Security Verification & Validation: Challenges and Solutions for Securing SoCs and SiPs

Mark Tehranipoor

Intel Charles E. Young Endowed Chair Professor Chair, Electrical and Computer Engineering University of Florida

Modern SoCs – Heterogeneous Architecture

Electrical & Computer Engineering

ECE Florida

Apple A10 Quad Core SoC

- TSMC's 16 nm FinFET
- 3.3 billion transistors
- Die size: 125 mm²

@Chipworks

SoC Security: Why?

Electrical & Computer Engineering

SoCs include highly sensitive assets that must be protected from unauthorized access

Mobile devices / Smart Cards → our personal, financial and intimate physiological information (heart-rates)

Shortened time to market, increased number of bugs and security vulnerabilities Meltdown & Spectre

- Security compromise:
 - Identity thefts, leakage of company trade secrets, even loss of human life

Asset: A resource of value worth protecting from an adversary

Security Assets in SoCs:

- On-device keys (developer/OEM)
- Device configuration
- Manufacturer Firmware
- Application software
- On-device sensitive data
- Communication credentials
- Random number or entropy
- E-fuse,
- PUF, and more...

Source: Intel

Protect Assets: Strong Algorithms, Weak Implementation | Florida

Electrical & Computer Engineering

<section-header>

Algorithms, architectures, and policies could be impacted by design methods that do not understand Security!

Vulnerabilities

- Information Leakage
- Side Channel Leakage
- Fault Injection
- IP Tampering, Trojan Insertion

Accesses/attack surfaces

- Remote Access (E.g., WiFi, Ethernet, Zigbee, etc.)
- PCB Access (E.g., JTAG and Debug ports)
- Physical Access

Information Leakage

Assets (secrets) being leaked to an unauthorized user or domain in the circuit; Untrusted IPs can obtain access to security assets

Side Channel Leakage

Involuntary signal emission providing opportunity to attackers to obtain access to secrets (timing, power, and EM)

Tampering

The IPs used in SoCs are tampered by 3PIP vendors, SOC integrators, foundry, insider/designer; physically manipulating the content

- IP Level: Vulnerabilities considered in modular basis at RTL, gate, and physical layout levels
- SoC Level: Vulnerabilities considered from system (e.g., SoC) level perspective – interaction between different cores

ECE | Florida

State encodings impacts the vulnerabilities of a FSM

Vulnerability analysis of AES

	scheme 1	scheme 2
VF _{FI}	(0,0)	(58.9%,0.15)

- Modeling an asset as a stuck at fault
- Utilize automatic test pattern generation algorithms to detect that fault
- A successful detection \rightarrow Existence of information flow

We need to identify all observe points \rightarrow Asset can be observed

- ► Information flow security (IFS) verification → Violation of IFS policies due to malicious change/leak in the design
- Observation: A malicious change, however, small, will alter the normal information flow of a design and cause IFS violations

Florida

Electrical & Computer Engineering

ECE

Benchmark	Payload	Ttrigger	# of Observe points	# of Malicious points	Time (s)
AES-T100	Leaks the key through covert CDMA	Always on	42	16	251.5
AES-T200	Leaks the key through covert CDMA	Always on	42	16	273.8
AES-T700	Leaks the key through covert CDMA	Specific plaintext	42	16	277.1
AES-T900	Leaks the key through covert CDMA	Counter	42	16	293.7
AES-T1100	Leaks the key through covert CDMA	Plaintext sequence	42	16	362.9
AES-T2000	Leaks the key through shift register	Specific plaintext	35	1	240.5
AES-T2100	Leaks the key through shift register	Plaintext sequence	35	1	350.5
RSA-T100	Leaks the key through output	Specific plaintext	37	2	19.7
RSA-T300	Leaks the key through output	Counter	37	2	20.4

Benchmark	Payload	Trigger	# of Control points	# of Malicious points	time(s)
PIC-T100	Manipulates program execution flow	Counter	17	13	0.358
PIC-T200	Manipulates instruction register	Counter	41	14	100.5
b19-T500	Manipulates instruction register	FSM	193	2	211.6
RS232-T500	Manipulates a control signal	Counter	13	2	0.381
s35932-T100	Manipulates scan mode	Counter	23	23	1.905
RSA-T400	Replaces the key to leak plaintext	Counter	34	33	20.2

Attacking Bitstream Encryption of FPGAs

Electrical & Computer Engineering

ECE Florida

Device under Test (DUT): Xilinx Kintex 7 development board

- Chip's technology: 28 nm
- No chip preparation (e.g., depackaging, silicon polishing, etc.)
- Optical Setup: Hamamatsu PHEMOS-1000
 - Laser wavelength: 1.3 μ m
 - Laser spot size: >1 μ m

Hamamatsu PHEMOS - 1000

- Non-destructive
- Non-invasive
- No Footprint

Localizing the Configuration Logic

Electrical & Computer Engineering

Xilinx Kintex 7 in flip-chip package

Image acquisition with a infra-red laser scanning microscope

Tajik, S., Lohrke, H., Seifert, J. P., & Boit, C. "On the Power of Optical Contactless Probing: Attacking Bitstream Encryption of FPGAs," In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security.

Localizing the Configuration Logic

Electrical & Computer Engineering

Random Logic

Localizing Decryption Core using EOFM

Electrical & Computer Engineering

Clock activity for unencrypted bitstream

Localizing Decryption Core using EOFM

Electrical & Computer Engineering

Clock activity for encrypted bitstream

Locations in AES output port

Key Extraction

ECE | Florida

Electrical & Computer Engineering

- Protection
 - Circuit Level Solutions
 - Device Level solutions
 - Material Level Solutions

Target Nets Shield Nets

System Architecture – Root of Trust

Electrical & Computer Engineering

Asset Management Infrastructure

- Cloud-based database solution
- Provides support for
 - Device Registration
 - Authentication
 - Security assets provisioning
 - Track device lifecycle
 - More.

Hardware Security Module

- HSM installed with test equipment.
- Provide proxy for AMI and chip communication.
- HSM generates security assets or transfers the assets from AMI to chip.

SoC Architecture with SE

And More ..

Security Engine

Secure Advanced Packaging and Heterogeneous Integration

Motivation & Problem Statement

Florida

The semiconductor industry is moving towards rapid adoption of functionally disaggregated hardware

- New demanding server workloads and the slowing down of Moore's Law
- The significant performance/watt benefits of domainspecific accelerators
- The exponential cost of silicon development, especially at newer process nodes
- The economies of building chiplets instead of monolithic chips
- Availability of best-of-breed components as chiplets at optimum process nodes from multiple foundries

Impact

ECE

- Flexibility
- Scaling can continue
- Accessibility
- Reuse of expensive IPs
- Cost-efficient

Challenges

 New attack surfaces making it vulnerable to various existing and emerging threats

Heterogeneous Integration

ECE Florida

Intel Embedded Multi-die Interconnect Bridge EMIB (passive & active)

Source: https://www.intel.com/content/www/us/en/foundry/emib.html

Intel Foveros 3D Stacking Technology

Source: https://newsroom.intel.com/press-kits/lakefield/#gs.rdd753

Courtesy: Intel

Assumptions

- Some chiplets may be trusted, some may not
- Untrusted semiconductor fab
- Untrusted interposer layer
- Untrusted package substrates manufactured off-shore
- Trusted facility for integration and assembly

Supply Chain of Heterogenous Integration – ECE | Florida Threat Model

Pre-Integration Chiplet Development and Fabrication

- IP piracy
- Hardware Trojans and malicious alterations
- Reverse engineering
- Counterfeit chiplets

Heterogeneous Integration and Assembly

- Information leakage
- Confidentiality and integrity
- Security policies

Packaging and In-field Operations

- Secure run-time operations throughout the lifetime
- Tamper detection
- Firmware security
- Supply chain integrity
- Physical attacks (side-channel and fault injection)
- Secure deployment and upgrade of chiplet firmware

Chiplet Security

Logical Verification

- Attackers: Untrusted Chiplet OCM and foundry
- Challenge-response (CR) based approach
 - Logical test, watermark, PUF, etc
 - Insufficient to establish trust

Physical Verification

- Attackers: Untrusted foundry
- OCM is trusted
- Imaging based approach to detect any change

made by the untrusted entities

Prover Verifier

Enrolment & Verification

ECE | Florida

Electrical & Computer Engineering

Prover

Verifier

Physical Verification

ECE | Florida

Secure Integration and Lifecycle Assurance

ECE | Florida

Electrical & Computer Engineering

Brief Description:

- Chiplets 1 and 2 fabricated using advanced technology node in untrusted foundry
 - Sensitive chiplets could be locked or have stripped functionality
- The FPGA is configured by the IC designer and the configuration data, i.e., bitstream, is unknown to the potential adversaries

Security Features:

Supply chain integrity: Enables end-to-end provenance and traceability for the package and each chiplet	Locking/Unlocking and Obfuscation: Enables secure key exchange between chiplets and FPGA		
Runtime monitoring: Detect malicious attacks to device's firmware, malware, ransomware, Trojans, etc	Tamper detection : Detect any tampering including X-ray, optical, clock glitch, voltage glitch, Laser fault injection, etc.		

Secure Integration and Lifecycle Assurance

• Each chiplet must be authenticated

- Challenge-response protocol
- Some chiplets may be logic locked, each requiring a separate key to unlock its functionality.
 - Logic locking keys should not be securely hard coded in the netlist or provisioned by the untrusted foundry.
 - The logic locking keys should not flow through the interposer in plaintext

Chiplet Security IP (CSIP)

- Some chiplets contain a CSIP
- Securely obtains the key to unlock the chiplet, establishes key sharing, encryption, etc

Chiplet HSM (CHSM)

- implemented in the FPGA will send the unlocking keys to the chiplets using Diffie Hellman key ex change (DHKE) protocol, enables key sharing, encryption, Hash, etc
- An NVM will store the encrypted bitstream of the CHSM.
- Unlocking keys are stored inside the NVM accompanying the CHSM.

ECE Florida

CHSM Design – Similar to SE

CSIP Design

- Chiplet Security IP (CSIP) securely unlocks the locked circuits inside each chiplet.
- Contains security primitives such as PUF, TRNG etc. to perform authentication and key generation.
- Ability to generate public keys and session keys.
- Interface to send and receive data to and from root of trust
- Performs cryptographic operations.
- Stores ECID or unique chiplet ID or other forms of identification (Public or Private).
- Keep track of the aging of the chip.

Device-to-System Authentication

ECE | Florida

Electrical & Computer Engineering

37

Secure Communication with the Chiplet Under Test using CSIP

Electrical & Computer Engineering

Designer

- 1. Designer has already put in hooks in the design that can ensure non-functional operation if the correct key is not included in the chip
- 2. Detecting a non-functional chip is significantly easier than using PUF and dealing with process variations

- 1. Foundry will not be able to ship any functional chips to the market
- 2. Same for defective chips and out-of-spec chips; the chips are simply non-functional.

Foundry & Assembly

To prevent:

- Over-production
- Out-of-spec
- Defective
- Remarked
- Cloned

G. Contreras et. al., "Secure Split-Test for preventing IC piracy by untrusted foundry and assembly," IEEE International Symposium Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pp.196-203, 2013.

T. Rahman, D. Forte, Q. Shi, G. Contreras, and M. Tehranipoor, "CSST: Preventing Distribution of Unlicensed and Rejected ICs by Untrusted Foundry and Assembly," IEEE Int. Symposium on Defect and Fault Tolerance Symposium (DFTS), Oct. 2014

Runtime Monitoring using CHSM

- Runtime Security and Integrity Checker: Equip FPGA with sensors to measures and perform side channel analysis
 - Enable detailed program analysis

ECE | Florida

Electrical & Computer Engineering

CHSM

FPGA

Chiplet

CSIP

Interposer

Chiplot 1

CSIP

- Signals with confidentiality and integrity requirements should pass between dies using an encryption protocol.
- But not all chiplets are equipped with encryption engine.
- Approaches:
 - ✓ Anti-tampering sensors
 - $\checkmark\,$ Active and passive shields
 - ✓ Watermarks on package
 - ✓ PUF based authentication

Conclusions

- Complexity of modern SoCs and (re)emergence of SiPs
- Trust of third party IPs and chiplets remain a major challenge.
- Design for security and root of trust must be established at the hardware level.
- Security along design cycle requires effective verification solutions
- Security along life cycle can be accomplished via security engine (SoCs) or CHSM (SiPs)

orida

Electrical & Computer Engineering

ECE

