Beyond SafeBet

CHERI-RISC-V & Transient Execution Attacks

Jonathan Woodruff, Franz A. Fuchs, Simon W. Moore, Robert N. M. Watson

RISE Annual Conference, London — 2" December 2022

CHERI — Unforgeable References in Hardware

The CHERI capability: a hardware-defined & protected bounded pointer
Capabilities both describe & grant access to memory

Capabilities provide memory safety, and enable compartmentalisation

Over the last 10 years, CHERI has moved from academic research
to commercial research and is on several paths to adoption

 ARM’s Morello, funded by the UK Industrial Strategy Challenge Fund

e CHERI-RISC-V, funded by US Defense Advanced Research Projects Agency
Picked up by Microsoft and Google research

What's the smallest variety of CHERI?

Security Research & Defense [By Saar Amar [September 6, 2022

The Portmeirion project is a collaboration between Microsoft Research Cambridge, Microsoft

Sl UNIVERSITY OF Security Response Center, and Azure Silicon Engineering & Solutions. Over the past year, we

CAMBRIDGE ' N

CHERI & Transient Execution Safety (1)

Traditional CPU architecture is insulated from transient execution attacks
* Instruction Set Architectures (ISAs) notion of memory safety is limited to:
1. Protection rings
2. Virtual address spaces

* While some research proposed to block all side-channels from transient execution, mitigation mechanisms have
been focused on attacks that compromise this architectural safety

* Meltdown is fixed in hardware; BTB sharing between kernel and userspace is being addressed
* On the other hand, Spectre attacks between user-space components has no hardware solution

CHERI provides ISA-guaranteed fine-grained memory safety
* With CHERI, out-of-bounds access is now an architectural threat
* With CHERI, software-defined compartment escape is now an architectural threat

&= UNIVERSITY OF

CAMBRIDGE

CHERI & Transient Execution Safety (2)

Traditional Architectures (ISAs)

Side-channels from transient
execution within an address
space do not violate
architectural memory safety

Sandbox Sandbox

N

~Process X

Process Y

~f#> UNIVERSITY OF

CHERI Architecture

I Array I

Sandboxes are defined
architecturally!

Even array
bounds are
architectural!

Sandbox Sandbox

Process X Process Y

" CAMBRIDGE

CHERI Compartmentalisation

Jump-based
intra-address-space
CHERI domain switch

CHERI compartmentilisation frameworks are a rich, developing area
e Several styles of CHERI compartmentalisation
* Process-based, sharing an address space
* Linker-based, lightweight library
compartmentalisation

* Frameworks for restructuring a single
program

Linker-based library compartments

Userspace domain switcher

Jump-based intra-address-
space CHERI domain
switch also switches kernel
notion of active process

e What are the transient execution isolation
expectations for each?

 How can we enforce these efficiently?

ith shared virtual address space

#B> UNIVERSITY OF

" CAMBRIDGE

Branching Speculation Contract (BSC)

Capability Speculation Contract (CSC)

1. The processor will not transiently execute instructions
A CHERI processor must only load, store, or execute between two non-branching instructions; basic blocks

S afe B et P rOJ e Ct memory that is authorized by; will execute as-if sequentially in speculation.”

2. Direct jumps (unconditional with immediate target)

1. Capabilities in the committed register file.) . .
R . will speculatively execute only the jump target, so that
2. Capabilities loadable from memory authorized by basic blocks can span direct jumps.
the set in Item 1, as well as capabilities transitively 3. Direct branches (conditional with immediate target)
loadable throu gh these. will speculatively execute one of the two possible paths,
with no other possibilities.

/| 4. Instructions that cause exceptions will speculatively
execute the non-faulting path.

* The SafeBet explored CHERI and transient execution vulnerabilities 5. Tndirect branches (register target) will speculatively
execute only previous architectural 1[nd1rect-branch tar-
* Characterised transient execution vulnerabilities on the CHERI-Toooba core 6. Romutm will spoiativcly msonute the instruction afes
. . - . . a previous call from the current compartment®.
* Developed automated transient execution vulnerability discovery tooling e e
instructions to be replayed between non-branching instructions.

* Developed architectural contracts to reason about program exposure to T e L O D T
transient execution vulnerabilities T T A
 Developed contract enforcement mechanisms on CHERI-Toooba T

FPU usage BEIADERAN 39.60% | 0.00% 98.15% 94.96%

* Discovered CHERI-specific transient execution vulnerabilities vl forn M usage e

T : BSC Jumps BSC Value Data-CSC Inst-CSC Excp front-end 0.00% : ! 93.41%

a n d m Itlgatlo nS p P Excp Rename 0.00% 5 5 94.81%
Prediction

Excp ALU-0 19.82% | 0.00% 0.00% 92.76%

Excp ALU-1 19.87% | 0.00% 0.00% 92.76%

2.65% 1.65% 2.70% 0.35% Excp MEM 18.38% | 0.00% | 0.00% [BCHICIRAM LRl

Excp Commit 20.20% | 0.00% N7 91.56% 94.96%
Redirect ALU QEERTYIN 18.47% o 5 0.00% 0.00%
Redirect Commit [ElRHR/ M 38.95% g o 99.80% 99.80%

o g 3 =) Dir Pred. usage .
S 5 5 5.8 ~ o BTB Pred. usage [JEEI3Z0 17.91% | 32.40% [49.18% | 0.00% | 0.00%
kS| S S o ST S = BTB Pred. Fail [GEWAAN 0.00% | 9.32% | 0.00% | 0.00% | 0.00%
5 b 5 9 5 5 2 Z RSB Pred. usage |RCEIZOA/ 0.00% | 0.00% | 0.00% | 0.00% | 0.00%
S] 8 x5 = 5 5 RSB Pred. Fail 0.00% | 0.00% | 0.00% | 0.00% | 0.00%
i 0, 0, 0, 0, 0,
0.10% 0.05% 020% 020% 020% 1.80% Mem Addr. Pred. Fail 0.00% | 0.00% | 450% | 0.00% | 0.00%
¢ < o ?@‘5‘ << C,("*Q
0 (ya‘a %c)C\ C\ya\ 2
2

Table 2: Percentage of sequences that produce counterexam-
ples for each test generator; 2000 sequences for each. Data-

CSC examples are broken down by CHERI instruction. Figure 6: Microarchitectural event coverage by generator.

UNIVERSITY OF R
SafeBet was funded by GCHQ under the RISE initiative (ref: 4213054)

CAMBRIDGE

CHERI - Increased Architectural State

 CHERI adds additional state to the architecture
* Capabilities that lead to a transitive closure of permissions + memory

e Sealing: Passing of capabilities and no random execution in the middle of a code block
* Fine-grained compartmentalization

 Knowledge of "what is allowed and what is not”

 CHERI easily allows to reason about transient-execution
e Come up with set of rules
* Allows for (hardware) verification
* Allows for transient execution attack mitigation mechanisms

B> UNIVERSITY OF

CAMBRIDGE

Spectre v1 Mitigation in CHERI

e Spectre vl attempts an out-of-bounds access
* Speculative execution will execute the code in the if statement
* Disabling the guard in the if condition

. . . (idx < size) A
* Allows arbitrary memory access in conventional systems

int a = [idx];
int b = [a];
* CHERI can mitigate Spectre vl ¥

* Arrays are represented as capabilities

e QOut-of-bounds capability pointers are allowed, but dereferencing them is not

* Will lead to a CHERI exception and the out-of-bounds access never happens

* |IMPORTANT: Microarchitectures must not lazily enforce that (see Meltdown)

&= UNIVERSITY OF

" CAMBRIDGE

CHERI - Increased Microarchitectural State

e Qur vision for CHERI microarchitectures
* More architectural state leads to more microarchitectural knowledge

* Processors can make informed decisions on enhanced microarchitectural knowledge, which not only benefits
security, but also performance

e Advantages in implementations

* CHERI processors hold a subset of the capabilities in microarchitectural structures (register file, buffers,...)
enabling to disallow forbidden (speculative) memory requests and related speculative decisions

* Information about current compartment enables fine-grained microarchitectural security guarantees

&= UNIVERSITY OF

CAMBRIDGE

CHERI - An Interface for Proveable Software Security

e [SA-level guarantees allow for:
» Software to be assessed (or even verified) — possibly even automatically

* Set of capabilities defines permissions
 Combined with microarchitectural guarantees (see earlier slides), a CHERI system will be able to fully
guarantee confidentiality

UNIVERSITY OF

CAMBRIDGE

Conclusion & Questions

Jonathan.Woodruff@cl.cam.ac.uk

Franz.Fuchs@cl.cam.ac.uk

4 UNIVERSITY OF

