

Physical Protection of Lattice-Based Cryptography – Challenges and Solutions

DR. AYESHA KHALID NOVEMBER 2018

strong

Man

CS

CENTRE

FOR SECURE INFORMATION TECHNOLOGIES

	KEM				
Lattice-based	5	23	28		
Code-based	3	17	20		
Multivariate	8	2	10		
Hash-based	3	0	3		
Isogeny-based	0	1	1		
Other	2	5	7		
Total	21	48	69		

Side Channel Analysis (SCA) attacks on LBC

LBC Ingredients

- Matrix vector multiplication (for standard lattices)
- Polynomial multiplication (for ideal lattices)
- RNGs/ XOFs/ Hashes
- Error Sampling
 - •Discrete Gaussian sampling
 - •Binomial distribution

Lattice-based key encapsulation (KEM) and signature schemes submitted to NIST for post-quantum standardisation, separated by their NIST security levels, error type (Gaussian or binomial), and parameter value (for all schemes $\mu = 0$).

	Crypto.	Cryptographic	Security	Error	Error
	Туре	Scheme	Level	Туре	Parameter (σ)
		Ding Key Ex. [DTGW17]	1,3,5	G	2.6, 4.19
		(R-)EMBLEM [SPL+17]	1	G	25, 3
		FrodoKEM [NAB ⁺ 17]	1,5	G	2.75, 2.3
		Kyber [SAB+17]	1,3,5	В	$\sqrt{2}$
		LAC [LLJ+17]	1,3,5	В	$1/\sqrt{2}, 1/2$
	KEM	LIMA [SAL+17]	3	В	3.16
		Lizard [CPL+17]	1,5	G	≈ 2
		LOTUS [PHAM17]	1,2,3,4,5	G	3
		KCL [ZjGS17]	3,5	В	$\sqrt{8},\sqrt{6}$
		NewHope [PAA ⁺ 17]	1,3	В	2
		NTRU-RSS-KEM [SHRS17]	1	В	1
		NTRUEncrypt [ZCHW17a]	1,3,5	G	724
		Mersenne-756839 [AJPS17]	1	G	28.64
		Titanium [SSZ17]	1,3,5	В	$\sqrt{2}$
		Dilithium-G [] DK ⁺ 17]	1,2,3	G	19200,
		Dinunum-O [LDK 17]			17900,12400
	Sign-	Falcon [PFH ⁺ 17]	1,2,3,4,5	G	171.8, 213.1
	ature	pqNTRUSign [ZCHW17b]	1	G	107
		qTESLA [BAA ⁺ 17]	1,3,5	В	8.5, 10

Independent time Gaussian error samplers on custom hardware

Error Sampling has been targeted for noticeable timing/ cache attacks

- Comprehensive evaluation of Discrete Gaussian Samplers offers recommendations on most appropriate sampler to use for encryption, authentication, high-speed applications etc..
- Proposed independent-time hardware designs of a range of samplers offering security against side-channel timing attacks

Protecting error samplers against Fault injection attacks

Test Level	Test Description	Test Formula
Low Cost	Check for repetitions	A counter for if $x_i = c$
	Sample Mean (\bar{x})	$(\sum_{i=1}^{n} x_i)/n$
	Sample Variance (\bar{s})	$(\sum_{i=1}^{n} x_i^2 - (\sum_{i=1}^{n} x_i)^2)/n$
Standard	Standard Error of \bar{x}	$\mathrm{SE}_{ar{x}}=ar{s}/\sqrt{n}$
	Test Statistic for \bar{s}	$T = (n/s)\overline{s}$
	Null Hypothesis	Check if $ \mu < \bar{x} + t_{\alpha/2} SE_{\bar{x}}$
	Null Hypothesis	Check if $T < \hat{\chi}^2_{n,\alpha/2}$
Expensive	Chi-Squared Test	$\hat{\chi}^2 = \sum_{k=1}^{n} \frac{(\text{obs}(k) - \exp(k))^2}{\exp(k)}$
	Test Statistic for $\hat{\chi}^2$	$\chi^2(df = n - 1, p$ -value)
	Null Hypothesis	Check if $\hat{\chi}^2 < \chi^2(n-1, 0.99)$

Increasingly powerful statistical analysis tests to detect increasingly sophisticated fault injection attacks including

- zeroing attacks
- randomization
- early loop abort

Countermeasure	I LIT/FF	Slices	DSP/	Freq.	Clock	Ops/sec]	
Category		Silces	BRAM	(MHz)	Cycles	(×10 ⁶)		
Plain CDT Sampler	115/81	33	0/0	297	6	49.5]	
Low Cost	6/10	3	0/0	-	$+0^{\dagger}$	-	00/	-
CDT with Low Cost	123/91	36	0/0	297	6	49.5	0%	Resource
Standard	74/58	24	0/0	-	$+1^{\dagger}$	-		overhead
CDT with Standard	182/139	55	0/0	297	6	49.5	44%	
Expensive	226/436	126	1/0	-	$+32^{\dagger}$	-		
CDT with Expensive	315/517	149	1/0	297	6	49.5	400%	
CDT with Expensive	251/453	129	1/1	193	6	38.6		7

[†]This is a one-off clock cycle count at the end of n samples, whereas others are clock cycles per sample.

Addressing SCA countermeasures for LBC

EDA SCA toolchain Countermeasures Algorithm Specification Branch balancing, designer System Masking, Floating point Instruction Implementation randomization ∕∖ Fixed point Implementation \mathbf{v} Micro-Hardware designer architecture Power/ clock Design randomization, HDL Coding Masking Verification/ Optimization refinements Synthesis Vendor Floorplanning CMOS (Place and libraries with Route) balanced Hardware Power, e.g., ASIC/ FPGA WDDL.

Open Questions

• Modelling/profiling of SCA Leakage for LBC schemes. *Evaluating SCA-vulnerability*

Which schemes/ underlying modules are naturally least SCAvulnerable? Application recommendations...

- Early warning signs detection by at higher abstraction level by a formal treatment of SCA leakages.
- EDA aided user directed SCA countermeasures insertion.
- Multiple SCA countermeasures are not studied *together*, e.g., masking+parity checks=new vulnerability?

Thank you

Questions?

