SafeBet: Validation of safe, aggressive speculation

Jonathan Woodruff, Simon W. Moore, Robert N. M. Watson
RISE Annual Conference, London
21st November 2019

Funded by GCHQ under the RISE initiative (ref: 4213054)
Motivation: new speculative execution attacks

All speculatively execute code that leak secret information via a side-channel
Stages of SafeBet Project

- Instrument RISCY-OOO processor for TestRIG
- Develop sequence generators to demonstrate Spectre vulnerabilities
- Evaluate proposed mitigations, including CHERI capabilities
Ingredients of a Study on Spectre Vulnerability Discovery

1. Classification of Spectre vulnerabilities
2. Open-source Out-of-Order Processor Implementations
3. Flexible Validation Tools for Timing-Sensitive Reproduction
Classification of Spectre Attacks

- Suggests automated discovery of the presence of each class of vulnerability.
- Conversely, validation that each attack is not possible.

Figure 1: Transient execution attack classification tree with demonstrated attacks (red, bold), negative results (green, dashed), some first explored in this work (★ / ★★).

A Systematic Evaluation of Transient Execution Attacks and Defenses, Claudio Canella, et al.
Composable Building Blocks to Open up Processor Design, Sizhou Zhang, et al.

TestRIG: Reproducing Timing-sensitive Behaviour

Three interchangeable parts:

- Verification Engine, “VEngine”
 Generates interesting sequences
- Model
 Executable specification, or known-good implementation
- Implementation

(Models and implementations are interchangeable)
TestRIG: Reproducing Timing-sensitive Behaviour

Implementation instrumentation
(the price to pay for simplified verification)
Side Study - Spectre vs. CHERI

CHERI Opportunities: CHERI atomically ties bounds to pointers.
• Speculation limited to addresses within the object.
• Much better than to the entire address space!

Threats to CHERI:
• CHERI enables more fine-grained compartmentalization.
• User-space compartments that share a page table can now be targeted by Spectre.

Does CHERI give other handles for micro-architectural prevention of unsafe speculation?
Conclusion

Fully Open-source to facilitate community uptake and validation
All hardware and validation infrastructure is being developed open-source.

Much progress since 1 October 2019 start:
Currently adding TestRIG instrumentation of the RISCY-OO core and familiarizing ourselves with a complex hardware design.

Jonathan.Woodruff@cl.cam.ac.uk