Can we build a Trustworthy Billion Transistor Chip?

Samuel Pagliarini

Senior Research Scientist

Carnegie Mellon University

Electrical & Computer

Acknowledgment

Can we build a **Trust**worthy Billion Transistor Chip?

The DoD saga in microelectronics

- Semiconductor industry began in the United States
- □ The US government procured **37% of all the ICs** (1970)
 - Space and defence were the big drivers of the innovation
- Japan and Korea took over the memory market (Fujitsu and Samsung, 1980)
- Taiwan enters the scene with the first **fab-for-hire** (TSMC, 1990)
- Early 2000s, reports already point out that the US will lose access to cutting edge silicon

The DoD saga in microelectronics

1970: Foundries were plenty, everyone had their own foundry

Today: Only one **trusted foundry** in the US, obsolete and expensive to maintain

EXCELLENT RESEARCH OPPORTUNITY!

Hardware Security

Different meanings to different folks

□ Threat-based view of the problem

- Counterfeit chips
- □ IP piracy / IC overbuilding
- Reverse engineering
- Hardware Trojans
- Side channel attacks

CMU: Pioneers in Split-Fabrication

Hybrid manufacturing solution

- Trusted fab
- Untrusted fab
- Leverages the high-performance of untrusted fabrication (fast and power efficient transistors)
- Mitigates trojan insertion
- Prevents IP theft
- Successfully demonstrated on different foundries/techs

Electrical & Computer

Drawbacks of Split-Fabrication

- Hybrid PDK needed
- Yield assignment?
- Alignment concerns?
- Finding foundries willing to play along ⁽²⁾

ALTERNATIVE TO HIDE DESIGN INTENT FROM FOUNDRY?

Split-Chip Methodology

- Core concept: one design, two chips
- May have 'zero' performance loss if split thoughtfully

Split-Chip Methodology for ASICs

- Domestic & trusted foundry
- Legacy technology node
- Control oriented

- Offshore & untrusted foundry
- High performance, high density
- Data oriented, efficient processing

Three demonstration vehicles in 16nm FinFET

Silicon Demonstration #1

- □ 1000 GPS correlators @ 2GHz
- Master/slave architecture
- Additional hardware security techniques
 - Dummy logic, keyed logic, layout obfuscation

2.5mm x 2.5mm 16nm die untrusted foundry

Keyed logic

- Insertion of XOR/XNOR gates and key inputs
- Circuit output is corrupted if incorrect key is applied
- Effective against IP theft

Relies on a (post) programmed memory

Lightweight Layout Obfuscation

Grouping cells into blocks makes physical synthesis tractable, but clustering cells possibly exposes intent

Seeding can guarantee each correlator has a unique layout

- The aggregate of scrambled correlators looks like random logic
- Automated approach to achieve lightweight obfuscation

Silicon Demonstration #1

Manual decisions

- Where to split the hierarchy
- Communication between chips (encryption?)

Lessons learned

- Complex trade-offs: bandwidth & latency vs security
- Very design specific. Automation possible?

Silicon Validation

Split-Chip GPS correlators verified to be functional

Zero performance loss

Correlator chip, acts as untrusted IC

key bits from trusted

Silicon Demonstration #2

- Design characteristics
 - 300k correlators in a 5mm x 5mm die
 - Corresponds to approximately 20M standard cells (high density)
 - □ 5 clock domains (2.4GHz to 1MHz)
 - Floorplan organized in a 3x3 matrix

5mm

GPS correlator chip - floorplan

channel_6 channel 7 channel 8 (300 MHz) (300 MHz) (300 MHz) channel_3 channel_4 channel 5 (300 MHz) (300 MHz) (300 MHz) channel_0 channel_1 channel_2 (300 MHz) (300 MHz) (300 MHz) 5mm

Roughly 300,000 correlators on the same die (~20M std cells)

5mm

GPS correlator chip - floorplan

channel_6 channel 7 channel 8 (1 MHz) (1 MHz) (1 MHz) channel 3 channel_4 channel_5 (1 MHz) (1 MHz) (1 MHz) channel_0 channel_1 channel_2 (1 MHz) (1 MHz) (1 MHz) 5mm

Roughly 300,000 correlators on the same die (~20M std cells)

[config 5 – test/bringup only]

Split-Chip instead of Split-Fab

Need for a CAD tool to assess the partitioning trade-offs

- Technologies can be very different in nature
- Obfuscation schemes like keyed logic can be sought

Obfuscation on Untrusted Chip

Modelled some existing logic locking techniques within the tool

Vast literature available, several variants proposed

Existing Techniques

Amir, S., Shakya, B., Xu, X. et al. J Hardw Syst Secur (2018) 2: 142. https://doi.org/10.1007/s41635-018-0036-3

Split-Chip Design

Vulnerability Optimization

s.t.

- **X** = {0,1,2,1,0,3, ...}
 - 0: trusted
 - 1: untrusted
 - 2: untrusted, key logic
 - 3: untrusted, FSM obf.

Configuration	Exposure
Trusted	0.1
Untrusted	1.0
Untrusted w/ FSM Obf.	0.9
Untrusted w/ Keyed Logic	0.8

Technique exposure

- Ranks technique-related risk
- Score starts from 0 for maximal security on trusted chip

Module criticality

min $f(\mathbf{x}) = \text{Vulnerability}(\mathbf{x}) = \text{Exposure}(C) + \text{Criticality}(M)$

constraints met

- User-defined scores
- Quantifies module risk/importance

Case study: Common Evaluation Platform

- Several constraints relaxed
- Significant decrease in vulnerability

Case study: Common Evaluation Platform

 Added keyed logic as secondary obfuscation to further reduce vulnerability

Manual observation: small tweak allows obfuscation on every system module

Pairing and encryption framework

Uses SRAM as **signature** and asymmetric encryption (RSA)

- 1-to-1 pairing of Trusted and Untrusted ICs
 - Threats that are unique to Split-Chip
- Only public key is exchanged in the clear

Can we build a Trustworthy Billion Transistor Chip?

Carnegie Mellon University

We can build a Trustworthy-ish Billion Transistor Chip

How to measure trust?

Carnegie Mellon University

Lack of metrics

Widespread problem for the hardware security community
Self-critical: my interpretation of the state of the art

Configuration	Exposure
Trusted	0.1
Untrusted	1.0
Untrusted w/ FSM Obf.	0.9
Untrusted w/ Keyed Logic	0.8

Thanks!

Carnegie Mellon University

