
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 6, JUNE 2021 1183

A Modeling Attack Resistant Deception Technique
for Securing Lightweight-PUF-Based Authentication

Chongyan Gu , Member, IEEE, Chip-Hong Chang , Fellow, IEEE, Weiqiang Liu , Senior Member, IEEE,

Shichao Yu , Yale Wang, and Máire O’Neill, Senior Member, IEEE

Abstract—Silicon physical unclonable function (PUF) has
emerged as a promising spoof-proof solution for low-cost
device authentication. Due to practical constraints in preventing
phishing through a public network or insecure communication
channels, simple PUF-based authentication protocol with
unrestricted queries and transparent responses is vulnerable
to modeling and replay attacks. In this article, we present a
modeling attack resistant PUF-based mutual authentication
scheme to mitigate the practical limitations in applications
where a resource-rich server authenticates a device with no
strong restriction imposed on the type of PUF design or
any additional protection on the binary channel used for the
authentication. Our scheme uses an active deception protocol
to prevent machine learning (ML) attacks on a device with
a monolithic integration of a genuine strong PUF (SPUF),
a fake PUF, a pseudorandom number generator (PRNG),
a register, a binary counter, a comparator, and a simple
controller. The hardware encapsulation makes the collection
of challenge–response pairs (CRPs) easy for model building
during enrollment but prohibitively time consuming upon
device deployment through the same interface. A genuine server
can perform a mutual authentication with the device using
a combined fresh challenge contributed by both the server
and the device. The message exchanged in clear cannot be
manipulated by the adversary to derive unused authentic CRPs.
The adversary will have to either wait for an impractically
long time to collect enough real CRPs by directly querying the
device or the ML model derived from the collected CRPs will
be poisoned. The false PUF multiplexing is fortified against
the prediction of waiting time by doubling the time penalty
for every unsuccessful guess. Our implementation results on
field-programmable gate array (FPGA) device and security
analysis have corroborated the low hardware overheads and
attack resistance of the proposed deception protocol.

Manuscript received March 29, 2020; revised July 1, 2020 and October 6,
2020; accepted October 24, 2020. Date of publication November 10, 2020;
date of current version May 20, 2021. This work was supported in part by
the Singapore MOE Tier 1 under Grant MOE2018-T1-001-131 RG87/18(S);
in part by the Engineering and Physical Sciences Research Council (EPSRC)
under Grant EP/N508664/-CSIT2; and in part by the National Natural Science
Foundation of China under Grant 62022041 and Grant 61771239. This arti-
cle was recommended by Associate Editor W. Hu. (Corresponding authors:
Chongyan Gu; Weiqiang Liu.)

Chongyan Gu, Shichao Yu, and Máire O’Neill are with the Centre for
Secure Information Technologies, Institute of Electronics, Communications,
and Information Technology, Queen’s University Belfast, Belfast BT3 9DT,
U.K. (e-mail: cgu01@qub.ac.uk; syu08@qub.ac.uk; m.oneill@ecit.qub.ac.uk).

Chip-Hong Chang is with the School of Electrical and Electronic
Engineering, Nanyang Technological University, Singapore 639798 (e-mail:
echchang@ntu.edu.sg).

Weiqiang Liu and Yale Wang are with the College of Electronic
and Information Engineering, Nanjing University of Aeronautics and
Astronautics, Nanjing 211106, China (e-mail: liuweiqiang@nuaa.edu.cn;
yalewang@nuaa.edu.cn).

Digital Object Identifier 10.1109/TCAD.2020.3036807

Index Terms—Authentication protocol, deception protocol,
machine learning attacks, physical unclonable function (PUF),
Poison attack.

I. INTRODUCTION

WHILE Internet of Things (IoT) revolutionizes our lives
through remote healthcare, autonomous vehicles, and

smart homes, it also brings security issues. The large num-
ber of devices open up new attack vectors, as exemplified by
the IoT-based distributed denial-of-service (DDoS) attack on
Dyn, that brought down Twitter, SoundCloud, Spotify, Reddit,
and a host of other sites [1]. Providing security to IoT devices
is a major challenge as conventional security approaches,
based on provably secure cryptographic algorithms are too
resource intensive for implementation on these devices.

A physical unclonable function (PUF), is a security prim-
itive that utilizes intrinsic manufacturing process variations
to generate a unique digital fingerprint. A comprehensive
review of PUF can be found in [2]. As this natural variation
among silicon dies is outside the control of the manufac-
turer, PUFs are inherently difficult to clone, and possess
additional tamper-evident properties [3], [4]. PUFs can pro-
duce unique keys on-the-fly, which reduces the risk of physical
attacks and saves hardware resources. These properties open
up interesting opportunities for higher level security proto-
cols, such as key generation and device authentication for
both application-specific integrated circuit (ASIC) and field-
programmable gate array (FPGA)-based devices.

The initial proposal of using a Hamming distance (HD)
threshold τ comparison for lightweight PUF-based authen-
tication protocol was proposed in [5]. Since then, similar
PUF-based authentication protocols have been derived to
endow linearly sized strong PUF (SPUF) circuits with an expo-
nentially large challenge–response pair (CRP) capacity for
device authentication. Unfortunately, SPUFs used for device
authentication with limited nonlinear mixing have been shown
to be vulnerable to machine learning (ML)-based modeling
attacks. Masquerade attacks can be perpetrated through mali-
cious nodes and unprotected communication links of ad hoc
networks to efficiently collect a large number of CRPs to
model a PUF. To prevent modeling attacks, many countermea-
sures [6]–[8] have been proposed, e.g., increasing the circuit
complexity of PUF. These approaches tend to degrade other
quality such as reliability of the underlying PUF. They are
not resilient against replay and man-in-the-middle (MITM)
attacks without additional protection to track and prevent the

0278-0070 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 26,2023 at 09:17:36 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-3028-8004
https://orcid.org/0000-0002-8897-6176
https://orcid.org/0000-0001-8398-8648
https://orcid.org/0000-0001-8861-1671

1184 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 6, JUNE 2021

used CRPs from being reused. To defend against brute-force
query by using existing SPUF for authentication of lightweight
devices, e.g., IoT and wearable devices, the lockdown proto-
col [9] restricts the number of authentication events to limit
the number of CRPs from being learned for modeling attack.

Unlike prior works, our proposed PUF-based authenti-
cation protocol does not simplistically rely on expensive
error correction code (ECC) or crypto-algorithm on the device
side to passively increase its attack resistance. Instead, it
adopts an offensive defense strategy to cautiously retaliate and
frustrate the adversaries by poisoning their training data. This
is achieved through a combination of hardware encapsulation
and protocol-level approach to deceive or excessively delay
the adversary attempting to collect the CRPs by brute-force
queries made on the device enrollment protocol interface. The
proposed deception protocol enables a resource-rich server
to authenticate a device with no strong restriction imposed
on the type of PUF design or any additional protection on
the binary channel used for the authentication. Specifically,
re-enrollment for model calibration is permitted by our model-
based authentication. It can be made more secure against direct
CRP collection through the enrollment protocol for model
building attack.

A hardware implementation for the proposed deception pro-
tocol is demonstrated on a Xilinx Artix-7 FPGA to validate its
hardware efficiency. Using the most recent published experi-
mental platforms[10], its resistance against modeling attacks
is evaluated by linear regression (LR) and covariance matrix
adaptation evolution strategies (CMA-ES). The effectiveness
of the fake PUF in reducing the successful prediction rate is
also evaluated.

The remainder of this article is organized as follows.
Section II reviews the vulnerability of SPUFs to modeling
attacks and identifies the gaps in existing PUF-based authen-
tication schemes. Section III provides the preliminaries
of PUF-based authentication and modeling attacks. The
proposed deception protocol is presented in Section IV.
It is evaluated against both linear regression (LR) and
covariance matrix adaptation evolution strategies (CMA-ES)
attacks in Section V. An FPGA-based implementation of
the proposed deception protocol is presented in Section VI.
A comparison between the proposed deception proto-
col and other lightweight authentication protocols is
presented in Section VII. Finally, conclusions are drawn in
Section VIII.

II. ATTACKS ON SPUFS

PUF architectures are broadly categorized into weak and
strong in [11] based solely on their number of unique CRPs
per bit cell. Weak PUFs have a limited CRP space. They
are more suited as a random key generator or for seed-
ing a pseudorandom number generator (PRNG), where the
response never leaves the chip and is only accessed as
required. In contrast, SPUFs have a large number of possi-
ble CRPs. The response bitstream returned from a random
sequence of challenges is unique to each challenge sequence
and the physical PUF device. By design, this implies the
requirement for a much larger entropy pool such that related

challenges should not lead to related responses on the same
device. Hence, SPUFs are preferred to weak PUFs for device
authentication.

Most SPUF architectures based on linear additive functions
have been shown to be vulnerable to ML attacks [12]–[15].
Therefore, the focus on SPUF research nowadays has been
directed toward preventing ML attacks. At circuit level, the
modeling complexity of the SPUF design has been increased
by, e.g., XOR arbiter PUF (APUF) [6], feedforward APUF [7],
lightweight secure APUF [8], and multi-PUF [16]. Most of
these approaches achieve increased resistance to ML attacks by
using more complex PUF architectures, e.g., [6] and [8], while
preserving a desirably huge number of CRPs. Even then, it has
been shown more recently that the workload of ML attacks
can be reduced and the success rate can be raised through
exploiting the weakness in their protocols [12]–[15], [17].
Side-channel information has also been demonstrated to aid
PUF attack. PUF noise can be filtered to improve the signal-
to-noise ratio for efficient side-channel attacks [18], [19].
A combination of side-channel analysis (SCA) and modeling
attacks, exploiting the noise of PUFs, have been proposed to
effectively crack the secret response of PUF [20], [21].

Delvaux et al. [22] presented a survey on entity authen-
tication protocols using PUFs. It shows that most PUF
protocols [23]–[27] are heavyweight or require complicated
protocol operations that add to the hardware implementa-
tion area, power, and performance overheads. Two protocols,
the slender PUF [28] and noise bifurcation [29], require
neither an ECC nor a strong cryptographic algorithm. A
true random number generator (TRNG) has been used instead
to provide heuristic security against modeling attacks, which
is difficult to validate. The idea of slowing down the read
out of PUF response was first raised in [30]. The SHIC PUF
proposed in [30] was realized by an emerging high density
105 × 105 crossbar memory with an intrinsically slow access
speed of 100 b/s. It is assumed that the amount of independent
structural information of SHIC PUF cannot be fully modeled
without a complete circuit characterization. Hence, it takes
≈ 3 years to collect the full set of CRPs with this access
speed. However, if only 105 instead of the complete set of
CRPs is required to learn a PUF by ML techniques, they can
be acquired in less than 20 min. As SHIC PUF is implemented
by emerging semiconductor technology, it does not integrate
well with conventional CMOS designs [9]. The incompati-
bility also raises constraints on the “nano–micro” link [30].
Moreover, there is a constraint on the intrinsic slowdown of
SHIC PUF as it will impact the number of CRPs that can be
practically enrolled. As SHIC is a weak PUF by the inde-
pendent cell structure criterion, its CRP space grows only
linearly as opposed to exponentially with array size. The cost
of producing only 1010 ≈ 233 CRPs by SHIC PUF is sig-
nificantly higher than a 128-stage APUF that can generate
2128 CRPs. Recently, Yu et al. [9] proposed two lockdown
techniques to limit the number of authentication requests.
The first lockdown protocol allows only unilateral authen-
tication while the second requires a TRNG on the device
side to generate a device nonce, cD. As the responses r1
and r2 in the second lockdown protocol are sent in clear,

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 26,2023 at 09:17:36 UTC from IEEE Xplore. Restrictions apply.

GU et al.: MODELING ATTACK RESISTANT DECEPTION TECHNIQUE FOR SECURING LIGHTWEIGHT-PUF-BASED AUTHENTICATION 1185

the adversary can query the device to obtain a new device-
side challenge c′

D and then adjust the server-side challenge c′
S

until the linear-feedback shift register (LFSR) output <c> is
the same as one of the previously eavesdropped tuples (cD, cS,
r1). The adversary can then reply with c′

S‖r1 to gain successful
authentication. The viability of this is limited by the previously
eavesdropped tuples and LFSR seed length. The tradeoff of the
lockdown protocol is that it can only support a limited number
of authentication requests for the verifier. The protocol relies
on the hardness of XOR PUF in the field to support model-
based authentication. However, its hardware cost increases
and reliability reduces commensurately with an increasing
number of XORs for higher ML resistance. Gao et al. [31]
used a reconfigurable latent obfuscation technique to con-
ceal and distort the relationship between CRPs. The pattern
vectors for challenge and response obfuscation are selected
by a random number generator (RNG), and are made latent
and reconfigurable per authentication session. Nevertheless,
the most recent report shows that both methods [9], [31] are
vulnerable to the protocol attack [32]. A PUF-based mutual
authentication protocol called PHEMAP has been proposed
recently [33]. However, it has been shown to be vulnerable to
impersonate, desynchronization, and traceability attacks [34].
Two multiplexer-based PUF (MPUF) variants (rMPUF and
cMPUF) [35] were also proposed to resist reliability-based
and cryptanalysis modeling attacks, respectively. However,
they have been successfully attacked by approximation attack
in [36] using an approximation algorithm-based artificial neu-
ron network. This advanced attack falls under the machine
learning-based approaches, which require the collection of a
sufficient number of valid CRPs for training.

III. PRELIMINARIES

This section provides an overview of a PUF-based authen-
tication protocol, and the linear additive model that forms
the basis of ML-based modeling attacks on PUF. A list
of frequently used notations in this article is provided in
Table I.

A. Basic SPUF-Based Authentication Protocol

The basic SPUF-based authentication method for unilat-
eral authentication involves a verifier, usually a server, and a
prover, which is a device embedded with only a single SPUF.
The main operation is triggered by the server sending a chal-
lenge c to request for an authentication of the device. The
device responds by activating its embedded SPUF to generate
a response r to the server for verification. The complete pro-
cess for this basic SPUF authentication protocol is depicted
in Fig. 1. Before a device i is deployed, it will undergo a
one-time enrollment process in a secure and control envi-
ronment whereby d CRPs,1 (cij, rij) (j is the jth CRP and
j ∈ [1 d]) are collected from the device and stored along
with the device identifier (ID) in the server secure database.
The device ID needs not be kept secret, and can be stored
in an on-chip one-time programmable (OTP) memory. Upon

1d should be sufficiently large to cater for all the authentication events
throughout the service life of the device.

TABLE I
LIST OF FREQUENTLY USED NOTATIONS

Fig. 1. Basic PUF-based unilateral authentication protocol.

device deployment, for each authentication process, a chal-
lenge c is sent to the device i, and a response r̃ generated by
an SPUF, is returned to the server. Authentication fails if the
HD between the enrolled response r and the device response
r̃ exceeds an acceptable noise threshold τ computed based
on the reliability of the SPUF. The authenticated CRP is dis-
carded after use to avoid a further authentication event from
being replayed by an adversary. The protocol is assumed to be
server initiated typically for two reasons. First, as the server
is a master that serves multiple slave devices, this can avoid a
denial-of-service (DoS) attack from preventing the master to
serve other slave devices. Second, the server is assumed to be
resource rich. The same protocol that is server initiated can
be easily adapted to device initiated if necessary.

B. Linear Additive APUF Model

APUF [23] is one of the most widely studied SPUFs used
in the above-mentioned authentication protocol. It consists of
two parallel n-stage multiplexer (MUX) chains that feed into
an arbiter stage to produce one response bit from an n-bit
challenge, c0, c1, . . . , cn−1.

It has been shown that an APUF can be modeled by a linear
additive model since its response bit to an input challenge can
be derived by summing the delay difference in each stage. This
model has been used by several ML methods, e.g., [12]–[15],

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 26,2023 at 09:17:36 UTC from IEEE Xplore. Restrictions apply.

1186 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 6, JUNE 2021

to successfully attack practical delay-based SPUFs that are
composed of linearly cascaded bit-slice circuits. Based on the
additive delay model [6], the final delay difference between
the top and bottom paths of the APUF, denoted by �(n), can
be represented by

�(n) = P · ωT (1)

where P = (p0, p1, . . . , pn) is a parity vector and ω =
(ω1, ω2, . . . , ωn+1) is a weight vector.

The elements of ω are dependent on the multiplexer switch-
ing and routing delays. They are susceptible to manufacturing
process variations even if the switch of each APUF stage is
identically designed. The elements of P, on the other hand,
depend only on the challenge bits. If the delay difference at the
output of the final stage, �(n), is greater than 0, the response
bit r is 1; otherwise, it is 0. The response bits of such an
SPUF design can be predicted by building a software clone
using this linear additive delay model. To succeed, a subset of
CRPs needs to be collected to learn the weight vector ω using
ML algorithms.

Evolutionary strategies (ES) are another powerful ML tech-
nique that uses primarily mutation and selection to model an
SPUF. The main idea is to generate random PUF instances
and find the instance that best matches the real PUF model
iteratively. The reliability-based CMA-ES attack [14] uti-
lizes repeated measurements to observe the reliability of the
response bits. The reliability information is then fed into a
fitness function to find the best fit delay parameters. It outper-
forms traditional modeling attacks on XOR APUF with a large
number of XORed APUFs. It is demonstrated in [15] that even
highly obfuscated responses of, e.g., Slender PUF [28] and
reverse fuzzy extractor [25], can be attacked using CMA-ES.

In view of these advanced attacks, we propose a decep-
tion protocol that will immensely increase the time and
cost of the adversary to successfully model an SPUF, and
resist attacks that require repeated challenge–response mea-
surements. Our adversary model assumes that the device’s
enrollment interface upon deployment and the communication
channel of the authentication protocol are publicly accessi-
ble. In other words, the attacker can freely query the device
with selected challenges, and eavesdrop, manipulate, and reply
protocol messages between the server and the device.

IV. PROPOSED DECEPTION PROTOCOL

The problem with typical SPUF-based authentication pro-
tocol in Fig. 1 is the adversary can unrestrictedly query the
device to derive (c, r̃) and use them for training. It is also
impractical for the resource-limiting device to keep track of
the used challenges or use encryption in the authentication
protocol to prevent replay and MITM attacks.

In addressing these problems, we would like to leverage
on recent compact authentication protocol concepts [9], [30],
[31] but avoid certain pitfalls in these and existing SPUF-based
authentication schemes reviewed in Section II. (1) A cheaper
but safer way than using a monotonic counter to generate a
device nonce is needed so that the device will never or rarely
send a used challenge; (2) Either the challenge or response

Fig. 2. Proposed lockdown encapsulation of genuine SPUF for deception-
based authentication.

of the SPUF should be encoded or obfuscated and decod-
able without requiring expensive cryptographic primitives at
the device side; (3) To have the full CRP set at the disposal
of the server with a constant size storage but avoid weakening
reliability and security of the underlying SPUF after enroll-
ment; (4) Resistance against ML attacks should be enhanced
without limiting the number and frequency of authentication
requests by the genuine server.

With these in mind, we propose an active deception technique
to prevent the model-building attack on SPUFG by direct brute-
forcequeryondeviceenrollment interface.Atimeoutmechanism
with the fake PUF multiplexing technique is incorporated into
the challenge–response exchange protocol of Fig. 1 after the
enrollment phase. A deception-based mutual authentication pro-
tocol is also introduced to enable timeout-free authentication
by the server who has the real PUF model.

A. Device Architecture

The device-side supporting architecture consists of a mono-
lithic encapsulation of essentially a genuine SPUF (SPUFG),
a fake SPUF (SPUFF), a PRNG, a binary counter, a register,
and a comparator, as shown in Fig. 2. The PRNG is typi-
cally implemented by a maximum length LFSR. It is used
to generate random subchallenges from a seed challenge. The
SPUFF is used to generate random nonce or fake responses.
The counter, register, and comparator provide a practically
realizable instantiation to turn a machine-learnable SPUF dur-
ing enrollment prohibitively time consuming to learn upon
deployment.

With reference to Fig. 2, when an n-bit input challenge c
is applied to the device, m subchallenges are derived from the
PRNG using c as a seed. These subchallenges are input to
either SPUFG or SPUFF to generate an m-bit response. The
time between two consecutive input challenges to the device
can be tracked by a binary counter of length L. For an internal
clock generator of period Tclk, the elapsed time is determined
by the product of the counter output Q and Tclk. The counter
Q is cleared upon power-up reset and whenever a response
is sent externally (via clr). The clock input to counter Q is
gated by the comparator output Z. The comparator compares
the output of the counter Q with the content of the register P
and outputs Z = 1 if they are not equal, and outputs Z = 0
otherwise. The counter Q will count continuously until it is
halted by Z = 0. The select enable strobe, S = 1 upon reset

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 26,2023 at 09:17:36 UTC from IEEE Xplore. Restrictions apply.

GU et al.: MODELING ATTACK RESISTANT DECEPTION TECHNIQUE FOR SECURING LIGHTWEIGHT-PUF-BASED AUTHENTICATION 1187

Fig. 3. Enrollment protocol for model-based authentication.

so that the response to an input challenge c is determined by
the comparator output Z. The response will be output from
SPUFG if Z = 0 and from SPUFF if Z = 1. If S = 0, the
true response from SPUFG will always be output. The output
of P is the sum of two components, Pmin and Pos. Pmin = 2k

is fixed after the enrollment phase and Pos is doubled upon
the output of every fake response. A simple controller is used
to manage the inputs and outputs to the external world when
the device is queried.

B. Enrollment

A model-based authentication approach is considered. To
make the full CRP space of SPUFG available at the server
without incurring exponential time-space complexity to read
and store them, the prerequisite is that SPUFG must be
learnable with polynomial resources in terms of training data
and runtime. The enrollment process is performed once in a
secure and controlled environment. The monolithic encapsula-
tion is locked down to prevent the inputs and outputs of CRPs
of SPUFG and SPUFF from being accessed without going
through the control logic. To enable model-based authenti-
cation, the enrollment protocol shown in Fig. 3 is needed
to collect the CRPs of SPUFG for model building after the
device is manufactured. During enrollment, a sufficiently large
number dj of CRPs are extracted from SPUFG of device j to
train a model SPUFG

model by the ML algorithm for later repro-
duction of any CRPs of SPUFG with a high accuracy. As the
counter Q and the register P are both cleared to zero, and
S = 1 upon reset, Z = 0 throughout the enrollment process.
This will stop the counter and allow the response to be output
from SPUFG for each n-bit input challenge. After the authen-
tication verification model SPUFG

model has been successfully
built and validated, one bit of register P is forced to stick at
logic one permanently (Pk : S@1) by an irreversible antifuse
or by using an OTP nonvolatile memory (NVM) bitcell2 to
turn on the deception mechanism.

We assume a generic SPUF that has an acceptable response
reliability for authentication application. If the raw responses
of the SPUF do not meet the reliability expectation, sev-
eral lightweight reliability enhancement techniques reported
in the literature for commonly used SPUFs can be adopted.
Examples of two widely adopted techniques with negligible
overheads are spatial and temporal majority votings [40], [41].
The following additional measures are carried out during the

2OTP-based NVM with antifuse has been widely employed, e.g., the secret
keys of automotive are stored in antifuse OTP to make them unattainable [38].
Embedded OTP NVM of high levels of security, high yields, low power, and
excellent reliability in standard CMOS processes are available in Synopsys
IP library [39].

enrollment phase to minimize the impact of SPUF reliability
on the accuracy of SPUFG

model. First, the temperature and sup-
ply voltage used for collecting the CRPs for model building
are well regulated and monitored. Second, the responses to the
same challenges are collected multiple times and the majority
voted CRPs are used for the training. Third, before shorted out
the antifuse of P, SPUFG

model is validated against the physical
SPUFG under varying operating conditions to determine the
fractional HD (FHD) threshold τ required for authentication
and the number of reauthentication required to reject or recall
a device in the field.

Upon deployment, if the same protocol is used by the adver-
sary to query the system, the response will only be output
from SPUFG if the challenge is input after a duration of
Tw = Tmin + Tos from system reset or from the output of
the previous response. The period of Tclk to the L-bit counter
has been set to approximately Tmin/2k, where k ∈ [0, L−1] is
the position of the register output bit that has been forced into
the stuck-at-one state after enrollment. Therefore, the range of
waiting time Tw to apply the next challenge to SPUFG can be
varied from Tmin to ≈ 2L−k × Tmin by loading the remaining
L − 1 bits of the register with a nonzero integer. The maxi-
mum offset time Tos that can be added to Tmin ranges from
2L−1 × Tclk ≈ (1/2)Tmin for k = L − 1 (i.e., the MSB of the
register) to (2L −2)×Tclk = (2L −2)×Tmin if k = 0 (i.e., the
LSB of the register). The waiting time Tw can be changed by
the server along with a bilateral authentication. Unlike exist-
ing model-based authentication protocol [9], this adaptive Tw
allows the genuine server to make use of the direct query
interface occasionally, for instance, to verify the SPUFG of a
recalled device or to retrain SPUFG due to SPUF aging by
resetting Tw to Tmin. Retraining an SPUF model usually takes
a much lower number of CRPs than training a model from
scratch. Tmin can be set higher for an SPUF that requires less
training CRPs and lower for those requires more training CRPs
to minimize the time cost for these exceptional situations that
are not related to regular field authentication. Prior to the rede-
ployment of the SPUF in the field, the waiting time Tw for
the attackers can be increased by the genuine server by setting
Tos with a mutual authentication.

C. Mutual Authentication

The genuine server can authenticate the deployed device
by using the mutual authentication protocol shown in Fig. 4.
The genuine server can concurrently change the waiting time
Tw for each successful authentication. This can prevent an
adversary from being able to collect enough valid responses
by a brute-force query through the enrollment protocol within
a practical time limit.

To initiate a bilateral authentication, the server randomly
selects an unused half-length challenge cs and sends it to the
device. Upon receiving cs, the device uses it as a seed to its
PRNG to generate n/2 random subchallenges 〈c〉. The device
then clears the counter to ensure that Z = 1 so that the subchal-
lenges 〈c〉 are applied to the fake SPUF (SPUFF) to produce
a half-length challenge cd to the server. The process is aborted
by the server if the device ID is invalid or cd has been used.

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 26,2023 at 09:17:36 UTC from IEEE Xplore. Restrictions apply.

1188 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 6, JUNE 2021

Fig. 4. Proposed deception-based mutual authentication protocol flow.

Otherwise, the server concatenates cs and cd to complete the
full-length challenge cs||cd. This full-length challenge is used
as a seed to the same PRNG as the device to generate 3m sub-
challenges 〈c〉. These subchallenges are used to produce three
m-bit responses, r1, r2, and r3 from SPUFG

model. Two helper
data, h1 = Pos ⊕ r1 and h3 = r1 ⊕ r3, are computed, where
Pos = Tos/Tclk is a (L − 1)-bit positive integer. If m ≥ L, the
m-bit response is truncated to match the length of Pos before
the XOR operation. h1 and h3 are concatenated into h1||h3 and
sent to the device.

Upon receiving the (L+m)-bit string, using the same subchal-
lenges 〈c〉 with cs||cd from its PRNG, the device generates three
m-bit responses, r̃1, r̃2, and r̃3 by setting S = 0 to select SPUFG

for the application of 〈c〉. Then, it computes ˜h3 = r̃1 ⊕ r̃3. If ˜h3
matches the received h3 within acceptable FHD tolerance, the
server is authenticated. The device then recovers ˜Pos from the
received h1 by XORing it with r̃1.

The recovered ˜Pos is loaded into the register to change the
waiting time to Tw = Tmin + ˜Tos. The device will acknowl-
edge the successful update by sending ˜h2 to the server, where
˜h2 = ˜Pos ⊕ r̃2. Otherwise, if the FHD between r̃3 and r3
exceeds the acceptable tolerance, the device sets S = 1 to
generate ˜h2 = SPUFF(〈c〉) and sends it to the server. The
counter Q is cleared by setting clr upon transmission of ˜h2.
The server can verify the authenticity of the device by check-
ing the received ˜h2 against h2 = Pos ⊕ r2. If they are equal
within an acceptable FHD tolerance, the device is authenti-
cated successfully. Otherwise, the authentication fails and the
process is aborted.

It should be noted that the adversary cannot issue an
unseen packet h1||h3 that has not been issued by the server
to obtain the corresponding response packet ˜h2. Consequently,
the uniqueness of every authentication is assured by the fresh

Fig. 5. Deception against brute-force model-building attack.

challenge. Because r1, r2, and r3 are generated from the same
fresh starting challenge and “locked” to each other by design,
replaying either half challenge will not produce new response
bits. The random Pos helps to conceal r1 and r2, and need
not be precisely tracked. Even if r̃1 �= r1 due to the relia-
bility of SPUFG, as long as the error due to the recovered
˜Pos and the response r̃2 generated by SPUFG does not cause
the FHD between ˜h2 against h2 to exceed τ , the outcome
of the authentication will not be affected. Since we do not
limit the number of challenges like [9], the genuine server
can authenticate the same device again by this protocol with
a fresh challenge before rejecting the device.

D. Deception-Based Technique

Although the direct query protocol of Fig. 3 is used only
once during device enrollment by the genuine server, this
direct query may also be used by the adversary upon device
deployment. Fig. 5 shows the device’s action when the enroll-
ment protocol is utilized by the adversary to collect the CRPs
for model building.

When the device is queried by a challenge c, the device
reads the comparator output Z. If Z = 0, the controller will
apply the subchallenges 〈c〉 derived from c to the genuine
SPUF (SPUFG) to produce a response r̃ to the query. If Z �= 0,
the response r̃ will be output from the fake SPUF (SPUFF) by
applying 〈c〉 to it. The device clears the counter Q by setting
clr = 0 and doubles Pos upon transmitting r̃.

Z = 0 when the time lapse T of the current query from
the last output response is at least Tmin. This frequency of
authentication events is perceived to be normal. Z �= 0 when
T = Q × Tclk < Tw, where Tw = P × Tclk. Therefore,
Z �= 0 signifies that the authentication events are unusually fre-
quent. As each consecutive query within the waiting time Tw
will double Pos, the waiting time will extend rapidly. Hence,
an adversary who uses the enrollment protocol to brute-force
attack the SPUF system will receive fake responses from the
SPUFF. Using the incorrect CRPs to train the model will
result in either nonconvergence or convergence with highly
inaccurate prediction results. This will be further demonstrated
in Section V. Unknowingly using such an incorrect SPUF
model to mount an attack on the target device will easily
expose the adversary.

The appropriate value of Tw depends on the use case. Even
with the same number of CRPs required for a successful attack on
an SPUF, Tmin and Tos can be initialized differently according to
the application risk. Different applications have different service
spans and diminishing the profitability of a successful attack
with time while the device is still in operation. For example, Tw
for a disposable near-field communication (NFC) wristband for
a month or multiday convention can be shorter than that of an

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 26,2023 at 09:17:36 UTC from IEEE Xplore. Restrictions apply.

GU et al.: MODELING ATTACK RESISTANT DECEPTION TECHNIQUE FOR SECURING LIGHTWEIGHT-PUF-BASED AUTHENTICATION 1189

RFID for supply chain tracking. The dynamic penalty component
of the waiting time Pos is controllable by the genuine server. It
helps to quickly contaminate the CRPs collected by the adversary
who attempts to model SPUFG in a practical amount of time.
As opposed to alerting the attacker of an incorrect attempt
by inaction, the interplay between false PUF multiplexing and
timeout mechanism exponentially increases the attacker’s time
and exhausts the attacker’s resources to build an incorrect model.
It causes the attacker to miss the opportunity cost of attacking
another target or changing their attack strategy for a better chance
of success. A timely toy example is an electronic wristband used
for contact tracing during the pandemic. Its frequency of use rules
out authentication protocols against the ML attack that limit the
number of authentications. Our proposed mutual authentication
protocol will detect imposer who wears a counterfeit wristband,
as theSPUFclone trained frommultiplexedresponsesofSPUFG

and SPUFF of a genuine wristband will fail the authentication.

E. Attack Scenarios

1) Replay or Spoofing Attack: The easy way of preventing
replay attack is to ensure freshness of challenge so that the
adversary is unable to produce a new response to any not yet
used challenge. To establish a trust transmission of sensitive data
fromthesendertothereceiver, it issufficienttoensurethattheused
CRPs do not allow the adversary to successfully impersonate the
recipient (prover) to obtain subsequent sensitive data transmitted
from the sender (verifier). As long as the challenge is sent by the
verifier and never been reused, then a replay attack cannot be used
to impersonate the prover. For the mutual authentication protocol
of Fig. 4, since the server can keep track of all the used half
challenges cd from the device, the adversary cannot impersonate
the device by replaying any used half challenge cd in response to
cs from the server. Neither can the adversary be able to produce
a valid h3 to an unseen new challenge cs||cd or be authenticated
as a legitimate server by replaying an eavesdropped h1||h3 to a
new challenge cs||cd. Without the genuine device SPUFG or its
model SPUFG

model, it is impossible for the adversary to modify
an intercepted cs and cd to match r3. Due to the onewayness of
SPUFG, it is also impossible to modify the intercepted h1||h3
to obtain new cs||cd, h1, h3, and ˜h2 that will pass authentication
at both sides. The server will be alerted of any abnormalities
by its inability to receive an acceptable ˜h2 in a given time after
sending out h1||h3. Hence, it is impossible for the adversary to
spoof the protocol by the MITM attack.

2) Strong Knowledge Attack: In the proposed deception-
based mutual authentication protocol, neither the real
responses, r1, r2, and r3, to the challenge cs||cd nor the thresh-
old time offset parameter Pos are transmitted in clear between
the server and the device. Without the genuine PUF or its
model, the secrecy of r1, r2, and r3 will not be compromised
by divulging h1, h2, and h3. The device authenticates the server
by checking ˜h3 computed from its generated r̃1 and r̃3 against
h3. It is computationally intractable for an adversary to deter-
mine a new c′

s||c′
d with the correct r1 and r3 that will map to

h3 transmitted by the server without SPUFG
model. Even if this

is possible, the adversary cannot force SPUFF of the device
to produce this specific c′

d from his chosen challenge c′
s.

The server authenticates the device by checking h2 against
˜h2 returned by the device. The probability of correctly guess-
ing the output of XORing an unknown random binary bitstream
and a known binary bitstream of length L − 1 is 21−L. Since
the adversary needs to correctly predict Pos from h1 without
knowing r1 and then predict h2 from Pos without knowing
r2, the probability of an adversary being successfully authen-
ticated by the server is 22(1−L). By making the register length
at least 64 bits, this probability is at most 2−126.

3) Modeling Attack: The adversary needs to collect enough
CRPs from a device to train a PUF model before it can be
used to accurately predict any unused CRPs. In the proposed
deception protocol, with the kth bit of P permanently stuck-
at-one after enrollment, the adversary can only obtain one
real SPUF response after a minimum waiting time of Tw =
(2k +Pos)×Tclk. The stuck-at-one bit position k of the register
and the counter clock frequency can be fixed at design time. Tos
can also be initialized so that Tw upon deployment can be made
long enough to prevent the adversary from collecting enough
valid CRPs within a practical time span through the direct
query protocol. The offset component Tos of Tw is not static
but changed randomly upon each successful authentication
by the genuine server and doubled for every unsuccessful
authentication attempt by the adversary. To be able to collect
the CRPs from the SPUFG at the shortest possible time, the
adversary will have to first determine Tw by comparing the
responses obtained from sending the same challenge at different
time intervals apart. If SPUFF is used to generate the fake
responses, when the same challenge is sent consecutively within
a short time, all responses are identically subjected to a small
probability of error due to the reliability of SPUFF, which
may allure the attacker to progressively extend the waiting
interval to apply the same challenge until a different response
is obtained. As each trial within the current Tw will double
Tos, the waiting time will blow up to months or years after just
a few incorrect attempts depending on the Tos before the first
incorrect guess. The adversary can hardly collect enough true
CRPs within a practical amount of time to model SPUFG.

V. RESULTS AND ANALYSES

A. Test Setup for Modeling Attacks

CMA-ES attack is an effective ML-based modeling attack
against PUF even in a blackbox setting [14], [15]. In par-
ticular, reliability-based CMA-ES attack demonstrates higher
efficiency at breaking an l-XOR APUF than the LR attack,
where it is comparatively more efficient when the number of
parallel APUFs l is higher. Both CMA-ES and LR attacks
are used to evaluate the proposed protocol. We follow the
approaches in [12], [14], [15], [19], and [42] to perform the
attacks on APUF. Specifically, we utilize the most recent pub-
lished platform in [10] for the experiments in this work. The
delay parameters, pi, qi, ri, and si, of each stage in an APUF
design described in Section II are randomly generated using
a standard normal distribution ∼ N (0, 1). The experimental
results reported in [6] showed that 4.57% of noise were intro-
duced into its response when the temperature was varied from
27 ◦C to 70 ◦C, and the responses were 2.16% noisier when the

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 26,2023 at 09:17:36 UTC from IEEE Xplore. Restrictions apply.

1190 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 6, JUNE 2021

voltage was deviated from the rated voltage of 1.8 V by ±2%.
To test the impact of noise on the proposed deception proto-
col, in all our experiments, a random variable ∼ N (0, σ 2

noise)

is inserted into each delay path, �(n), where σnoise = 0.5
is derived from the practical noise level obtained in [6]. The
challenges are generated randomly using Python. All CRPs
are equally divided into two sets, a training set for modeling
and a testing set for prediction.

The program of [42] is implemented to build an adver-
sarial model for evaluating the effectiveness of false PUF
multiplexing against the LR attack. In LR-based modeling
attacks, the PUF is modeled using the response values. When a
PUF cannot generate the same response all the time for a given
challenge, the PUF response r can be modeled by (2) [20],
where the delay difference �(n) is contributed by various
sources of noise �noise(n) in addition to the actual delay
difference of the PUF �actual(n)

�(n) = �actual(n) + �noise(n) = P · ωT + �noise(n)

r =
{

1, if �(n) > 0
0, if �(n) < 0.

(2)

This is used by the reliability-based CMA-ES attack [14] to
find the best fit delay difference, ω, at each stage in (??). To
compute the reliability Hi, the same challenge ci is sent to the
PUF t times. Hi is 1 if the t responses, ri1, ri2, . . . , rit, are all
matched and 0 otherwise. The reliabilities of the responses to
n different challenges are grouped into H = {H1, H2, . . . , Hn}.
A group of p hypothetical reliabilities, ˜Hi1 · · · ˜Hip, for the chal-
lenge ci is then computed by testing all p possible absolute
delay differences, |P · ˜ωT|, generated by the CMA-ES algo-
rithm. The fitness metric fi used to evaluate the quality of the
candidate solution ω̃ is computed by the Pearson correlation
coefficient between Hi and ˜Hij. However, this reliability-based
CMA-ES attack does not help to accelerate or improve the
accuracy of attacking our proposed deception protocol. It is
difficult to determine the actual reliability H with the fake
responses or a mixture of real and fake responses. As it
requires applying the same challenge multiple times to obtain
the true response reliability data for each challenge, more time
is required to collect the CRPs even if the static Tmin of Tw
is known by the attacker. Tw has a dynamic component Tos
that is changeable by the server. Due to its multiplying effect
to penalize the wrong prediction, if the attacker is misled by
using the same waiting time predicted upfront to collect the
training data, the repeated challenges will be worse off as most
data collected after the first incorrect waiting time are likely
to be fake. For this reason, only the original CMA-ES attack
will be considered. Its fitness function is given by

fi = max
j=1,...,p

{

ρ
(

Ri, ˜Rij
)}

(3)

where Ri is the response obtained from the training set and
˜Rij is the response generated by the CMA-ES algorithm. The
higher the correlation coefficient between Ri and ˜Rij, the larger
the fi. The fitness metric f used to evaluate the best candidate
w̃ is derived by adding up all fi for all the CRPs. The larger
the value of f , the more accurate the PUF model.

Fig. 6. Comparison of LR attack results for the proposed deception protocol
utilizing either a TRNG or an XOR PUF as fake response generator. The y-axis
shows the achieved correct prediction rate Ppred of the LR attacks based on
different percentages of fake information mixed with the training responses.

A common adversarial model [14] is used for the evaluation.
The program used to mount the CMA-ES attack is executed in
MATLAB R2016b, by adopting the code for the core CMA-ES
algorithm from [43]. For SPUF design such as APUF, one
m-bit response is derived from m n-bit subchallenges generated
from a PRNG to form one CRP, where m is the bit length of a
response and n is the bit length of a challenge or the number
of stages of an APUF. k × m n-bit subchallenges are used to
produce k m-bit responses.

B. Effect of False PUF Multiplexing

The fake response generator is implemented by an SPUF
design with a different circuit architecture from the genuine
SPUF to produce vastly different CRPs. A TRNG [44] is
implemented to generate random responses for comparison.
The resistance of the deception protocol SPUFG + SPUFF

is evaluated by both LR and CMA-ES attacks and compared
against that of SPUFG + TRNG in this section.

1) Percentage of Valid/Invalid Responses on LR Attack:
Two conventional APUFs, one for SPUFG and the other for
SPUFF, are employed to produce the CRPs for training. Three
different sizes of CRP sets, NCRP = 640 and NCRP = 24 000
(similar to [12] and [42]) are used for training. Depending on
the percentage of fake information, xf (xf ∈ {0, 100}), a group
of mixed response bits from both SPUFG and SPUFF/TRNG
is derived and used for the LR attack.

Fig. 6 depicts the LR attack results of the proposed decep-
tion protocol by using either SPUFF or TRNG as its fake
response generator. A varying number of fake CRPs is pro-
duced according to xf . The prediction rate of a modeling attack
is calculated by Ppred = (Ncorrect/Ntotal)×100%, where Ncorrect
and Ntotal are the number of correctly predicted response bits
and the total number of response bits, respectively. For a ran-
dom guess of a binary variable, the correct prediction of zero
and one should be equally probable. Hence, the worst result is
Ppred = 50%. It can be seen that Ppred decreases proportion-
ally with the percentage of fake responses xf in the training
samples. For the same xf , the prediction rate is only slightly
higher for a larger number of training samples, e.g., 24 000,
than a smaller number, e.g., 640. For the same number of
training CRPs and the same percentage of fake responses, the
prediction rates are the same for both fake APUF and TRNG.

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 26,2023 at 09:17:36 UTC from IEEE Xplore. Restrictions apply.

GU et al.: MODELING ATTACK RESISTANT DECEPTION TECHNIQUE FOR SECURING LIGHTWEIGHT-PUF-BASED AUTHENTICATION 1191

Fig. 7. CMA-ES attack results for the proposed deception protocol by apply-
ing different challenge bit lengths, 64-bit and 128-bit, as well as utilizing
different fake response generators (TRNG and XOR PUF). The number of
training samples used for this experiment, NCRP = 4000, is the same as that
used in [14].

2) Percentage of Valid/Invalid Responses on CMA-ES
Attack: The CRPs (NCRP = 4000) used for training consist of
a mixed combination of responses collected from the real PUF
and fake PUF/TRNG designs, depending on the percentage of
fake responses. The proposed deception protocol is evaluated
for two different challenge bit lengths, 64 and 128 bits.

Fig. 7 shows the CMA-ES attack results on the proposed
deception protocol for different percentages of responses from
the fake PUFs or TRNGs with different challenge bit lengths.
The prediction rates for both lengths of challenges decrease
proportionally with xf from approximately 100% with all real
responses to approximately 50% with 90% of responses gener-
ated from the fake PUFs/TRNGs in the 4000 training samples.
It can be seen that Ppred decreases proportionally with the per-
centage of fake responses xf in the training samples. Moreover,
there is no appreciable difference in the prediction rates of the
CMA-ES attack by using either a fake APUF or a TRNG to
generate the fake responses for the proposed protocol.

From the above experiments, the percentage of fake
responses has a greater impact on the prediction rate of both
CMA-ES and LR attacks. Since the fake APUF or TRNG
may generate the same response as that of the real APUF,
we also evaluate the prediction rate for a given percentage of
erroneous CRPs, i.e., a given percentage of errors occurred in
the responses of training samples. Fig. 8 illustrates the impact
on the prediction rate of the LR attack by using varying per-
centages of erroneous responses (without adding extra noise)
of the real APUF for training. The erroneous responses for
real APUF is generated by flipping its response bits. If a fake
APUF is obtained from a real APUF with errors, it is more dif-
ficult for the attackers to predict the real APUF response using
an LR attack. The results show that the correct prediction rate
under this scenario drops rapidly to about 50% with slightly
more than 50% bit error rate.

C. Effect of Dynamic and Static Components of Waiting
Time on Modeling Attack

For every authentication attempt made by the adversary
before the waiting time Tw, the offset time Tos will be dou-
bled. Hence, the waiting time after applying Nf challenges

Fig. 8. LR attack results for the proposed deception protocol in mixing
different fake information, including responses from fake APUF, TRNG, and
real APUF with error injection.

Fig. 9. Overall time T taken by modeling attacks to predict a 64-bit APUF
with respect to the minimum number of training samples NCRP and static
Tmin of the proposed deception protocol. The typical training time Ttrain is
assumed to be 1 s.

with waiting time shorter than the current Tw is given by

Tw = (

Pmin + Pos + 2Pos + · · · + 2Nf Pos
)

Tclk

=
{

2k + Pos(2
Nf − 1)

}

Tclk. (4)

For Tclk = 1 ms, L = 32, k = 21, and Pos = 1000, Tmin
is less than an hour. After only Nf = 25, the waiting time
Tw exceeds 388 days. If Pos is updated by the server to 225,
it takes only Nf = 10 adversarial attempts for the waiting
time Tw to exceed 397 days. As analyzed in Section IV-E,
the more the attacker attempts to close in their estimate of
Tw, the faster Tw will blow up to years. The attacker can
derive a full set of valid training samples by always waiting
for a time longer than Tw before sending the next challenge,
provided that the genuine server did not authenticate the device
to change the Pos during this period. If the attacker sends a
challenge every t, where t > Tw, the minimum overall time,
T, to obtain the training set can be calculated by (5), which
includes the time to derive all training samples, NCRP, the
training time for modeling the PUF, Ttrain, and the trial-and-
error time for determining the Tw, Tt&e

T = NCRP × Tw + Ttrain + Tt&e. (5)

Even if we omit Tt&e and assume that Tw is constant,
the best attack time T without considering the delay penalty
of Tos can still be made impractically long by varying Tw
according to the number of training samples NCRP required to
successfully model the chosen genuine SPUF. To simulate the

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 26,2023 at 09:17:36 UTC from IEEE Xplore. Restrictions apply.

1192 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 6, JUNE 2021

TABLE II
LIST OF HEURISTIC MODELING ATTACK RESULTS FOR n-XOR APUF AND FEEDFORWARD APUF.

(TIME IN BRACKET REFERS TO ATTACK TIME IN YEARS WITH Tmin = 1 H AND Tos = 0.)

optimistic attack time for this scenario in subsequent exper-
iments of this section, instead of fixing Tmin and changing
Tos to achieve a given Tw, we set Tos = 0 and change Tmin
to avoid the multiplying delay penalty for incorrect waiting
time. Under this premise, Fig. 9 shows that the efficiency of
modeling attacks on existing unfortified (Tw = 0 h) 64-stage
APUF reduces with different Tmin. For example, a 64-stage
APUF design can be predicted with 95% accuracy in approx-
imately 0.01 s (the time for sending and reading one CRP is
neglected) with a training sample size of NCRP = 640 using the
above LR-based experiment. Then using the proposed decep-
tion protocol with a threshold time of 1 h, it will require 25.2
days for the same NCRP to achieve the same prediction rate.
Similarly, the overall attack time T is also longer when more
training samples NCRP are needed if a larger APUF with more
number of stages or a more complex XOR-PUF is used. The
original attack time increases to 0.13 s and the prediction rate
hits 99% when the number of training samples required is
increased to NCRP = 2555. By using the same Tmin of 1 h
with our protocol, without compromising the success rate of
prediction, the overall attack time T will increase to 109 days.
If Tmin is set to 24 h, the attacker will require approximately
7.1 years to collect NCRP = 2555 from a 64-stage APUF to
achieve a prediction rate of 99%.

Table II shows the original training time and brute-force
attack time with known Tmin of 1 h and zero Tos. They are
computed based on the number of CRPs required by LR/ES
modeling attack on n-XOR APUF and feedforward APUF[42],
as well as CMA-ES attack on n-XOR APUF [14]. The original
training time of modeling attack for a 128-stage feedforward
arbiter PUF is approximately 3.15 h, but increases to almost
[50 000/(24 × 365)] = 5.7 years by merely delaying the CRP
collection with Tmin of 1 h. The original training time for the
128-stage 8-XOR APUF is 3.3 h, but the attack time increases
to 34.3 years with Tmin of 1 h.

VI. HARDWARE IMPLEMENTATION

To demonstrate the proposed deception protocol using FPGA,
it is important to choose an FPGA-based APUF design that has
a high uniqueness and reliability. To this end, the lightweight
flip-flop-based arbiter PUF (FF-APUF) design [45] is adopted

TABLE III
HARDWARE RESOURCES OF 64-BIT FF-APUF, APUF, AND ANCILLARY

COMPONENTS ON XILINX ARTIX-7 FPGA FOR THE PROPOSED

DECEPTION PROTOCOL

since it has a higher uniqueness (∼40%) compared to the conven-
tional APUF (∼9%) on Xilinx Artix-7 FPGA implementation.
Moreover, a 64-stage FF-APUF achieves good reliabilities of
97.10% and 93.90% over a temperature range of 0 ◦C–70 ◦C
and ±10% voltage variations, respectively. The uniformity
of the FF-APUF design is ∼47%. It uses 44 slices, 130
look up tables (LUTs) and 172 flip flops (FFs).

From the analysis of Section V-B, the fake response gen-
erator implemented by another SPUF produces no significant
difference in ML attack results as a TRNG fake response gen-
erator. Since uniqueness is not a major concern for the fake
response generator, a 64-bit APUF design is considered here
so that there is no difference in the number of cycles required
to generate a response bit from the application of an input
challenge between the real and fake SPUFs. This will prevent
the attacker from exploiting the timing difference to discrimi-
nate the responses between SPUFF and SPUFG. The APUF
consumes only 134 slices, 134 LUTs, and 2 FFs. The mul-
tiplexers in both FF-APUF and APUF are placed and routed
by minimizing the skew between the top and bottom delay
paths. To generate a 64-bit response from a 64-bit challenge,
a 64-bit maximum length LFSR with a feedback polynomial of
x64 +x63 +x61 +x60 +1 is used to generate 64 random internal
challenges with the input challenge as seed. The number of
slices required to implement this LFSR is 25.

Table III shows the hardware resource consumption of the
device with 64-bit CRPs for the proposed deception protocol

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 26,2023 at 09:17:36 UTC from IEEE Xplore. Restrictions apply.

GU et al.: MODELING ATTACK RESISTANT DECEPTION TECHNIQUE FOR SECURING LIGHTWEIGHT-PUF-BASED AUTHENTICATION 1193

Fig. 10. Comparison of LR attack on both conventional APUF and FF-APUF
designs. “BitLen” represents the number of stages of the real PUF.

in terms of the numbers of LUTs, registers, clock cycles, and
slices on the Xilinx Artix-7 FPGA. The clock frequency is
set to 100 MHz. The propagation delays of FF-APUF and
APUF can both be completed well within one clock cycle,
i.e., 10 ns. Three clock cycles are consumed to load a 64-bit
challenge, generate a 1-bit response, and store it into a register.
To generate a 64-bit response, 3×64 clock cycles are required.
FF-APUF occupies much fewer configurable fabrics of Xilinx
Artix-7 FPGA than Slender PUF [28] and System-of-PUF [46]
designs, which use 128 LUTs and 130 LUTs, respectively, for
generating a 1-bit response. In total, 388 slices are consumed,
which is only 2.45% of the resources of Xilinx Artix-7 FPGA.
From Table III, the total time taken from authentication request
to response generation by the device is 10 ns×264 = 2.64 μs,
which is fast enough for most authentication protocols. The
speed bottleneck of the authentication event is due to the data
rate used for the serial communication between the server and
the device. For our prototype experiment, this is limited by
the UART with a baud rate of 115 200 bps for communication
with the PC through RS232. It takes the device approximately
694 μs × 2 = 1388 μs to receive a 64-bit challenge and
transmit a 64-bit response, including the start and stop bits
required for the transmission of each byte. The total time for
one authentication event is thus 1390.64 μs. This can be sub-
stantially reduced by using a faster serial link with a much
higher baud rate. The total power consumption of the proposed
protocol implemented on Xilinx Artix-7 FPGA is 101 mW.

Since TRNG can also be utilized for fake response gen-
eration, for comparison, we have implemented the coherent
sampling ring oscillator-based TRNG (COSO-TRNG) from
among the low-cost TRNGs suitable for FPGA implementation
recently surveyed in [47]. As shown in Table III, this TRNG
consumes 164 LUTs and 139 FFs, which are more than the
134 LUTs and two FFs of APUF.

Fig. 10 compares the prediction rate and attack time by
the LR attack on using 64- and 256-stage FF-APUFs against
conventional APUF of similar hardware complexity. For the
same number of stages, FF-APUF requires significantly more
number of training data to achieve the same prediction rate.
Fig. 11 shows the attack time T for using FF-APUF as real
APUF in our proposed deception protocol with different Tmin.
Compared with using conventional APUF for the same fixed
Tw = Tmin with Tos = 0 in Fig. 9, T is comparable, if not
slightly higher, for the same number of training samples NCRP.

Fig. 11. Overall attack time T taken by modeling attacks to predict FF-APUF
designs with respect to the minimum number of training samples NCRP and
static Tmin of the proposed deception protocol.

Although the training time for each sample increases only neg-
ligibly, NCRP increases significantly for the same prediction
accuracy. Hence, the overall attack time increases substantially
by replacing the conventional APUF with equally lightweight
FF-APUF as SPUFG in the proposed deception protocol.

The prediction rate of a 64-bit FF-APUF model trained
with 18 050 CRPs during enrollment is 99.5%, as shown in
Fig. 10. The worst reliability of the FF-APUF implemented
on Xilinx Artix-7 FPGA is 93.9% at 10% underrated core
voltage [36]. Since the average bit error rate due to the accu-
racy of FF-APUF model is negligibly small (0.5%) compared
with the worst reliability of the physical FF-APUF in the field,
the fraction of response bit differences between the model and
the real FF-APUF will be kept below 7% for the device oper-
ating at temperature between 0 ◦C and 70 ◦C with no more
than ±10% rated voltage variations. This is confirmed experi-
mentally by the 94.17% prediction rate of the 64-bit FF-APUF
model tested with 6% errors injected into the CRPs generated
by the device PUF. Hence, the FHD tolerance τ can be conser-
vatively set to 0.1 to reduce the false rejection rate to virtually
zero. The barrier to modeling attack is still high as the model
built by the attacker must have at least 90% accurate prediction
rate for its response to be authenticated successfully.

VII. PROTOCOL COMPARISON

The survey in [22] divides the PUF-based authentication
protocols into two groups, heavyweight and lightweight. Most
of the heavyweight protocols require either a strong crypto-
graphic algorithm for privacy amplification and an ECC for
response reconciliation [23]–[27]. For example, the controlled
PUF [48] applies hashing to obfuscate its CRPs and requires
ECC to correct the noisy responses. The ECC helper data has
to be securely stored in order to prevent helper data manip-
ulation attack [49]. A detailed review and comparison of the
heavyweight authentication protocols have already been done
in [22]. In this work, we focus on the lightweight group. Three
lightweight protocols, including the slender PUF [28], noise
bifurcation [29], and system-of-PUF protocols [46], as well as
two recently published authentication protocols, lockdown [9]
and latent obfuscation are considered.

Table IV compares the proposed deception protocol against
the basic authentication protocol and five lightweight authen-
tication protocols. PUF-independent relates to whether or
not the protocol requires a specific PUF design; Modeling
resistance refers to the protocol-assisted resistance to model

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 26,2023 at 09:17:36 UTC from IEEE Xplore. Restrictions apply.

1194 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 6, JUNE 2021

TABLE IV
COMPARISON OF THE PROPOSED DECEPTION PROTOCOL AGAINST

LIGHTWEIGHT PROTOCOL FINALISTS FROM [22] AND TWO RECENT

PUBLISHED PROTOCOLS, LOCKDOWN PROTOCOL FROM [9] AND LATENT

OBFUSCATION [31]

building attacks; Number of auth. refers to the quantity of
CRPs that can be authenticated; HW implement evaluates the
physical feasibility to implement these protocols on an FPGA
or other hardware devices; and TRNG refers to any TRNG
component used in these protocols.

As analyzed previously, the proposed deception protocol
demonstrates good robustness to different ML-based attacks.
Any type of SPUF can be used as the genuine SPUF or fake
SPUF. Among the previous works, only lockdown protocols
have no restriction on the PUF design. However, its implemen-
tation cost is not reported and its model-based authentication is
designed based on system-level instantiation of hard-to-learn
XOR-PUF instead of generic machine learnable SPUF.

Except lockdown, latent obfuscation, and our proposed
deception protocols, other authentication protocols listed in
Table IV are vulnerable to modeling attacks. Typically, a
TRNG is used to generate a random substring to hide the
response, e.g., in slender PUF [28]. In our work, a temporal
control is used to delay the attacker from collecting enough
correct CRPs from the real SPUF within a practical time.
Overall, the proposed deception protocol is the only authenti-
cation protocol that has achieved all the desirable metrics. It is
the only scheme that allows the practical realization of secure
model-based authentication with generic machine-learnable
SPUF. The number of authentications is limited only by the
CRP space of the SPUF and the attacker is time restricted in
making consecutive queries to collect the unused CRPs.

VIII. CONCLUSION

Security solutions today focus mostly on blocking attacks.
Deception as a defense strategy provides greater delay, con-
fusion, and disruption than rejecting sessions to the attacker’s
onslaught. It can drive preventive countermeasures to delay
an attack, causing the adversary economic harm to figure out
what is real and what is not, and hesitant to proceed. In this

article, we propose a novel deception authentication protocol
by deceiving the adversary to use a training set dominated by
fake/invalid responses for ML. This will prevent their PUF
clone from correctly predicting the response to the unknown
challenge. The proposed deception-based challenge–response
interface works with a real SPUF, a fake SPUF, a counter,
a register, and a comparator to make the modeling of the
real SPUF easy during enrollment but infeasible upon device
deployment by delaying the collection of the required number
of correct training data by an unpredictable and impractically
long time. Attempts to shorten this data collection time will
increase the number of fake CRPs used for training. The rapid
drop of prediction accuracy with an increasing fraction of fake
responses is demonstrated using two of the most widely known
modeling attack techniques, LR and CMA-ES. The enrolled
software model of real SPUF is used by the server to perform
authentication requests through the proposed mutual authenti-
cation protocol. The protocol has been analyzed to be secure
against replay and MITM attacks. The device-side components
required to support the deception protocol are implemented on
a Xilinx Artix-7 FPGA to validate its hardware efficiency. The
entire authentication system for a prover consumes only 1.12%
of LUTs and 0.62% of FFs. 388 slices are consumed overall,
representing 2.45% of the resources of a Xilinx Artix-7 FPGA.

REFERENCES

[1] KrebsonSecurity. DDoS on Dyn Impacts Twitter, Spotify, Reddit.
Accessed: Nov. 8, 2016. [Online]. Available: https://krebsonsecurity.
com/2016/10/ddos-on-dyn-impacts-twitter-spotify-reddit/

[2] C. H. Chang, Y. Zheng, and L. Zhang, “A retrospective and a look
forward: Fifteen years of physical unclonable function advancement,”
IEEE Circuits Syst. Mag., vol. 17, no. 3, pp. 32–62, Aug. 2017.

[3] C. Gu, J. Murphy, and M. O’Neill, “A unique and robust single slice
FPGA identification generator,” in Proc. IEEE Int. Symp. Circuits Syst.
(ISCAS), Jun. 2014, pp. 1223–1226.

[4] C. Gu and M. O’Neill, “Ultra-compact and robust FPGA-based PUF
identification generator,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS),
May 2015, pp. 934–937.

[5] R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, “Physical one-way
functions,” Science, vol. 297, no. 5589, pp. 2026–2030, 2002.

[6] D. Lim, J. W. Lee, B. Gassend, G. E. Suh, M. Van Dijk, and S. Devadas,
“Extracting secret keys from integrated circuits,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 13, no. 10, pp. 1200–1205, Oct. 2015.

[7] B. Gassend, D. Lim, D. Clarke, M. van Dijk, and S. Devadas,
“Identification and authentication of integrated circuits: Research arti-
cles,” Concurrency Comput. Pract. Exp., vol. 16, no. 11, pp. 1077–1098,
Sep. 2004.

[8] M. Majzoobi, F. Koushanfar, and M. Potkonjak, “Lightweight secure
PUFs,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Des. (ICCAD),
San Jose, CA, USA, Nov. 2008, pp. 670–673.

[9] M.-D. Yu, M. Hiller, J. Delvaux, R. Sowell, S. Devadas, and
I. Verbauwhede, “A lockdown technique to prevent machine learning on
PUFs for lightweight authentication,” IEEE Trans. Multi-Scale Comput.
Syst., vol. 2, no. 3, pp. 146–159, Jul.–Sep. 2016.

[10] P. H. Nguyen, D. P. Sahoo, C. Jin, K. Mahmood, U. Rührmair, and
M. van Dijk, “The interpose PUF: Secure PUF design against state-
of-the-art machine learning attacks,” IACR Trans. Cryptograph. Hardw.
Embedded Syst., vol. 2019, no. 4, pp. 243–290, Aug. 2019.

[11] J. Guajardo, S. S. Kumar, G.-J. Schrijen, and P. Tuyls, “FPGA intrin-
sic PUFs and their use for IP protection,” in Proc. Int. Workshop
Cryptograph. Hardw. Embedded Syst., 2007, pp. 63–80.

[12] U. Rührmair et al., “PUF modeling attacks on simulated and silicon
data,” IEEE Trans. Inf. Forensics Security, vol. 8, no. 11, pp. 1876–1891,
Nov. 2013.

[13] J. Tobisch and G. T. Becker, “On the scaling of machine learning attacks
on PUFs with application to noise bifurcation,” in Proc. Int. Workshop
Radio Freq. Identification Security Privacy Issues, 2015, pp. 17–31.

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 26,2023 at 09:17:36 UTC from IEEE Xplore. Restrictions apply.

GU et al.: MODELING ATTACK RESISTANT DECEPTION TECHNIQUE FOR SECURING LIGHTWEIGHT-PUF-BASED AUTHENTICATION 1195

[14] G. T. Becker, “The gap between promise and reality: On the insecurity
of XoR arbiter PUFs,” in Cryptographic Hardware and Embedded Syst.
(CHES). Berlin, Germany: Springer, 2015, pp. 535–555.

[15] G. T. Becker, “On the pitfalls of using arbiter-PUFs as building blocks,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 34, no. 8,
pp. 1295–1307, Aug. 2015.

[16] Q. Ma, C. Gu, N. Hanley, C. Wang, W. Liu, and M. O’Neill, “A machine
learning attack resistant Multi-PUF design on FPGA,” in Proc. 23rd Asia
South Pac. Des. Autom. Conf. (ASP-DAC), Jeju Island, South Korea, Jan.
2018, pp. 97–104.

[17] S. Tajik et al., “Physical characterization of arbiter PUFs,” in Proc.
Int. Workshop Cryptograph. Hardw. Embedded Syst. (CHES), 2014,
pp. 493–509.

[18] U. Rührmair et al., “Efficient power and timing side channels for phys-
ical unclonable functions,” in Proc. Int. Workshop Cryptograph. Hardw.
Embedded Syst. (CHES), 2014, pp. 476–492.

[19] G. T. Becker et al. “Active and passive side-channel attacks on delay
based PUF designs,” Proc. IACR Cryptol. ePrint Archive, vol. 2014,
2014, p. 287.

[20] J. Delvaux and I. Verbauwhede, “Side channel modeling attacks on 65nm
arbiter PUFs exploiting CMOS device noise,” in Proc. Int. Conf. Hardw.
Orient. Security Trust (HOST), 2013, pp. 137–142.

[21] J. Delvaux and I. Verbauwhede, “Fault injection modeling attacks on 65
nm arbiter and RO sum PUFs via environmental changes,” IEEE Trans.
Circuits Syst. I, Reg. Papers, vol. 61, no. 6, pp. 1701–1713, Jun. 2014.

[22] J. Delvaux, R. Peeters, D. Gu, and I. Verbauwhede, “A survey on
lightweight entity authentication with strong PUFs,” ACM Comput.
Surveys, vol. 48, no. 2, pp. 1–42, Oct. 2015.

[23] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, “Silicon physi-
cal random functions,” in Proc. ACM 9th Int. Conf. Comput. Commun.
Security (CCS), 2002, pp. 148–160.

[24] S. Katzenbeisser et al., “Recyclable PUFs: Logically reconfigurable
PUFs,” in Cryptographic Hardware and Embedded Systems (CHES),
B. Preneel and T. Takagi, Eds. Berlin, Germany: Springer, 2011,
pp. 374–389.

[25] A. Van Herrewege et al., “Reverse fuzzy extractors: Enabling
lightweight mutual authentication for PUF-enabled RFIDs,” in Financial
Cryptography and Data Security, A. D. Keromytis, Ed. Berlin, Germany:
Springer, 2012, pp. 374–389.

[26] Ü. Kocabaş, A. Peter, S. Katzenbeisser, and A.-R. Sadeghi, “Converse
PUF-based authentication,” in Proc. Int. Conf. Trust Trustworthy
Comput., 2012, pp. 142–158.

[27] Y. Jin, W. Xin, H. Sun, and Z. Chen, “PUF-based RFID authentication
protocol against secret key leakage,” in Proc. Asia–Pac. Web Conf., 2012,
pp. 318–329.

[28] M. Majzoobi, M. Rostami, F. Koushanfar, D. S. Wallach, and
S. Devadas, “Slender PUF Protocol: A Lightweight, Robust, and Secure
Authentication by Substring Matching,” in Proc. IEEE Symp. Security
Privacy Workshops, May 2012, pp. 33–44.

[29] M. D. Yu, D. M’Raihi, I. Verbauwhede, and S. Devadas, “A noise
bifurcation architecture for linear additive physical functions,” in Proc.
IEEE Int. Symp. Hardw. Orient. Security Trust (HOST), May 2014,
pp. 124–129.

[30] U. Rührmair, C. Jaeger, M. Bator, M. Stutzmann, P. Lugli, and G. Csaba,
“Applications of high-capacity crossbar memories in cryptography,”
IEEE Trans. Nanotechnol., vol. 10, no. 3, pp. 489–498, May 2011.

[31] Y. Gao, S. F. Al-Sarawi, D. Abbott, A.-R. Sadeghi, and
D. C. Ranasinghe, “Modeling attack resilient reconfigurable latent
obfuscation technique for PUF based lightweight authentication,” 2017.
[Online]. Available: arXiv:1706.06232.

[32] J. Delvaux, “Attacks on the PUF-based authentication protocols YeHL16
and GaoMAAR17,” Cryptol. ePrint Archive, Rep. 2017/1134, 2017.
[Online]. Available: https://eprint.iacr.org/2017/1134

[33] M. Barbareschi, A. De Benedictis, E. La Montagna, A. Mazzeo, and
N. Mazzocca, “A PUF-based mutual authentication scheme for cloud-
edges iot systems,” Future Gener. Comput. Syst., vol. 101, pp. 246–261,
Dec. 2019.

[34] M. Adeli and N. Bagheri, “Cryptanalysis of two recently proposed puf
based authentication protocols for IoT: Phemap and salted phemap.” in
Proc. IACR Cryptol. ePrint Arch., vol. 2019, 2019, p. 1461.

[35] D. P. Sahoo, D. Mukhopadhyay, R. S. Chakraborty, and P. H. Nguyen,
“A multiplexer-based arbiter puf composition with enhanced reliabil-
ity and security,” IEEE Trans. Comput., vol. 67, no. 3, pp. 403–417,
Mar. 2018.

[36] J. Shi, Y. Lu, and J. Zhang, “Approximation attacks on strong pufs,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 39, no. 10,
pp. 2138–2151, Oct. 2020.

[37] C. Gu, C. H. Chang, W. Liu, S. Yu, Q. Ma, and M. O’neill, “A modeling
attack resistant deception technique for securing PUF based authentica-
tion,” in Proc. Asian Hardw. Orient. Security Trust Symp. (AsianHOST),
Dec. 2019, pp. 1–6.

[38] P. Piacentini. (Jun. 2017). The Black Box in Auto Vehicles. [Online].
Available: https://semiengineering.com/black-box-auto-vehicles/

[39] Synopsys. (Jan. 2019). DesignWare OTP NVM IP. [Online]. Available:
https://www.synopsys.com/dw/ipdir.php?ds=nvm_otp

[40] P. Koeberl, J. Li, and W. Wu, “A spatial majority voting technique to
reduce error rate of physically unclonable functions,” in Trusted Systems,
R. Bloem and P. Lipp, Eds. Cham, Switzerland: Springer Int., 2013,
pp. 36–52.

[41] A. Mills, S. Vyas, M. Patterson, C. Sabotta, P. Jones, and J. Zambreno,
“Design and evaluation of a delay-based fpga physically unclonable
function,” in Proc. IEEE 30th Int. Conf. Comput. Design (ICCD),
Sep. 2012, pp. 143–146.

[42] U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas, and
J. Schmidhuber, “Modeling attacks on physical unclonable functions,”
in Proc. 17th Conf. Comput. Commun. Security (CCS), Oct. 2010,
pp. 237–249.

[43] N. Hansen, “The CMA evolution strategy: A tutorial,” 2016. [Online].
Available: arXiv:1604.00772.

[44] F. Mei, L. Zhang, C. Gu, Y. Cao, C. Wang, and W. Liu, “A highly
flexible lightweight and high speed true random number generator on
FPGA,” in Proc. IEEE Comput. Soc. Annu. Symp. VLSI (ISVLSI), Jul.
2018, pp. 399–404.

[45] C. Gu, Y. Cui, N. Hanley, and M. O’Neill, “Novel lightweight FF-APUF
design for FPGA,” in Proc. IEEE 29th Int. Conf. System Chip (SOCC),
Sep. 2016, pp. 75–80.

[46] S. C. Konigsmark, L. K. Hwang, D. Chen, and M. D. Wong, “System-
of-PUFs: Multilevel security for embedded systems,” in Proc. IEEE
Int. Conf. Hardw. Softw. Codesign Syst. Synth. (CODES+ISSS), 2014,
pp. 1–10.

[47] O. Petura, U. Mureddu, N. Bochard, V. Fischer, and L. Bossuet, “A
survey of AIS-20/31 compliant TRNG cores suitable for FPGA devices,”
in Proc. 26th Int. Conf. Field Program. Logic Appl. (FPL), Aug. 2016,
pp. 1–10.

[48] B. Gassend, M. V. Dijk, D. Clarke, E. Torlak, S. Devadas, and P. Tuyls,
“Controlled physical random functions and applications,” ACM Trans.
Inf. Syst. Security, vol. 10, no. 4, p. 3, 2008.

[49] J. Delvaux, D. Gu, D. Schellekens, and I. Verbauwhede, “Helper data
algorithms for puf-based key generation: Overview and analysis,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 34, no. 6,
pp. 889–902, Jun. 2015.

Chongyan Gu (Member, IEEE) received the Ph.D.
degree from Queen’s University Belfast, Belfast,
U.K., in 2016.

She is currently a Lecturer (Assistant Professor)
with the School of EEECS, Queen’s University
Belfast, where she is also a member of the Center
for Secure Information Technologies, Institute
of Electronics Communications and Information
Technologies. She is an expert in hardware secu-
rity. Her research into physical unclonable function
(PUF) has been utilized as part of a security archi-

tecture for electronic vehicle charging systems, licensed by LG-CNS, South
Korea, and was also licensed for evaluation by Thales, U.K. Her current
research interests include PUFs, security in/for approximate computing, true
random number generator, hardware Trojan detection, and machine learning
attacks.

Dr. Gu has successfully organized two conference special sessions (IEEE
APCCAS in 2018 and ACM GLSVLSI in 2020). Her team was the overall
winner of INVENT 2015, a competition to accelerate the commercialization
of innovative ideas. She was invited to give tutorial/talks to international con-
ferences, such as IEEE ASP-DAC 2020 on the topic of practical PUF design
on FPGA.

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 26,2023 at 09:17:36 UTC from IEEE Xplore. Restrictions apply.

1196 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 6, JUNE 2021

Chip-Hong Chang (Fellow, IEEE) received the
B.Eng. degree (Hons.) from the National University
of Singapore, Singapore, in 1989, and the M.Eng.
and Ph.D. degrees from Nanyang Technological
University (NTU), Singapore, in 1993 and 1998,
respectively.

He joined the School of Electrical and Electronic
Engineering (EEE), NTU, in 1999, where he is cur-
rently an Associate Professor. He held joint appoint-
ments with NTU as the Assistant Chair of Alumni of
the School of EEE from 2008 to 2014, the Deputy

Director of the Center for High-Performance Embedded Systems from 2000
to 2011, and the Program Director of the Center for Integrated Circuits and
Systems from 2003 to 2009. He has coedited five books, published 13 book
chapters, more than 100 international journal papers (>70 are in IEEE) and
more than 180 refereed international conference papers (mostly in IEEE), and
delivered over 40 colloquia. His research interests include hardware security
and trustable computing, deep learning network security, digital image pro-
cessing algorithms and architectures for emerging vision sensors, physical
layer watermarking, and residue number systems.

Dr. Chang currently serves as the Senior Area Editor for IEEE
TRANSACTIONS ON INFORMATION FORENSIC AND SECURITY, and an
Associate Editor for the IEEE TRANSACTIONS ON CIRCUITS AND

SYSTEMS—PART I: REGULAR PAPERS and IEEE TRANSACTIONS ON VERY

LARGE SCALE INTEGRATION (VLSI) SYSTEMS. He also served as the
Associate Editor for the IEEE TRANSACTIONS ON INFORMATION FORENSIC

AND SECURITY and IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN

OF INTEGRATED CIRCUITS AND SYSTEMS from 2016 to 2019, IEEE
ACCESS from 2013 to 2019, IEEE TRANSACTIONS ON CIRCUITS AND

SYSTEMS—PART I: REGULAR PAPERS from 2010 to 2013, Integration, the
VLSI Journal from 2013 to 2015, Journal of Hardware and System Security
(Springer) from 2016 to 2020, and Microelectronics Journal from 2014
to 2020. He guest edited several journal special issues and served on the
organizing and technical program committees of more than 60 international
conferences (mostly IEEE). He is an IET Fellow and was an IEEE Circuits
and Systems Society Distinguished Lecturer from 2018 to 2019.

Weiqiang Liu (Senior Member, IEEE) received the
B.Sc. degree in information engineering from the
Nanjing University of Aeronautics and Astronautics
(NUAA), Nanjing, China, in 2006, and the Ph.D.
degree in electronic engineering from Queen’s
University Belfast, Belfast, U.K., in 2012.

In December 2013, he joined the College of
Electronic and Information Engineering, NUAA,
where he is currently a Professor and the Vice
Dean. He has published one research book by Artech
House and over 100 leading journal and conference

papers. His research interests include approximate computing, hardware secu-
rity, and VLSI design for digital signal processing and cryptography.

Dr. Liu has two Best Paper Candidates in IEEE ISCAS 2011 and ACM
GLSVLSI 2015. He has been awarded the prestigious Outstanding Young
Scholar Award by the National Natural Science Foundation of China in
2020. His paper was selected as the Feature Paper of IEEE TC in the 2017
December issue. He serves as the Associate Editor for IEEE TRANSACTIONS

ON CIRCUITS AND SYSTEM—PART I: REGULAR PAPERS from January
2020 to December 2021, IEEE TRANSACTIONS ON EMERGING TOPICS IN

COMPUTING from May 2019 to April 2021, and IEEE TRANSACTIONS

ON COMPUTERS from May 2015 to April 2019, and a Steering Committee
Member of the IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING

SYSTEMS from January 2018 to December 2019. He is the Program Co-Chair
of IEEE ARITH 2020, and also a Technical Program Committee Member
for ARITH, DATE, ASAP, ISCAS, ASP-DAC, ISVLSI, GLSVLSI, SiPS,
NANOARCH, AICAS, and ICONIP. He is a member of CASCOM and VSA
Technical Committee of IEEE Circuits and Systems Society.

Shichao Yu received the B.S degree in electrical
and information engineering from Hangzhou Normal
University, Hangzhou, China, in 2014, and the M.S.
degree in electronic circuit and system from the
Nanjing University of Aeronautics and Astronautics,
Nanjing, China, in 2017. He is currently pursuing the
Ph.D. degree in electrical and electronic Engineering
with Queen’s University Belfast, Belfast, U.K.

His research interests mainly include secure hard-
ware architecture, and hardware Trojan detection and
its software/hardware implementation.

Yale Wang received the B.S. degree in automa-
tion from the Luoyang Institute of Science and
Technology, Luoyang, China, in 2013, and the M.S.
degree in information engineering from the Henan
University of Science and Technology, Luoyang, in
2016. He is currently pursuing the Ph.D. degree
in electrical and information engineering with the
Nanjing University of Aeronautics and Astronautics,
Nanjing, China.

His research interests mainly include PUFs and
machine learning-based modeling attacks on PUFs

and countermeasures.

Máire O’Neill (Senior Member, IEEE) received
the Ph.D. degree from Queen’s University Belfast,
Belfast, U.K., in 2002.

She is a Regius Professor of Electronics and
Computer Engineering with Queen’s University
Belfast, where she is the Director of the Institute
of Electronics Communications and Information
Technologies and the Centre for Secure Information
Technologies. She is also the Director of the £5M
EPSRC/NCSC-funded Research Institute in Secure
Hardware and Embedded Systems and recently

led the e3.8M EU H2020 Secure Architectures for Future Emerging
Cryptography (SAFEcrypto) Project from 2014 to 2018. She previously held
a U.K. EPSRC Leadership Fellowship from 2008 to 2014 and was a Former
Holder of a U.K. Royal Academy of Engineering Research Fellowship from
2003 to 2008. She has authored two research books, and over 160 peer-
reviewed international conference/journal publications. Her research interests
include hardware cryptographic architectures, lightweight cryptography, side-
channel analysis, PUFs, and post-quantum cryptography.

Dr. O’Neill has received numerous awards, which include the Blavatnik
Engineering and Physical Sciences Medal in 2019, the Royal Academy of
Engineering Silver Medal in 2014, and the British Female Inventor of the Year
2007. She is an Associate Editor of IEEE TRANSACTIONS ON COMPUTERS

and IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING and is the
Secretary of the IEEE Circuits and Systems for Communications Technical
committee. She is a member of the U.K. AI Council. She is a Fellow of
the Royal Academy of Engineering and Irish Academy of Engineering and a
member of the Royal Irish Academy.

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 26,2023 at 09:17:36 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

