
DEEPSECURITY: APPLYING
DEEP LEARNING TO
HARDWARE SECURITY

2

Overall Goal

To investigate the use of Deep Learning for security verification in EDA

tools, specifically in relation to Hardware Trojan detection and Side channel

analysis to allow non-security experts to receive feedback on how to

improve the security of their designs prior to fabrication.

DeepSecurity: Applying Deep Learning to Hardware Security

Hardware Trojan
Detection

Detecting Hardware Trojans
– IC Production Stage

…...

Hardware Trojan
database

generation

Trojan feature
extraction

Machine Learning/
Deep Learning
based detection

Security of the
whole IC lifecycle

Plan And Progress

www.csit.qub.ac.uk CSIT is a Research Centre of the ECIT Institute 7

Paper:
“An Improved Automatic Hardware Trojan Generation Platform” ISVLSI 2019, July 2019
“ A Novel Feature Extraction Strategy for Hardware Trojan Detection ” ISCAS 2020, (Submitted)

 Netlist parsing;

 Netlist block (in N logic levels);

 Trojan’s structural features;

 Dynamic features

(Switching activity)

 Highly configurable in HT

types;

 Triggered under rare

conditions;

 HT-infected circuits with

reports

 Unsupervised machine learning

(K-means Clustering);

 Supervised machine learning (SVM);

 Deep Learning (under development)

*SVM: Support Vector Machine

www.csit.qub.ac.uk CSIT is a Research Centre of the ECIT Institute 10

When compared with the COTD detection results from [1],

who proposed a dynamic Hardware Trojan benchmark.

[1] J. Cruz, Y. Huang, P. Mishra, and S. Bhunia, “An automated configurable trojan insertion framework

for dynamic trust benchmarks,” in Proc. Design, Automation Test in Europe Conf. Exhibition, March 2018

TABLE I

COMPARISON OF COTD-BASED HT DETECTION RESULTS

An Improved Automatic Hardware Trojan Generation Platform

Generated HT benchmark samples:

Normal

Circuit

Normal

Circuit

payload net

trigger net

enableP/L

0 1 0 0 1

shift_en

shift_reg. payload
clk

FSM Trig.

out

trigger net

F
F

Normal

Circuit

F
F

...

(a) Combinational Trojan with functional error payload

(b) FSM based sequential Trojan with a SHIFT based leakage circuit

www.csit.qub.ac.uk CSIT is a Research Centre of the ECIT Institute 11

A Novel Feature Extraction Strategy for Hardware Trojan Detection

Pin-Level Graph Generator

Feature Mapper

(only for netlist in different cell library)

BFS-Searching Module

(in N logic levels)

Normal/HT Instance Labeler

Parameter:

Logic Level=N,

Cell library file,

(Library Mapping

Table)

Netlist

Gate-Level Netlist

(Trojan-infected)

Pin-level Structural

Feature Dataset

Dataset for

HT detection

Pin-Level Structural Feature Extraction for HT Detection

Pin-Level Feature Filter

Netlist Block of Each Instance

(Sub-graph of Netlist)

Pin-level Graph of Netlist

 Pin-level Structural Paths

 for Each Instance

 Pin-level Structural Paths

 for Each Instance

*SVM: Support Vector Machine

Q

Q
SET

CLR

D

Q

Q
SET

CLR

DNOR2
NOR2

NOR2
NOR2

OR2

NAND2

U1 U2

U3

U4 U5

U6

U7DFF

DFF

U8

g1

g2

g3

g4

clk

g6

g7

g5

g8

g9

g10

g11

g12

g13

Instance U6

Path 1

g13

Netlist

NOR2_IN2

NOR2_IN1

NOR2_OUT

NOR2(U1)

DFF_D

DFF_CLK

DFF(U7)

DFF_Q

NOR2_IN1

NOR2_IN2

NOR2(U2)
NOR2_OUT

INPUT

OUTPUT

Pin-level Directed Graph

Netlist Block

Pin-level Structural Feature Trace

SVM-based HT Detection

• Deep Learning-based HT detection model

• Testing:
• Training Set: HT-infected benchmarks generated from our HT generation platform.
• Testing Set: open-sourced HT benchmarks.

Next Steps

Input
Convolution

layer

Pooling

layer

Convolution

& pooling

layers

Fully

connected

layers

Output

layer

c2

W

P1,2

c1

Wscore

Encoder Decoder

Input

 Layer

Hidden

Layer

Output

Layer

(a)

(b)

(c)

(d)

ft

ct

it

×

×

×

ot

Forget Gate

Cell

Input Gate
Output Gate

htxt

Deep Learning Model

Pin-Level Graph Generator

Feature Mapper

(only for netlist in different cell library)

BFS-Searching Module

(in N logic levels)

Normal/HT Instance Labeler

Parameter:

Logic Level=N,

Cell library file,

(Library Mapping

Table)

Netlist

Gate-Level Netlist

(Trojan-infected)

Pin-level Structural

Feature Dataset

Dataset for

HT detection

Pin-Level Structural Feature Extraction for HT Detection

Pin-Level Feature Filter

Netlist Block of Each Instance

(Sub-graph of Netlist)

Pin-level Graph of Netlist

 Pin-level Structural Paths

 for Each Instance

 Pin-level Structural Paths

 for Each Instance

Novel Feature Extraction Program

HT-infected
Netlists

HT Feature

Traces

Applying Deep
Learning to
Side-channel
Analysis

Context and motivation

• Deep learning shows potential in improving side-channel analysis.

• Available deep learning models are not really designed for side-channel
attacks.

• Evaluating DL-based SCA attacks and understanding the leakage that allows
successful attacks can be used to improve physical attack countermeasures
for cryptographic implementations.

ASCAD database
E. Prouff et al. Study of deep learning techniques for SCA and Introduction to ASCAD

Database, Cryptology ePrint, Report 2018/053

• ASCAD database experiments
• 2nd order masked AES-128 implementation on ATMega processor

• Traces are synchronized and slightly de-synchronized

• ASCAD database with FIXED key
• 50,000 traces for learning (50,000 traces for single key)

• 10,000 traces for attacking, 700 samples per trace

• ASCAD database with VARIABLE key
• 200,000 traces for learning (781 traces per key in average)

• 100,000 traces for attacking, 1,400 samples per trace

Models

• Attacking model: output value of 3rd Sbox at 1st round

Sboxout[3] = Sbox(Plaintext[3]  Key[3])

• Proposed Deep Learning models
• Convolutional Neural Network

• Considered general knowledge in Side-channel analysis

• Target generic AES implementation (regardless of countermeasure used).

• Different convolutional filter kernel sizes

• Reference models (in ASCAD database)
• First order template model

• First order Multi Layer Perceptron (MLP)

• Multi Layer Perceptron with input batch normalization

• VGG16 based CNN

Assumption of attacker

• Attacker can profile plaintext and/or ciphertext

• Attacker can profile keys on the device

• Attacker does not know specific AES implementation details but

understands that the designer may or may not have applied

countermeasures e.g time shifting, 1st or high order masking, dual-rail

logic, etc.

Model Development & Evaluation methods

• Use TensorFlow library for DL models

• Cross evaluation
• Training on synchronized profile data and attacking on desynchronized attack

data on the same database

• Training on desynchronized profile data and attacking on synchronized attack
data on the same database

Results for Fixed key, synchronized data

• Improves upon
reference ML models
(shown in blue & black)

• Our models are able
to find correct sub key
with a single traceP

ro
p

o
s
e

d
 m

o
d

e
ls

 w
it
h

d
if
fe

re
n

t
k
e

rn
e

l
s
iz

e
s

Reference

Models

Model Comparison – 500 runs with Maximum

Likelihood Score (MLS)

Results for Fixed key, desynchronized data

• Improves upon
reference ML models
(blue lines)

• All our models are
able to find correct
sub key within single
traces

P
ro

p
o

s
e

d
 m

o
d

e
ls

 w
it
h

d
if
fe

re
n

t
k
e

rn
e

l
s
iz

e
s

Reference

Models

Model Comparison – 500 runs with Maximum

Likelihood Score (MLS)

Results for Fixed key, cross evaluation

• Decrease in performance of models is observed when trained on synchronized
data to attack desynchronized data

• No change observed when models trained on desynchronized data to attack
synchronized data

Desynchronized

vs

Synchronized

Reference

Models

P
ro

p
o

s
e

d
 m

o
d

e
ls

w
it
h

 d
if
fe

re
n

t
k
e

rn
e

l

s
iz

e
s

Synchronized

vs

Desynchronized P
ro

p
o

s
e

d
 m

o
d

e
ls

w
it
h

 d
if
fe

re
n

t
k
e

rn
e

l

s
iz

e
s

Reference

Models

Model Comparison – 500 runs with Maximum Likelihood Score (MLS) Model Comparison – 500 runs with Maximum Likelihood Score (MLS)

Results for Variable key, synchronized data

• Improves upon
reference ML models
(blue lines)

• Our CNN models are
successful - achieve
a key rank of 2 with
50 traces (216 = 65,536
additional brute force
attack required)

P
ro

p
o

s
e

d
 m

o
d

e
ls

w
it
h

 d
if
fe

re
n

t
k
e

rn
e

l

s
iz

e
s

Reference

Model

Model Comparison – 500 runs with Maximum Likelihood Score (MLS)

Results for Variable key, desynchronized data

• Improves upon
reference ML models
(blue lines)

• Our CNN models
achieve key rank 20
with 100 traces

Proposed

models with

different

kernel sizes

Reference

Model

Model Comparison – 500 runs with Maximum Likelihood Score (MLS)

Results for Variable key, cross evaluation

• Decrease in performance of proposed models observed in both situations

• May be due to small no. of traces available per sub key?

Desynchronized

vs

Synchronized

Proposed

models with

different

kernel sizes

Reference

Model

Synchronized

vs

Desynchronized

P
ro

p
o
s
e
d
 m

o
d
e
ls

 w
it
h

d
if
fe

re
n
t

k
e
rn

e
l
s
iz

e
s

Reference

Model

Model Comparison – 500 runs with Maximum Likelihood Score (MLS) Model Comparison – 500 runs with Maximum Likelihood Score (MLS)

Next steps

• Understand observed results in cross-evaluation attack for a
variable key

• Application of proposed model to different databases, and
different hardware based countermeasures, e.g. dual-rail logic
approaches.

• Understand leakage that makes DL attacks possible in order to
build stronger countermeasures.

Thank you

