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Overall Goal

To investigate the use of Deep Learning for security verification in EDA 

tools, specifically in relation to Hardware Trojan detection and Side channel 

analysis to allow non-security experts to receive feedback on how to 

improve the security of their designs prior to fabrication.

DeepSecurity: Applying Deep Learning to Hardware Security  
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Plan And Progress
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Paper: 
“An Improved Automatic Hardware Trojan Generation Platform”   ISVLSI 2019,   July 2019
“ A Novel Feature Extraction Strategy for Hardware Trojan Detection ”  ISCAS 2020, (Submitted)

 Netlist parsing;

 Netlist block (in N logic levels);

 Trojan’s structural features;

 Dynamic features 

(Switching activity)

 Highly configurable in HT 

types;

 Triggered under rare 

conditions;

 HT-infected circuits with 

reports

 Unsupervised machine learning 

(K-means Clustering);

 Supervised machine learning (SVM);

 Deep Learning (under development)

*SVM: Support Vector Machine
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When compared with the COTD detection results from [1], 

who proposed a dynamic Hardware Trojan benchmark.

[1] J. Cruz, Y. Huang, P. Mishra, and S. Bhunia, “An automated configurable trojan insertion framework 

for dynamic trust benchmarks,” in Proc. Design, Automation Test in Europe Conf. Exhibition, March 2018

TABLE I

COMPARISON OF COTD-BASED HT DETECTION RESULTS

An Improved Automatic Hardware Trojan Generation Platform

Generated HT benchmark samples:
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(a) Combinational Trojan with functional error payload

(b) FSM based sequential Trojan with a SHIFT based leakage circuit
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A Novel Feature Extraction Strategy for Hardware Trojan Detection
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*SVM: Support Vector Machine
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• Deep Learning-based HT detection model

• Testing:
• Training Set: HT-infected benchmarks generated from our HT generation platform.
• Testing Set: open-sourced HT benchmarks.

Next Steps
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Applying Deep 
Learning to 
Side-channel 
Analysis



Context and motivation

• Deep learning shows potential in improving side-channel analysis.

• Available deep learning models are not really designed for side-channel 
attacks.

• Evaluating DL-based SCA attacks and understanding the leakage that allows 
successful attacks can be used to improve physical attack countermeasures 
for cryptographic implementations.



ASCAD database
E. Prouff et al. Study of deep learning techniques for SCA and Introduction to ASCAD 

Database, Cryptology ePrint, Report 2018/053

• ASCAD database experiments
• 2nd order masked AES-128 implementation on ATMega processor 

• Traces are synchronized and slightly de-synchronized

• ASCAD database with FIXED key
• 50,000 traces for learning (50,000 traces for single key)

• 10,000 traces for attacking, 700 samples per trace

• ASCAD database with VARIABLE key
• 200,000 traces for learning (781 traces per key in average)

• 100,000 traces for attacking, 1,400 samples per trace



Models

• Attacking model: output value of 3rd Sbox at 1st round

Sboxout[3] = Sbox(Plaintext[3]  Key[3])

• Proposed Deep Learning models
• Convolutional Neural Network

• Considered general knowledge in Side-channel analysis

• Target generic AES implementation (regardless of countermeasure used).

• Different convolutional filter kernel sizes

• Reference models (in ASCAD database)
• First order template model

• First order Multi Layer Perceptron (MLP)

• Multi Layer Perceptron with input batch normalization

• VGG16 based CNN



Assumption of attacker

• Attacker can profile plaintext and/or ciphertext

• Attacker can profile keys on the device

• Attacker does not know specific AES implementation details but 

understands that the designer may or may not have applied 

countermeasures e.g time shifting, 1st or high order masking, dual-rail 

logic, etc.



Model Development & Evaluation methods

• Use TensorFlow library for DL models

• Cross evaluation
• Training on synchronized profile data and attacking on desynchronized attack 

data on the same database

• Training on desynchronized profile data and attacking on synchronized attack 
data on the same database



Results for Fixed key, synchronized data

• Improves upon 
reference ML models 
(shown in blue & black)

• Our models are able 
to find correct sub key 
with a single traceP
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Results for Fixed key, desynchronized data

• Improves upon 
reference ML models 
(blue lines)

• All our models are 
able to find correct 
sub key within single 
traces
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Results for Fixed key, cross evaluation

• Decrease in performance of models is observed when trained on synchronized 
data to attack desynchronized data

• No change observed when models trained on desynchronized data to attack 
synchronized data
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Results for Variable key, synchronized data

• Improves upon 
reference ML models 
(blue lines)

• Our CNN models are 
successful - achieve 
a key rank of 2 with 
50 traces (216 = 65,536 
additional brute force 
attack required)

P
ro

p
o

s
e

d
 m

o
d

e
ls

 

w
it
h

 d
if
fe

re
n

t 
k
e

rn
e

l 

s
iz

e
s

Reference

Model

Model Comparison – 500 runs with Maximum Likelihood Score (MLS)



Results for Variable key, desynchronized data

• Improves upon 
reference ML models 
(blue lines)

• Our CNN models 
achieve key rank 20 
with 100 traces
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Results for Variable key, cross evaluation

• Decrease in performance of proposed models observed in both situations

• May be due to small no. of traces available per sub key?
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Next steps

• Understand observed results in cross-evaluation attack for a 
variable key

• Application of proposed model to different databases, and 
different hardware based countermeasures, e.g. dual-rail logic 
approaches.

• Understand leakage that makes DL attacks possible in order to 
build stronger countermeasures. 



Thank you 


