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Overall Goal

To investigate the use of Deep Learning for security verification in EDA 

tools, specifically in relation to Hardware Trojan detection and Side channel 

analysis to allow non-security experts to receive feedback on how to 

improve the security of their designs prior to fabrication.

DeepSecurity: Applying Deep Learning to 
Hardware Security



Hardware Trojan 
Detection
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Implementation
The Architecture of the DL-based HT Detection System

 A data-driven HT 

detection that can 

effectively detect HTs 

without any prior  

knowledge of the circuits;

 To the best of the 

authors’ knowledge, this 

is the first HT detection 

system based entirely on 

DL;

 This is also the first time 

NLP has been applied on 

raw gate-level netlist 
data for HT detection.



Hardware Trojan Detection
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• Generic HW Trojan detection approaches for the design-stage

• ML-based approaches to detect Trojans at other stages of the IC 
manufacturing process

• Ensuring trustworthiness of DL-based HT Detection Systems against 
adversarial attacks

• Integration of Trustworthy DL-based HT Detection System into a security 
verification framework in EDA Tools

Next steps



Applying Deep 
Learning to 
Side-channel 
Analysis



CNNP models

• Models: one or two kernel sizes

• Database: ASCAD (v1) with variable key dataset

• Classification: output of SBox

• Model inputs: traces and plaintext

• Model output: probability of each key value

• Attacking result: key rank 2 after 40 traces

One kernel size

Two kernel sizes



Reinforcement learning using Stacked Ensembles Model

• Utilize the previous research on CNNP model

• Two step training:

 Train CNNP models by pairs of traces and plaintexts

 Train SEM models (reinforcement) by the CNNP output probabilities and MLS of 
hypothesis keys

• CNNP sub-model:

 One to three CNNP sub-models with single or two convolutional filter sizes

• Input:

 Single or multiple traces of the same 8-bit plaintext

 8-bit plaintext

• Output:

 Probability of each hypothesis key



Stacked Ensembles Models

Single traces multiple CNNP models Multiple traces single CNNP model



Stacked Ensembles Models
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Model testing
• CNNP based Stacked ensembles models:

• Inputs: from 1 to 6 traces with the same plaintext

• Sub models: 1 to 3 CNNP sub-models

• ASCAD variable key dataset (v1):

 Training set:

o 200,000 traces with 1,400 sample points

o Grouped by the same number of input traces of the stacked 
ensembles structure for training

 Testing set: 

o 100,000 traces with the same length

o Grouped by the same method



Single kernel size SECNNP model evaluation with fixed Plaintext



Single kernel size SECNNP model evaluation with multiple Plaintexts

• Sub-models are the same single 
convolutional filter size model with 
different training epochs.

• SEM models are built from 1 ~ 6 
traces and 1 or 3 sub models.

• One and two-trace input SEM with 
multiple sub-models are 
compatible and achieved better 
results than other SEM models 
and references.



Two kernel sizes SECNNP model evaluation with fixed Plaintext



Two kernel sizes SECNNP model evaluation with multiple Plaintexts

• Sub-models are the same two 
convolutional filter sizes model but 
different training epochs.

• SEM models are built from single 
input trace and 3 CNNP sub-
models.

• SEM achieved better results than 
the reference CNNP sub-models.



One vs Two kernel sizes SECNNP model evaluation with multiple 
Plaintexts

• SEM models contains 1 trace and 
3 sub models.

• Three sub-models are the same 
model with one or two 
convolutional filter sizes with 
different training epochs.

• SEM model built from two 
convolutional filter sizes sub-
model reduces the number of 
required trace to a half compared 
with the referred sub-model.



Side-channel Analysis (SCA)
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Profiling SCA platform using ChipWhisperer for Kyber

Next steps
• Deep learning based SCA applied to PQC implementations



Thank you 


