Breaking the virtual memory abstraction

1,
Pass to out-of-ordeé %ﬁ

SGX?

CPU micro-architecture

fail

Abort page

Page fault

Foreshadow-SGX: bypass enclave isolation J

13/ 21

Foreshadow-NG: Breaking the virtual memory abstraction

CPU micro-architecture

1,
L1D Pass to out-of-ordeé %ﬁ

guest {

Page fault Page fault

Foreshadow-VMM: bypass virtual machine isolation J

13/ 21

Mitigating Foreshadow

7

1. Cache secrets in L1 2. Unmap page table entry 3. Execute Meltdown

14 /21

Mitigating Foreshadow

f)
®
1. Cache secrets in L1 2. Unmap page table entry 3. Execute Meltdown
. J

Future CPUs
(silicon-based changes)

https://newsroom.intel.com/editorials/advancing-security-silicon-level/

14 /21

https://newsroom.intel.com/editorials/advancing-security-silicon-level/

Mitigating Foreshadow

7

1. Cache secrets in L1 2. Unmap page table entry 3. Execute Meltdown
g J

OS kernel updates
(sanitize page frame bits)

https://wiki.ubuntu.com/SecurityTeam/KnowledgeBase/L1TF

14 /21

https://wiki.ubuntu.com/SecurityTeam/KnowledgeBase/L1TF

Mitigating Foreshadow

4 N

1. Cache secrets in L1 2. Unmap page table entry 3. Execute Meltdown
- J
Intel microcode updates

= Flush L1 cache on enclave/VMM exit + disable HyperThreading J

https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault

14 /21

https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault

Some good news?

Alingeringrisk: Because Foreshadow, Spectre, and Meltdown are all hardware-based
flaws, there's no guaranteed fix short of swapping out the chips. But security experts say the
weaknesses are incredibly hard to exploit and that there's no evidence so far to suggest this
year's chipocalypse has led to a hacking spree. Still, if your computer offers you an urgent
software upgrade, be sure to take itimmediately.

https://www.technologyreview.com/the-download/611879/intels-foreshadow-flaws-are-the-latest-sign-of-the-chipocalypse/

For the latest Intel security news, please visit security newsroom.
For all others, visit the Intel Security Center for the latest security information.

L1TF is a highly sophisticated attack method, and today, Intel is not aware of any reported real-world exploits.

https://www.intel.com/content/www/us/en/architecture-and-technology/11tf.html

15/ 21

https://www.technologyreview.com/the-download/611879/intels-foreshadow-flaws-are-the-latest-sign-of-the-chipocalypse/
https://www.intel.com/content/www/us/en/architecture-and-technology/l1tf.html

Some good news?

ml Vicrosoft
Ml Azure

Azure confidential computing: Microsoft
boosts security for cloud data

Microsoft is rolling out new secure enclave technology for protecting data in use.

& By Liam Tung | September 18, 2017 -- 13:17 GMT (14:17 BST) | Topic: Cloud

https://www.zdnet.com/article/azure-confidential-computing-microsoft-boosts-security-for-cloud-data/

15/ 21

https://www.zdnet.com/article/azure-confidential-computing-microsoft-boosts-security-for-cloud-data/

Some good news?

mEl \icrosoft
Ml Azure

Azure confidential computing: Microsoft
boosts security for cloud data

Microsoft is rolling out new secure enclave technology for protecting data in use.

% By Liam Tung | September 18, 2017 -- 13:17 GMT (14:17 BST) | Topic: Cloud

https://www.zdnet.com/article/azure-confidential-computing-microsoft-boosts-security-for-cloud-data/

15/ 21

https://www.zdnet.com/article/azure-confidential-computing-microsoft-boosts-security-for-cloud-data/

Foreshadow fallout: Dismantling the SGX ecosystem

Remote attestation and secret provisioning }

Challenge-response to prove enclave identity

{é@p enclave] g/‘]—_l &

Gan you

keep 2

secret P
E 4

16 / 21

Foreshadow fallout: Dismantling the SGX ecosystem

CPU-level key derivation
Intel == trusted 3th party (shared CPU master secret)

v

/4

Cintel

16 / 21

Foreshadow fallout: Dismantling the SGX ecosystem

CPU-level key derivation
Intel == trusted 3th party (shared CPU master secret)

5, ®

/4

Cintel

16 / 21

Foreshadow fallout: Dismantling the SGX ecosystem

Fully anonymous attestation ’

Intel Enhanced Privacy ID (EPID) group signatures ©

v

/4

-

16 / 21

Foreshadow fallout: Dismantling the SGX ecosystem

The dark side of anonymous attestation

Single compromised EPID key affects millions of devices ... ®

""' - ee05s

~

16 / 21

Foreshadow fallout: Dismantling the SGX ecosystem

EPID key extraction with Foreshadow J

Active man-in-the-middle: read + modify all local and remote secrets (!)

é}openc.ave] 3 - I -‘.

A _—4

Gan you

Keep 2

searet P
ks 4

16 / 21

Research challenges: Universal classification and evaluation

in-place (IP) vs., out-of-place (OP) PHT-CA-IP
mistraining Cross-address-space PHT-CA-OP %)
strategy
Spectre PHT Same-address-space }T:: PHT-SA-IP %)
Spectre-BTB BHITESATORIY,
Spectre-RSB Cross-address-space BT
Same-address-space BT
BTB-SA-IP %

BTB-SA-OP %

RSB-CA-IP

microarchitec-
tural buffer

Spectre-type

Spectre-STL)

Cross-address-space
Same-address-space

fault type

_Meltdown—type 777777777777

Meltdown-BR Meltdown-MPX)
Meltdown-GP Meltdown-BND *)

Canella et al. “A Systematic Evaluation of Transient Execution Attacks and Defenses”, arXiv preprint [CVBS+ 18]

17 /21

Reflections on Post-Meltdown Trusted

Computing
A Case for Open Security Processors . I -
;login:

JAN TOBIAS MUHLBERG AND JO VAN BULCK THE USENIX MAGAZINE

Miihlberg et al. “Reflections on post-Meltdown trusted computing: A case for open security processors’, USENIX ;login: magazine, Fall 2018 [MVB18]

18 / 21

Reflections on trusting trust

“No amount of source-level verification or
scrutiny will protect you from using untrusted
code. [...] As the level of program gets
lower, these bugs will be harder and harder to
detect. A well installed microcode bug will be
almost impossible to detect.”

— Ken Thompson (ACM Turing award lecture, 1984)

18/ 21

The big picture: Enclaved execution attack surface

Q[i
< OS kernel]%’ 7
\ Hypervisor /

R

Enclave app

19 /21

The big picture: Enclaved execution attack surface

App M App Enclave app

-

OS kernel

Vs

Hypervisor =

)
\ TPM } CPU&{ Mem M HDD

19 /21

Nemesis: Studying rudimentary CPU interrupt logic

Overview

. = Interrupts leak instruction execution times

= Determine control flow in enclave programs

20 / 21

Nemesis: Studying rudimentary CPU interrupt logic

Overview

= Interrupts leak instruction execution times

= Determine control flow in enclave programs

Research contributions

= (First) remote p-arch attack on embedded CPUs
= Understanding CPU pipeline leakage ("Meltdown)

20 / 21

Conclusions and take-away

= New class of transient execution attacks

= Importance of fundamental side-channel research

MIND THE GAP
v = Security cross-cuts the system stack: hardware, hypervisor, kernel,

compiler, application

1]

21 /21

References |

]
]

7 P A A P A

C. Canella, J. Van Bulck, M. Schwarz, M. Lipp, B. von Berg, P. Ortner, F. Piessens, D. Evtyushkin, and D. Gruss.

A systematic evaluation of transient execution attacks and defenses.
arXiv preprint arXiv:1811.05441, 2018.

D. Gruss, M. Lipp, M. Schwarz, R. Fellner, C. Maurice, and S. Mangard.

KASLR is dead: Long live KASLR.

In International Symposium on Engineering Secure Software and Systems, pp. 161-176. Springer, 2017.

P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom.
Spectre attacks: Exploiting speculative execution.

In Proceedings of the 40th IEEE Symposium on Security and Privacy (S&P’19), 2019.

M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg.
Meltdown: Reading kernel memory from user space.

In Proceedings of the 27th USENIX Security Symposium (USENIX Security 18), 2018

J. T. Miihlberg and J. Van Bulck.

Reflections on post-Meltdown trusted computing: A case for open security processors.

;login: the USENIX magazine, Vol. 43(No. 3), Fall 2018.

J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens, M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx.
Foreshadow: Extracting the keys to the Intel SGX kingdom with transient out-of-order execution.

In Proceedings of the 27th USENIX Security Symposium. USENIX Association, August 2018.

J. Van Bulck, F. Piessens, and R. Strackx.

Nemesis: Studying microarchitectural timing leaks in rudimentary CPU interrupt logic.
In Proceedings of the 25th ACM Conference on Computer and Communications Security (CCS5'18). ACM, October 2018.

22 /21

References Il

ﬁ J. Van Bulck, N. Weichbrodt, R. Kapitza, F. Piessens, and R. Strackx.
Telling your secrets without page faults: Stealthy page table-based attacks on enclaved execution.
In Proceedings of the 26th USENIX Security Symposium. USENIX Association, August 2017.

ﬁ O. Weisse, J. Van Bulck, M. Minkin, D. Genkin, B. Kasikci, F. Piessens, M. Silberstein, R. Strackx, T. F. Wenisch, and Y. Yarom.

Foreshadow-NG: Breaking the virtual memory abstraction with transient out-of-order execution.
Technical Report https: // foreshadowattack. eu/, 2018.

B Y. Xu, W. Cui, and M. Peinado.

Controlled-channel attacks: Deterministic side channels for untrusted operating systems.
In 36th IEEE Symposium on Security and Privacy. IEEE, May 2015.

23 /21

https://foreshadowattack.eu/

	Appendix

