
SafeBet Project Computer Science and Technology

SafeBet: Validication of safe, 
aggressive speculation

Jonathan Woodruff, Simon W. Moore, Robert N. M. Watson
RISE Annual Conference, London

21th November 2019

Funded by GCHQ under the RISE initiative (ref: 4213054)



SafeBet Project

Motivation: new speculative execution attacks

2RISE Annual Conference

TLBleed

All speculatively execute code that that leak secret information via a side-channel



SafeBet Project

Stages of SafeBet Project

3RISE Annual Conference

• Instrument RISCY-OOO processor for TestRIG

• Develop sequence generators to demonstrate Spectre
vulnerabilities

• Evaluate proposed mitigations, including CHERI capabilities



SafeBet Project

Ingredients of a Study on
Spectre Vulnerability Discovery

4RISE Annual Conference

1.Classification of Spectre vulnerabilities
2.Open-source Out-of-Order Processor 

Implementations
3.Flexible Validation Tools for Timing-Sensitive 

Reproduction



SafeBet Project

Classification of Spectre
Attacks

5RISE Annual Conference

Meltdown-type effects, or that serializing instructions miti-
gate Spectre Variant 1 on any CPU.

In this paper, we present a systematization of transient
execution attacks, i.e., Spectre, Meltdown, Foreshadow, and
related attacks. Using our decision tree, transient execution
attacks are accurately classified through an unambiguous nam-
ing scheme (cf. Figure 1). The hierarchical and extensible na-
ture of our taxonomy allows to easily identify residual attack
surface, leading to 6 previously overlooked transient execu-
tion attacks (Spectre and Meltdown variants) first described in
this work. Two of the attacks are Meltdown-BND, exploiting
a Meltdown-type effect on the x86 bound instruction on Intel
and AMD, and Meltdown-PK, exploiting a Meltdown-type
effect on memory protection keys on Intel. The other 4 attacks
are previously overlooked mistraining strategies for Spectre-
PHT and Spectre-BTB attacks. We demonstrate the attacks
in our classification tree through practical proofs-of-concept
with vulnerable code patterns evaluated on CPUs of Intel,
ARM, and AMD.

Next, we provide a systematization of the state-of-the-art
defenses. Based on this, we systematically evaluate defenses
with practical experiments and theoretical arguments to show
which work and which do not or cannot suffice. This sys-
tematic evaluation revealed that we can still mount transient
execution attacks that are supposed to be mitigated by rolled
out patches. Finally, we discuss how defenses can be designed
to mitigate entire types of transient execution attacks.
Contributions. The contributions of this work are:
1. We systematize Spectre- and Meltdown-type attacks, ad-

vancing attack surface understanding, highlighting mis-
classifications, and revealing new attacks.

2. We provide a clear distinction between Meltdown/Spectre,
required for designing effective countermeasures.

3. We categorize defenses and show that most, including
deployed ones, cannot fully mitigate all attack variants.

4. We describe new branch mistraining strategies, highlight-
ing the difficulty of eradicating Spectre-type attacks.

We responsibly disclosed the work to Intel, ARM, and AMD.
Experimental Setup. Unless noted otherwise, the experi-
mental results reported were performed on recent Intel Sky-
lake i5-6200U, Coffee Lake i7-8700K, and Whiskey Lake i7-
8565U CPUs. Our AMD test machines were a Ryzen 1950X
and a Ryzen Threadripper 1920X. For experiments on ARM,
an NVIDIA Jetson TX1 has been used.
Outline. Section 2 provides background. We systematize
Spectre in Section 3 and Meltdown in Section 4. We analyze
and classify gadgets in Section 5 and defenses in Section 6.
We discuss future work and conclude in Section 7.

2 Transient Execution

Instruction Set Architecture and Microarchitecture. The
instruction set architecture (ISA) provides an interface be-
tween hardware and software. It defines the instructions that

Transient
cause?

Spectre-type

microarchitec-
tural buffer

Meltdown-type

fault type

Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL [29]

mistraining
strategy

Cross-address-space

Same-address-space

PHT-CA-IP ï

PHT-CA-OP ï

PHT-SA-IP [48, 50]

PHT-SA-OP ï

in-place (IP) vs., out-of-place (OP)

Cross-address-space

Same-address-space

BTB-CA-IP [13, 50]

BTB-CA-OP [50]

BTB-SA-IP ï

BTB-SA-OP [13]Cross-address-space

Same-address-space RSB-CA-IP [52, 59]

RSB-CA-OP [52]

RSB-SA-IP [59]

RSB-SA-OP [52, 59]

Meltdown-NM [78]

Meltdown-AC î

Meltdown-DE î

Meltdown-PF

Meltdown-UD î

Meltdown-SS î

Meltdown-BR

Meltdown-GP [8, 35]

Meltdown-US [56]

Meltdown-P [85, 90]

Meltdown-RW [48]

Meltdown-PK ï

Meltdown-XD î

Meltdown-SM î

Meltdown-MPX [40]

Meltdown-BND ï

prediction

fault

Figure 1: Transient execution attack classification tree with
demonstrated attacks (red, bold), negative results (green,
dashed), some first explored in this work (ï / î).

a processor supports, the available registers, the addressing
mode, and describes the execution model. Examples of dif-
ferent ISAs are x86 and ARMv8. The microarchitecture then
describes how the ISA is implemented in a processor in the
form of pipeline depth, interconnection of elements, execution
units, cache, branch prediction. The ISA and the microarchi-
tecture are both stateful. In the ISA, this state includes, for
instance, data in registers or main memory after a success-
ful computation. Therefore, the architectural state can be ob-
served by the developer. The microarchitectural state includes,
for instance, entries in the cache and the translation lookaside
buffer (TLB), or the usage of the execution units. Those mi-
croarchitectural elements are transparent to the programmer
and can not be observed directly, only indirectly.
Out-of-Order Execution. On modern CPUs, individual in-
structions of a complex instruction set are first decoded and
split-up into simpler micro-operations (µOPs) that are then
processed. This design decision allows for superscalar op-
timizations and to extend or modify the implementation of
specific instructions through so-called microcode updates.
Furthermore, to increase performance, CPU’s usually imple-
ment a so-called out-of-order design. This allows the CPU
to execute µOPs not only in the sequential order provided by
the instruction stream but to dispatch them in parallel, utiliz-
ing the CPU’s execution units as much as possible and, thus,
improving the overall performance. If the required operands
of a µOP are available, and its corresponding execution unit
is not busy, the CPU starts its execution even if µOPs earlier
in the instruction stream have not finished yet. As immediate
results are only made visible at the architectural level when
all previous µOPs have finished, CPUs typically keep track
of the status of µOPs in a so-called Reorder Buffer (ROB).
The CPU takes care to retire µOPs in-order, deciding to either
discard their results or commit them to the architectural state.
For instance, exceptions and external interrupt requests are

A Systematic Evaluation of Transient Execution Attacks and Defenses, Claudio Canella, et al.

• Suggests automated 
discovery of the presence 
of each class of 
vulnerability.
• Conversely, validation 

that each attack is not 
possible.



SafeBet Project

Open-source Superscalar Out-of-Order CPUs 

6RISE Annual Conference

RISCY-OOO (MIT, language: Bluespec)

Composable Building Blocks to Open up Processor Design, Sizhou Zhang, et al.

BOOM (Berkeley, language: Chisel)
CARRV ’19, June 22, 2019, Phoenix,AZ Gonzalez, Korpan, Zhao et al.

Figure 1: Overview of BOOM Pipeline

usefulness of the open-source RISC-V ecosystem for hardware se-
curity research.

The remainder of this paper is structured as follows: In Section 2
we demonstrate how disclosed attacks can be replicated on an open-
source processor, speci�cally BOOM. In Section 3 we demonstrate
the process of implementing a simple mitigation for our replicated
attacks. In Section 4 we evaluate the performance and security
implications of our implemented mitigation. In Section 5 we discuss
future work and conclude in Section 6.

2 SPECULATIVE ATTACK REPLICATION
To our knowledge, we provide the �rst set of open-source imple-
mentations of speculative execution attacks on an open-source
RISC-V processor, in our case BOOM. As a generic implementation
of an out-of-order processor, BOOM provides all of the necessary
microarchitectural components for a speculative execution attack
to occur. Additionally, BOOM’s open source RTL provides full visi-
bility of microarchitectural behaviors during program execution.

2.1 Speculative Execution Attack Components
We now describe the microarchitectural components which enable
speculative execution attacks on modern processors, and show how
BOOM demonstrates these features.

2.1.1 Branch Predictor Unit. In a modern high-performance pro-
cessor, the branch predictor lets the processor execute instructions
past a unresolved branch, substantially improving performance.
Many recently disclosed speculative execution attacks exploit this
optimization by training the branch predictors to misdirect the PC
during execution of victim code.

BOOM’s branch predictor, as shown in Figure 1, is split into a sim-
ple two-cycle “next-line predictor” (NLP) and a complex four-cycle

“backing predictor”. The NLP contains the Branch Target Bu�er
(BTB) where the PCs and targets of recent branches are cached.
The NLP also contains the Return Stack Bu�er (RSB) which holds
a stack of targets from ret instructions. The “backing predictor”
is a TAGE [16] or GShare predictor [15, 25] which makes a more
accurate prediction based on a global history of branch activity.
We designed attacks targeting a GShare predictor since the current
GShare predictor implementation performs more reliably than the
TAGE predictor implementation.

2.1.2 Speculative Execution. In a modern high-performance pro-
cessor, the branch predictor instructs the fetch stages to provide a
predicted instruction stream to the execution backend. As a result,
mispredicted branches might invalidate previously executed in-
structions, marking them as misspeculated. Register renaming and
reorder structures enable recovery from these misspeculations to
maintain overall program correctness, while still allowing instruc-
tions to execute out-of-order. However, misspeculated instructions
may leave behind visible microarchitectural state in the processor,
forming side-channels from which attacks can extract information
about the results of misspeculated instructions.

BOOM follows the conventional design paradigm of modern
out-of-order processors, as seen in Figure 1. The reorder bu�er,
renaming stages, and issue queues coordinate to enable speculative
execution while guaranteeing program correctness.

2.1.3 Caching. Inmodern processors, multi-level cache hierarchies
allow the processor to exploit locality in its memory accesses. These
cache hierarchies also present a side-channel for speculative execu-
tion attacks. To reduce noise, cache side-channel attacks generally
target a large last level cache.

Our con�guration of BOOM has a two-level memory hierarchy,
with a non-blocking L1 data cache, and an outer memory set to the

doRename. This will be feasible only if methods of various
modules have certain properties.
• IQ methods must behave as if issue < wakeup < enter
• RDYB methods must behave as if setReady <
{rdy1, rdy2, setNotReady}

It is always possible to design modules so that their meth-
ods will satisfy these properties [2]. The interesting ques-
tion is what happens to the overall design if a module
has slightly different properties. For example, suppose the
RDYB module does not do internal bypassing, and there-
fore {rdy1, rdy2, setNotReady} < setReady. In this case,
doRename and doRegWrite will no longer be able to execute
concurrently preserving atomicity. But doIssue will still be
able to fire concurrently with either one of them, but not
both. So the design with such a RDYB module will have
less overall concurrency implying less performance, but it will
still be correct. This type of reasoning is the main advantage
of thinking of a modular design in terms atomic actions and
interface methods as opposed to just an interconnection of
finite-state machines.

D. Modularity and Architectural Exploration

Now we illustrate another point where a different ordering of
atomic actions can have different implications for performance
and thus, can be a mechanism for microarchitectural exploration.
Consider the case where all three rules execute concurrently
and affect the state in the order: doRegWrite < doIssue <
doRename. This will be feasible only if methods of various
modules have the following properties.
• In IQ wakeup < issue < enter
• In RDYB setReady < {rdy1, rdy2, setNotReady}
This ordering implies that entries in the IQ are woken up before
issuing, so an instruction can be set as ready and issued in the
same cycle. This reduces a clock cycle of latency compared to
the other ordering of these rules. The point is that by playing
with these high-level ideas, the focus shifts from correctness
to exploration and performance.

V. COMPOSING AN OUT-OF-ORDER PROCESSOR

Figure 9 shows the overall structure of the OOO core. The
salient features of our OOO microarchitecture are the physical
register file (PRF), reorder buffer (ROB), a set of instruction
issue queues (IQ) – one for each execution pipeline (only
two are shown to avoid clutter), and a load-store unit, which
includes LSQ, non-blocking D cache, etc.

The front end has three different branch predictors (BTB,
tournament direction predictor, and return address stack) and
it enters instructions into ROB and IQs after renaming. We
use epochs for identifying wrong path instructions. Instructions
can be flushed because of branch mispredictions, load miss-
speculations on memory dependencies, and page faults on
address translation. Each instruction that may cause a flush is
assigned a speculation tag [16], [31], [38], and the subsequent
instructions that can be affected by it carry this tag. These
speculation tags are managed as a finite set of bit masks

Rename

ROB

ALU IQ Issue Reg
Read Exec Reg

Write

MEM IQ Issue Reg
Read

Addr
Calc

Update
LSQ

Physical Reg File

L1 D TLB

LSQ (LQ + SQ)

Commit

Bypass

Issue
Ld

Deq

Store
Buffer

L1 D$

Resp
Ld

Issue
St

Resp
St

Rename
Table

Speculation
Manager

Epoch
Manager

Scoreboard

ALU pipeline

MEM pipeline

Load-Store Unit

Front-end

Fetch

Fig. 9. Structure of the OOO core

which are set and cleared as instruction execution proceeds.
When an instruction can no longer cause any flush, it releases
its speculation tag, and the corresponding bit is reset in the
bit masks of subsequent instructions so that the tag can be
recycled. To reduce the number of mask bits, we only assign
speculation tags to branch instructions, while deferring the
handling of interrupts, exceptions and load speculation failures
until the commit stage. Every module that keeps speculation-
related instructions must keep speculation masks and provide a
correctSpec method to clear bits from speculation masks, and
a wrongSpec method to kill instructions. We do not repeatedly
describe these two methods in the rest of this section.

We also maintain two sets of PRF presence bits to reduce
latency between dependent instructions. The true presence bits
are used in the Reg-Read stage to stall instructions. Another set
of presence bits (Scoreboard in Figure 9) are set optimistically
when it is known that the register would be set by an older
instruction with small predictable latency. These optimistic bits
are maintained as a scoreboard, and are used when instructions
are entered in IQ and can improve throughput for instructions
with back-to-back dependencies.

In Figure 9, boxes represent the major modules in the core,
while clouds represent the top-level rules. A contribution of
this paper is to show a set of easily-understandable interfaces
for all the modules, and show some atomic rules that are used
to compose the modules. The lack of space does not allow
us describe all the details but in the following subsections we
discuss all the salient modules and some important rules. We
will also describe briefly how we connect multiple OOO cores
to form a multiprocessor. The whole design has been released
publicly as the RiscyOO processor at https://github.
com/csail-csg/riscy-OOO. Due to lack of space, we
do not discuss the details of front-end, and directly get into
the execution engine and load-store unit.

A. The Execution Engine

The execution engine consists of multiple parallel execution
pipelines, and instructions can be issued from the IQs in
different pipelines simultaneously. The number of execution

Replicating and Mitigating Spectre Attacks on a Open Source RISC-V 
Microarchitecture, Abraham Gonzalez, et al.



SafeBet Project

TestRIG: Reproducing Timing-sensitive Behaviour

7RISE Annual Conference

Three interchangeable parts:
• Verification Engine, “VEngine”

Generates interesting sequences
• Model

Executable specification, or
known-good implementation

• Implementation

(Models and implementations are interchangeable)



SafeBet Project 8RISE Annual Conference

TestRIG: Reproducing Timing-sensitive Behaviour

Implementation instrumentation
(the price to pay for simplified verification)

Direct Instruction
Injection (DII)

RVFI Execution
Trace

IF/ID ID/EX EX/MEM MEM/WB

General
Purpose
Registers ALU

Data
MemoryInstruction

Memory
PC

Defined memory layout

Instruction memory 
bypass

Replay Buffer



SafeBet Project

Side Study - Spectre vs. CHERI

9RISE Annual Conference

CHERI Opportunities: CHERI atomically ties bounds to pointers.
• Speculation limited to addresses within the object.
• Much better than to the entire address space!

Threats to CHERI:
• CHERI enables more fine-grained compartmentalization.
• User-space compartments that share a page table can now be 

targeted by Spectre. 

Does CHERI give other handles for micro-architectural prevention of 
unsafe speculation?



SafeBet Project

Conclusion

10RISE Annual Conference

Fully Open-source to facilitate community uptake and validation
All hardware and validation infrastructure is being developed open-source.

Much progress since 1 October 2019 start:
Currently adding TestRIG instrumentation of the RISCY-OO core
and familiarizing ourselves with a complex hardware design.

Jonathan.Woodruff@cl.cam.ac.uk


