

rFAS - FPGA Accelerator Sandboxing

FPGAs have a huge surface of attack!

Remote DPA attacks

Destroy or age FPGA hardware through corrupted bitstream (we have shown that!)

Power hammering attacks

Schematics	Measured Frequency	Power	WPP
Ø	Ø	2.94W	Ø
15 14 13 12 11 10 LUT6	5882MHz	7.32W (+4.38W)	26.63
15 14 13 12 11 10 LUT6	3937 MHz	6.84W (+3.90W)	23.69

D LDCE D GE CLR G	1706MHz	5.14W (+2.19W)	13.35
PRE 0 D Q C FDPE	555MHz	5.26W (+2.32W)	7.05
FDCE external trigger CLK CLK	481MHz	8.05W (+5.10W)	10.35

Experiment: 2K LUTs on a Ultra96 Board (Xilinx Zynq UltraScale+)

- The fastest oscillators do not necessary burn most power
- Fast oscillators are better for power analysis attacks

We carried out first experiments on an Alveo U200*

datacenter FPGA → 10% LUTs draw 350W !!!

(* same specification as used in Amazon F1)

- x KW Power-hammering potential!
- Many of our circuits are not spotted by the vendor tools!
 (Design Rule Checks (DRCs) & power analyzer tool)
- We tested power-hammering attacks on Amazon F1 instances:
 - → can be deployed!
- Oscillators allow power analysis attacks
 (finger printing (PUFs), temperature, attack triggers, ...

FPGADefender Virus Scanning for FPGAs

- Detects probably any kind of self-oscillating circuits
- Scans bitstream encoding (short circuits), high fan-out nets, wire tapping, module bounding boxes (all at bitstream level)
- more to come ...

rFAS - FPGA Accelerator Sandboxing

Major outcome:

FPGADefender

(spinoff???)

People:

Tuan Minh La {tuan.la@postgrad.manchester.ac.uk}

Khoa Dang Pham {khoa.pham@manchester.ac.uk}

Kaspar Matas {kaspar.matas@manchester.ac.uk}

Nikola Grunchevski {nikola.grunchevski@manchester.ac.uk}

Dirk Koch {dirk.koch@manchester.ac.uk}