
update

IOSEC: Protection and Memory Safety for Secure I/O

A. Theodore Markettos, Simon W. Moore, Robert N.M.Watson

Funded under the RISE initiative by EPSRC grant EP/R012458/1

Computer Science & Technology



Input/output and platform security

• Computer hardware is much more complicated than most people imagine

• What do all these cores do? How do we know they are secure?



Peripheral DMA... the keys to the kingdom

• Many peripheral cores have 'Direct Memory Access' (DMA)
= peripheral can directly access system memory

• DMA is a necessity for high performance I/O

• System memory is also where all your secrets live

• Full access to read or change system memory means complete system takeover

• Thunderbolt: allows hotplug of DMA-capable peripherals into your computer

• Thunderbolt over USB-C: every charger or projector could try to do DMA

• Bad peripherals can be very, very bad...



The IOMMU to the rescue!

• The Input/Output Memory Management Unit (IOMMU) interposes on memory access from peripherals

• Combines address translation and memory protection

• Can prevent access to memory the peripheral is not supposed to access

• MMU isolates software processes

• IOMMU isolates hardware peripherals

• Original design for connecting peripherals to virtual machines
• Protection from malicious peripherals was an afterthought



Struck by a Thunderclap

• We built a research platform for exploring IOMMU protection in existing OSes

• Thunderclap = an FPGA running a software model of a network card

• Connected via PCIe or Thunderbolt (eg malicious docking station)

• Allows us to explore how much malice a real device can do

• OS sees us as a real device, sets up IOMMU so we can access memory

• Now we can (mis-)interact with the OS/driver attack surface

• How bad can things be?

• IOMMU was barely used and vulnerable across Windows, MacOS, Linux, FreeBSD

• Root shells, VPN snooping, full IOMMU bypass – lots of fun!

• See the Thunderclap paper for more details, and: http://thunderclap.io/

http://thunderclap.io/


State of the art of protection (2019)

• Windows 10: Entirely unprotected from malicious DMA

• MacOS: tries to use the IOMMU
• All peripherals can see the memory used by all other peripherals

• In network packet memory are kernel function pointers...

• We can change them and launch a root shell

• FreeBSD: the same as MacOS
• The IOMMU is not enabled by default

• When it is, the same attack works

• Linux: different but worse
• Function pointers are protected, but VPN plaintext isn't

• Simply need to set a bit in the PCIe packets and can entirely disable the IOMMU



Thunderclap outcomes

• USB Implementer's Forum picked up our work and made IOMMU use mandatory in the USB 4 
specification
• Now in shipping products

• Much more awareness across the community of malicious peripherals

• Thunderclap platform open sourced and used by companies for exploring IOMMU attacks

• Windows implemented 'Kernel DMA protection' and added support for the IOMMU



IOMMU state of the world (2022)

• OS' IOMMU implementations have seen some efforts at improvement

• Windows kernel DMA protection exists, but in practice can be hard to turn on

• IOMMUs being used more, but reluctance to use the IOMMU universally due to performance costs
• Every memory access requires to be translated

• Generates extra page table traffic and translation caches (IOTLB) are never big enough

• Increases system and device complexity

• Pixel 6 phone has 28 separate IOMMUs!



Beyond the IOMMU?

• Thought experiment: can we use CHERI capabilities for I/O?
• CHERI Capability = bounded memory region with permissions and provenance

• Prevent software generating pointers to things it is not allowed to access

• If the hardware is trustworthy, it can enforce that software obeys the protection model

• If the hardware isn't trustworthy, interpose something that holds the references in a trustworthy way



Small systems

• IOMMUs are too expensive for microcontroller-scale devices

• Many memory accesses but relatively few references

• Peripheral can support secure reference (CHERI capability) manipulation

• Or a small table-like structure can hold capabilities
• accesses from untrustworthy peripherals are constrained relative to these regions

• Published a paper on the 'small device' model (HASP 2020)

• Ongoing work exploring the issues in practice
• Everyone's microcontroller software stacks are very different (and proprietary)

• Hard to evaluate in a way that's meaningful more generally

• Conversations with industrial folks about their workloads



Large systems

• What does this mean for a server or a phone with a CPU, GPU, neural processor, camera, NVMe, Wi-Fi, 
etc?

• Much more memory communication, more complex patterns

• IOMMU has a dual role
• Address translation – deals with virtualisation, memory fragmentation

• Memory protection – prevent malicious DMA

• Separating translation and protection
• IOMMU for translation

• Capabilities for protection



Progress – large systems

• Evaluation of different protection models in a large system needs work at all levels of the stack
• CPU, peripherals, interconnect, firmware, device driver, OS, etc

• Performance is a key metric, so it needs to be performance-realistic

• Needs rich applications to accurately model effect on performance

• Very hard to do such experiments piecemeal

• Developing a platform for experimentation of models across the stack (joint work with
CAPcelerate project)

• Arm Morello CPU (no capabilities in the I/O system) / 
CHERI RISC-V CPU (capability aware I/O)

• Capability-aware peripherals

• Interconnect handling capabilities and IOMMU

• Capability-aware device drivers



Conclusions

• Be afraid of your I/O!

• System-wide protection is a hard problem as it requires both security and performance

• We believe there are better ways to achieve protection and performance

• Further information…

Thunderclap
thunderclap.io

CHERI
www.cl.cam.ac.uk/research/security/ctsrd/cheri/

Digital Security by Design
www.dsbd.tech


