Resource-efficient Cryptography against Physical Attacks

Elif Bilge Kavun

(University of Sheffield)

- Standard cryptography: DES, AES, RSA, etc.
- Lightweight cryptography Resource-efficiency
 - Low-area, low-power, low-latency, ...
 - HW/SW-oriented
 - Examples: PRESENT, PRINCE, PRIDE
 - Search for efficient building blocks
- Physical attacks
 - DPA, SPA, fault injection, etc.
 - Countermeasures required for algorithms: Costly
- Resource-efficient algorithms become costly again due to countermeasures

Security by design

- Design algorithms with attacks & countermeasures in mind
- Feedback: Theory HW/SW
- Search for efficient and "secure" building blocks
- Learnings from industry: Real-life problems
- Existing work
 - SKINNY (Beierle et al)
 - Strong 8-bit Sboxes with Efficient Masking in HW (Boss et al, De Meyer et al)
- Security analysis
 - Mathematical attacks: Linear, differential, etc.
 - Side-channel attacks: Power attacks, timing attacks, etc.
 - Fault injection
 - Use deep-learning principles

Tools

- Synthesis flow & Power simulation flow
 - Area utilization and power consumption
- FPGA
 - Secure and efficient layer search
 - Side-channel attacks: SASEBO board
 - Fault injection
- Side-channel setup: Oscilloscope, probes, etc.
 - DPA, SPA
- > Plan
 - First target: Symmetric crypto
 - Asymmetric crypto
 - Post-quantum crypto...