rFAS

reconfigurable FPGA Accelerator Sandboxing

Stratix V

Dirk Koch, Khoa Pham (dirk.koch@manchester.ac.uk) School of Computer Science The University of Manchester

Why FPGAs?

- FPGAs are ideal for number crunching problems that fit dataflow processing model
- FPGA advantages
 - Customized processing
 - Optimized data movement
 - High integration (memory, mass storage, networking, acceleration and CPU)
 - Generic secure substrate (if once validated)
 - High performance at low power (from embedded to datacenters)

Our initial hardware platform

rFAS - FPGA Accelerator Sandboxing

FPGAs have a huge surface of attack!

Remote
DPA attacks

victim
attacker

AES
Image: Comparison of the second secon

Destroy or age FPGA hardware through corrupted bitstream (we have shown that!)

 Power hammering attacks

rFAS - FPGA Accelerator Sandboxing

Goals

- Systematic review on possible FPGA attack scenarios
- Developing mitigation strategies
 - Virus scanner (detect short circuits, ring oszillators, etc.)
 - System monitors (voltage drops)
 - Configuration protection unit (protect FPGA regions)
 - Memory protection and custom interconnects
- Assessment of mitigation strategies and countermeasures
- Secure multi-tenancy scenario
 - Protect from information leakage
 - Ensure integrity of an FPGA-based system