

A Telco Security Christmas List

Patrik Ekdahl Head of Platform Security Research Ericsson Research

Short Introduction

- M.Sc.EE, Lund University 1998
- Ph.D. in Cryptology, Lund University 2003
- Building crypto equipment for Swedish Defence 2004-2007

That's me

- Ericsson Research 2007-
 - Crypto algorithms
 - Standardisation work (TCG, GlobalPlatform)
 - Trusted Environments, HW Security
 - Head of Platform Security Research since 2014
- Chair of ETSI/SAGE since 2021
- Plays the trumpet (big band jazz)
- Enjoys wood, metal and leather crafts

The holy trinity of the 3GPP telco system

Device

•••

((||))

Radio Access Network

Core Network

5G

Network Functions (NFs) of the 5G Core

What comprises a NF? The microservices of the Session Management Function (SMF): **Session Management** Packet Gateway Controller Bridge agent Serving Gateway Notification http-client Diameter Target DB forwarder **IP allocator UPD** forwarder Target DB Network Slicing replica Management /er

A 5G Core example deployment

- 4 million users in AMF
- 4 million sessions in SMF

Roughly

- 650 microservices
- 20 servers
- 70 enclaves per server

HAL for enclaves

Use our own identities for attestation

Patrik Ekdahl © Ericsson 2022 | Page 7

Nested Enclaves with Transparent Endpoint Detection & Response (EDR)

Ć

Nested Enclaves with Transparent Endpoint Detection & Response (EDR)

- Nested enclaves with different accessibility and security levels.
- Reliably choose what the EDR system can see inside an enclave.
- Side-channel protection for enclaves.
 - SW/HW responsibilities?

Enclaves for FPGAs

- Dynamically reprogram the FPGA with confidential bitstreams
- How to manage trust?
- Bitstream inspection needed?
- Can the manufacturer take responsibility for protection agains the hardware owner?
- What would be needed to enable secure multi-tenancy?

The Certificate Nightmare

Radio Basestation

Accelerators and Enclaves

Extend the enclave story to peripherals.

SDRAM integrity

Random errors

Software attacks

Physical attacks

P

Interchip communication CI(A)

Confidentiality and Integrity

Three types:

- Slow, easy to attack interfaces (i2c, spi etc)
- Parallel high speed interfaces (mainly SDRAM DDRx)
- Serial high speed interfaces (Ethernet, CXL, PCIe)

Lightweight

- Power
- Performance
- Latency

Physical Attack Mitigation

Patrik Ekdahl © Ericsson 2022 | Page 16

New 256-bit algorithms for 3GPP air interface

Specifications written by ETSI SAGE was finished in November

Device

))	
7	\bigwedge			
	ĺ ĺ ĺ	1.00	•••	

Radio Access Network

Confidentiality and Integrity Protected

Requirements

- 256 bit key size
- Handle 20Gbs encryption speeds
- Virtualisation friendly on a variety of CPU architectures
- Longer MACs (currently 32 bit tags are used)

History

Base algorithm	3G	4G	5G 128 bits
Kasumi	UxA1		
Snow 3G	UxA2	128-ExA1	128-NxA1
AES-128		128-ExA2	128-NxA2
ZUC-128		128-ExA3	128-NxA3

x = E for Encryption x = I for Integrity

Nine 256-bit algorithms

	Snow 5G	AES-256 (CTR)	ZUC-256
Confidentiality	256-NEA1	256-NEA2	256-NEA3
Integrity	256-NIA1	256-NIA2	256-NIA3
Authenticated Encryption with Additional Data (AEAD)	256-NCA1	256-NCA2	256-NCA3

P

Patrik Ekdahl © Ericsson 2022 | Page 20

Overview of the traditional modes

Overview of the 256-NIAx algorithm MAC generation.

MESSAGE

LENGTH

KEYSTREAM SYMBOLS

256-NIAx

MESSAGE

MAC Algorithm

MAC TAG

DIRECTION

BEARER

Core Algorithm

COUNT

KEY

Tag sizes are from 4...16 bytes. (4 previous)

SNOW-Vi

ZUC-256

- Exactly the same layout as ZUC-128.
- New initialisation (Key, IV)
- SAGE recommends 48(+1) initialisation rounds instead of 32(+1)

Master Thesis proposal

Make a combined hardware implementation of these core algorithms, reusing as much as possible.

In the Snow-V paper, there is a 64 bit pipelined implementation that only uses 1 AES round function.

