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The CHERI capability: a hardware-defined & protected bounded pointer
Capabilities both describe & grant access to memory

Capabilities provide memory safety, and enable compartmentalisation

Over the last 10 years, CHERI has moved from academic research
to commercial research and is on several paths to adoption

• ARM’s Morello, funded by the UK Industrial Strategy Challenge Fund

• CHERI-RISC-V, funded by US Defense Advanced Research Projects Agency
Picked up by Microsoft and Google research 

CHERI – Unforgeable References in Hardware



CHERI & Transient Execution Safety (1)

Traditional CPU architecture is insulated from transient execution attacks
• Instruction Set Architectures (ISAs) notion of memory safety is limited to:

1. Protection rings
2. Virtual address spaces

• While some research proposed to block all side-channels from transient execution, mitigation mechanisms have 
been focused on attacks that compromise this architectural safety
• Meltdown is fixed in hardware; BTB sharing between kernel and userspace is being addressed
• On the other hand, Spectre attacks between user-space components has no hardware solution

CHERI provides ISA-guaranteed fine-grained memory safety
• With CHERI, out-of-bounds access is now an architectural threat
• With CHERI, software-defined compartment escape is now an architectural threat



CHERI & Transient Execution Safety (2)
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CHERI Compartmentalisation
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CHERI compartmentilisation frameworks are a rich, developing area
• Several styles of CHERI compartmentalisation

• Process-based, sharing an address space
• Linker-based, lightweight library

compartmentalisation
• Frameworks for restructuring a single

program
• What are the transient execution isolation

expectations for each?
• How can we enforce these efficiently?



SafeBet Project

SafeBet was funded by GCHQ under the RISE initiative (ref: 4213054)

• The SafeBet explored CHERI and transient execution vulnerabilities
• Characterised transient execution vulnerabilities on the CHERI-Toooba core
• Developed automated transient execution vulnerability discovery tooling
• Developed architectural contracts to reason about program exposure to 

transient execution vulnerabilities
• Developed contract enforcement mechanisms on CHERI-Toooba
• Discovered CHERI-specific transient execution vulnerabilities 

and mitigations

CHERI Insts Base Insts

Data-CSC 31% 19%
Inst-CSC 22% 19%
BSC Val. Pred. 17% 63%
BSC Excps. 34% 66%
BSC Jumps 0% 49%
TSC 0% 33%

Aggregate 55% 85%

Table 3: ISA coverage by generator.

Figure 6: Microarchitectural event coverage by generator.

tions from both instruction types; e.g., the TSC generator
requires only RISC-V base instructions to test virtual memory.

Furthermore, we traced microarchitectural events and mea-
sured how many tests triggered each event. Each generator
triggered the expected events. For example, 4.5% of the BSC
value prediction tests triggered a load to be killed due to a
memory address misprediction, and 9.32% of all BSC Jump
tests generated a BTB misprediction. At least 94.96% of BSC
exception tests raised an exception, and these are categorized
into front-end, Rename, ALU, or memory exceptions. For a
complete overview of the results see Figure 6.

8. Conclusion
This paper proposes architectural speculation contracts for
CHERI systems that facilitate reasoning about the memory
safety of CHERI software in the face of transient-execution
side-channel attacks. CHERI constrained by the Capabil-
ity Speculation Contract can greatly simplify transient side-
channel mitigations, as shown in Section 5. Furthermore, these
contracts are a practical target for testing using an automated
test suite, as shown in Section 7; this uncovers a new class of
CHERI transient-execution vulnerabilities.

We hope this work triggers further exploration of contracts
that trade off between hardware constraint and software miti-
gation. Stricter contracts require hardware innovation to avoid

performance loss, but permissive contracts require potentially
expensive software mitigations. Cross-layer design and opti-
mization will require expertise from multiple fields, as well as
sufficient time to evaluate each design point.

This work paves the way for speculation contracts to be
added to architectural specifications of CHERI processors, as
well as traditional instruction-set architectures, as a practi-
cal long-term approach to manage transient-execution side-
channel attacks.
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7.3. Instruction-CSC Verification

Instruction-CSC is violated if we execute instructions not al-
lowed by the committed Program Counter Capability (PCC)
and register state. Our instruction-CSC counterexample gener-
ator trains the BTB with a sequence of jumps within a PCC
with permissive bounds. It then restricts the bounds of PCC
and executes a similar sequence to trigger mispredictions with
permissive bounds.

While we allow instructions to be fetched through wild
PCCs, we must detect if they are executed. We used the
auipcc instruction, which copies the current PCC into a reg-
ister, as a portable mechanism for observing PCC in Execute
without requiring special-purpose counters. The following is a
reduced counterexample from our instruction-CSC generator:

1 cjalr x0, x23

2 auipcc x25, 0

3 lb.cap x24, x25[0]

This counterexample triggers a misprediction with cjalr, and
then performs a load (lb.cap) using a PCC-derived capability
– allowing us to count unexpected data cache misses, as with
our data-CSC generator. This strategy actually violates data-
CSC using an instruction-CSC violation.

Analysis of Instruction-CSC Violations

CHERI RiscyOO violates instruction-CSC due to predicting
the entirety of PCC, including the bounds and permissions.
The original CHERI-MIPS implementation provides a solu-
tion to this problem in an in-order core by predicting only
the address of PCC, but forwarding the bounds [48] from the
last-executed branch. This is possible because the bounds of
PCC are not actually needed in the early stages of the pipeline,
but affect only exception conditions or register results (e.g.,
when linking). Therefore, an in-order core may forward the
bounds of PCC from the Execution of a jump to any follow-
ing instructions without losing performance, and incidentally
respecting instruction-CSC. CHERI Flute, a recent in-order

Figure 5: The CHERI RiscyOO with PCC bounds forwarding.

CHERI-RISC-V implementation, follows the same strategy
and passes our instruction-CSC TestRIG generator.

Out-of-order and superscalar implementations require far
more complexity to forward bounds while maintaining con-
sistency between the two halves of PCC. Nevertheless, the
Morello CHERI microarchitecture from Arm takes such an
approach. To avoid doubling the size of prediction structures,
Morello predicts only the address, as with CHERI-MIPS, and
maintains a 16-entry table to hold unique bounds. PCC readers
block until their bounds are produced. We illustrate a hypo-
thetical CHERI RiscyOO with bounds forwarding in Figure 5.
This approach still allows wild execution, but prevents wild
PCCs from being used for data access; that is, instruction-
CSC cannot lead to a violation of data-CSC. Further study
is required to determine an optimal out-of-order, superscalar
implementation that conforms to instruction-PCC.

7.4. Translation Speculation Contract Verification

The Translation Speculation Contract requires that transient
execution respects page table mappings and permissions. Our
TSC generator populates a page table with one code and one
data page. Random memory instructions then attempt to ac-
cess disallowed pages. As expected, our generator did not
detect a TSC violation.

7.5. Evaluation of Test Generators

Our test generators are designed to efficiently discover coun-
terexamples. Table 2 lists the percent of random sequences
that produce a reduced counterexample for each generator. As
described in Section 7.2, the data-CSC generator produces six
classes of counterexamples. The TSC and BSC exceptions
generators do not find any violations.

We also measured test coverage of CHERI-RISC-V and
RISC-V base instructions using the CHERI-RISC-V Sail
model [8]. Table 3 gives coverage for each generator indi-
vidually and aggregated, and is measured as the fraction of
Sail branch alternatives taken. Not all generators use instruc-

BSC Jumps BSC Value
Prediction

Data-CSC Inst-CSC

2.65% 1.65% 2.70% 0.35%
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Table 2: Percentage of sequences that produce counterexam-
ples for each test generator; 2000 sequences for each. Data-
CSC examples are broken down by CHERI instruction.
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BSC is a required foundation for reasoning about the mem-
ory safety of CHERI programs. Proper delegation and use of
capabilities rely on the control flow of program code. A mis-
speculated branch holding a powerful capability could result
in unexpected transient loads from a large region of memory.
While not sufficient, BSC is necessary to bound reasoning
about the safety of CHERI programs in speculation.

4.3. Capability Speculation Contract

CHERI extends instruction sets with fine-grained memory pro-
tection through unforgeable, bounded pointers, as described
in Section 2.1. Transient side-channel attacks (including Spec-
tre [26] and Meltdown [27]) threaten to bypass CHERI’s pro-
tection against unauthorized reads [18, 44]. The Meltdown
attack demonstrated that page-table permissions could be by-
passed in transient execution during fault handling. This leads
to architecturally prohibited data entering the core and being
available for exfiltration using a side channel. CHERI instruc-
tion sets require many similar permissions checks that must
be safe even in transient, faulting execution.

CHERI invariants include:
• CHERI capabilities are unforgeable; capabilities are derived

only from capabilities of greater or equal privilege.
• Memory can be addressed only through a capability describ-

ing and authorizing access to that address.
The first requirement is naturally enforceable in speculation,
as pipelines generally forward values that are legitimately cal-
culated from register state. The second requirement is also
naturally enforceable, as capability metadata is bundled with
the address and can be verified before issuing requests to mem-
ory. These two requirements together give rise to a powerful
emergent property we call the Capability Speculation Con-
tract (CSC), which we posit is achievable in high-performance
microarchitectures:

Capability Speculation Contract (CSC)

A CHERI processor must only load, store, or execute
memory that is authorized by:

1. Capabilities in the committed register file.
2. Capabilities loadable from memory authorized by

the set in Item 1, as well as capabilities transitively
loadable through these.

In other words, a CHERI processor should act – even in
speculation – only with rights transitively reachable from its
architecturally committed register file.

As with TSC, this contract does discuss side channels, but
prevents memory accesses to illegal addresses from being is-
sued, preventing illegal data from entering the core where it
might be exfiltrated. CSC can obviate the need for software
or hardware side-channel mitigations [52] in any case where
security properties can be expressed using capabilities. It is
often sufficient to enforce memory safety in transient execu-
tion to prevent access to sensitive data; on the other hand

side-channel resistance will be required where this data is
manipulated intentionally, as in cryptography.

CHERI defines bounds both for data access and instruc-
tion fetch, so we may distinguish between data-CSC and
instruction-CSC.

The enforcement of data-CSC requires aggressive enforce-
ment of both memory bounds checking and capability prove-
nance (i.e., the valid derivation of capabilities). Checking
bounds before issuing data-memory requests is reasonable and
parallels memory translation for TSC enforcement. Capabil-
ity provenance is also reasonable to enforce, as data values
are generally forwarded results of a valid data flow from the
committed register state. Nevertheless, these constraints might
easily be violated by a design that does not explicitly take
data-CSC as a design goal. Section 7.2 describes how CHERI
RiscyOO violates data-CSC due to forwarding values before
checking permissions despite being implemented by experts
in CHERI architecture and microarchitecture.

Instruction-CSC enforcement is challenging, as instruction
addresses are generally predicted with no dependency on com-
mitted register state. Nevertheless, instruction-CSC is highly
desirable, as it leverages the PC bounds metadata provided
by CHERI executables to constrain execution to the current
sandbox – minimizing opportunities for transient gadgets.

Instruction-CSC and data-CSC are closely related and a
violation of one can lead to a subsequent violation of the
other. For example, code capabilities also allow loading data
by default. A foreign PC capability can easily be moved
into a register (e.g., using AUIPCC in CHERI-RISC-V [43])
and then used to load memory. Therefore, despite the chal-
lenge in implementing instruction-CSC, we recommend future
research into efficient enforcement of instruction-CSC for
high-performance processors.

5. Contract Evaluation: Spectre Mitigations
Spectre mitigations often rely on aspects of the Branching
Speculation Contract (BSC), and would also benefit from the
CHERI Capability Speculation Contract (CSC).

5.1. Retpoline Example

Retpoline is a Spectre-BTB (Branch Target Buffer) mitigation
mechanism [2] that substitutes an indirect jump (which would
be predicted from the BTB) with a sequence of instructions
that is expected to attempt, and fail, to predict using the Return
Stack Buffer (RSB). BSC can guarantee that this mechanism
will behave as designed. We reproduce a version of retpoline
in RISC-V for discussion:

1 jal ra, load_label

2 capture_ret_spec:

3 j capture_ret_spec

4 load_label:

5 ld ra, 0(sp)
6 jr ra

5

4.1. Translation Speculation Contract

Memory translation and page permissions are expected to be
enforced continuously in the microarchitecture, including all
speculative execution. Consequently, no unmapped memory
access should ever be issued from the core. Stated precisely:

Translation Speculation Contract (TSC)

All instruction and data-memory operations issued in spec-
ulation must be mapped in the page table, and allowed by
current page permissions.

The Meltdown vulnerability [27] violated TSC, and was
considered an egregious violation of programmers’ expecta-
tions. Meltdown has not been considered endemic of high-
performance microarchitectures; many high-performance im-
plementations do not share this vulnerability and newer imple-
mentations avoid it without performance penalty. Therefore,
we conclude that the Meltdown vulnerability can be attributed
to a lack of a specification of speculative behavior.

4.2. Branching Speculation Contract

Control flow is the biggest challenge for a complete definition
of speculative behavior. Instruction Fetch is the earliest stage
of the pipeline and must operate with minimal knowledge
of the instructions that are ostensibly directing it. Branch
prediction is therefore traditionally the most speculative aspect
of microarchitecture.

In order to define useful constraints for speculative control
flow, we strategically choose to define what instructions will
be executed rather than merely fetched. Side channels from
speculative execution become useful when an illegal value
has been produced in the microarchitecture; the production
of an illegal value would generally be in the Execute stage of
the pipeline, e.g., when a load is actually performed. From a
microarchitectural point of view, this allows the front end of
the pipeline to speculate freely1 until decoding the instruction
stream. The RiscyOO processor fetches bytes from instruction
memory oblivious to their contents, but predictions are vetted
in Decode when branch instructions are known. An implausi-
ble prediction will flush the Instruction Fetch pipeline. This
feature is common in high-performance processors [13, 23].
As a result, any Execute pipeline will see only instructions
from plausible basic blocks.

We propose a compound Branching Speculation Contract
(BSC) that comprises a set of constraints on speculative control
flow in a high-performance processor:

1Allowing wild instruction fetch assumes that it is not possible to leak the
contents of memory through the instruction interface. This should require
constant-time decoding, and should avoid instruction-specific behavior until
instructions are known to be in a BSC-allowed path

Branching Speculation Contract (BSC)

1. The processor will not transiently execute instructions
between two non-branching instructions; basic blocks
will execute as-if sequentially in speculation.a

2. Direct jumps (unconditional with immediate target)
will speculatively execute only the jump target, so that
basic blocks can span direct jumps.

3. Direct branches (conditional with immediate target)
will speculatively execute one of the two possible paths,
with no other possibilities.

4. Instructions that cause exceptions will speculatively
execute the non-faulting path.

5. Indirect branches (register target) will speculatively
execute only previous architectural indirect-branch tar-
gets from the current compartment.b

6. Returns will speculatively execute the instruction after
a previous call from the current compartmentc.

aValue prediction (e.g., memory disambiguation) can cause the same
instructions to be replayed between non-branching instructions.

bCompartments are defined elsewhere in the architecture, by flushes
on boundary, address space ID, or otherwise.

cDue to interrupts, lack of storage, and malformed programs, we
cannot guarantee that a return will speculate to the correct return address.

The Branching Speculation Contract is designed to allow
strong reasoning about the possibilities of speculative execu-
tion. For example, basic blocks cannot be broken in specu-
lative execution under BSC. This means that we can trust a
sequence of non-branching (and non-faulting) instructions to
operate as an indivisible node in a data-flow graph, not ex-
posing any internal values (i.e., values created and destroyed
within the sequence) to transient execution. Furthermore, indi-
rect jump targets might be fully enumerated for certain well-
structured executables such that the beginning of all potentially
mispredicted paths could be known and analyzed. We leave to
future work any large-scale program analysis against BSC.

BSC includes several properties that have been assumed to
be true by common Spectre mitigations (recall Section 2.3).
For example, pointer masking to mitigate bounds-check by-
pass assumes that execution will take only one of the two
paths of the branch [37]. While pointer masking is effective
in many current microarchitectures due to aggressive early
redirection, if BSC is not an architectural requirement, future
implementations might render them ineffective.

RiscyOO did not entirely uphold BSC despite efforts to
enable high-performance microarchitecture. For example,
RiscyOO trains branch predictors from speculative execution
such that branch targets could be predicted that will never be
a committed target. Section 7 considers how we detect this
failure in testing; resolving this issue with high performance
is a known challenge [52].
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CHERI – Increased Architectural State

• CHERI adds additional state to the architecture
• Capabilities that lead to a transitive closure of permissions + memory
• Sealing: Passing of capabilities and no random execution in the middle of a code block
• Fine-grained compartmentalization
• Knowledge of ”what is allowed and what is not”

• CHERI easily allows to reason about transient-execution
• Come up with set of rules
• Allows for (hardware) verification
• Allows for transient execution attack mitigation mechanisms



Spectre v1 Mitigation in CHERI

• Spectre v1 attempts an out-of-bounds access
• Speculative execution will execute the code in the if statement
• Disabling the guard in the if condition
• Allows arbitrary memory access in conventional systems

• CHERI can mitigate Spectre v1
• Arrays are represented as capabilities
• Out-of-bounds capability pointers are allowed, but dereferencing them is not
• Will lead to a CHERI exception and the out-of-bounds access never happens
• IMPORTANT: Microarchitectures must not lazily enforce that (see Meltdown)

if(idx < size) {
int a = arr0[idx];
int b = arr1[a];

}



CHERI – Increased Microarchitectural State

• Our vision for CHERI microarchitectures
• More architectural state leads to more microarchitectural knowledge
• Processors can make informed decisions on enhanced microarchitectural knowledge, which not only benefits 

security, but also performance

• Advantages in implementations
• CHERI processors hold a subset of the capabilities in microarchitectural structures (register file, buffers,…) 

enabling to disallow forbidden (speculative) memory requests and related speculative decisions
• Information about current compartment enables fine-grained microarchitectural security guarantees



CHERI – An Interface for Proveable Software Security

• ISA-level guarantees allow for:
• Software to be assessed (or even verified) – possibly even automatically
• Set of capabilities defines permissions
• Combined with microarchitectural guarantees (see earlier slides), a CHERI system will be able to fully 

guarantee confidentiality



Conclusion & Questions
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