
Addressing Side-Channel Vulnerabilities in the Discrete Ziggurat
Sampler

Brannigan, S., O'Neill, M., Khalid, A., & Rafferty, C. (2019). Addressing Side-Channel Vulnerabilities in the
Discrete Ziggurat Sampler. In 8th International Conference on Security, Privacy, and Applied Cryptography
Engineering: Proceedings (pp. 65-84). (Lecture Notes in Computer Science). Springer-Verlag.
https://doi.org/10.1007/978-3-030-05072-6_5

Published in:
8th International Conference on Security, Privacy, and Applied Cryptography Engineering: Proceedings

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© Springer Nature Switzerland AG 2018. This work is made available online in accordance with the publisher’s policies. Please refer to any
applicable terms of use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Open Access
This research has been made openly available by Queen's academics and its Open Research team. We would love to hear how access to
this research benefits you. – Share your feedback with us: http://go.qub.ac.uk/oa-feedback

Download date:20. Jul. 2023

https://doi.org/10.1007/978-3-030-05072-6_5
https://pure.qub.ac.uk/en/publications/5cb941ec-0494-48c5-b4dd-0eed48d721e5

Addressing Side-Channel Vulnerabilities in the
Discrete Ziggurat Sampler

Séamus Brannigan, Máire O’Neill, Ayesha Khalid, and Ciara Rafferty

Centre for Secure Information Technologies (CSIT), Queen’s University Belfast, UK
sbrannigan11@qub.ac.uk

Abstract. Post-quantum cryptography with lattices typically requires
high precision sampling of vectors with discrete Gaussian distributions.
Lattice signatures require large values of the standard deviation parame-
ter, which poses difficult problems in finding a suitable trade-off between
throughput performance and memory resources on constrained devices.
In this paper, we propose modifications to the Ziggurat method, known
to be advantageous with respect to these issues, but problematic due to
its inherent rejection-based timing profile. We improve upon information
leakage through timing channels significantly and require: only 64-bit un-
signed integers, no floating-point arithmetic, no division and no external
libraries. Also proposed is a constant-time Gaussian function, possess-
ing all aforementioned advantageous properties. The measures taken to
secure the sampler completely close side-channel vulnerabilities through
direct timing of operations and these have no negative implications on its
applicability to lattice-based signatures. We demonstrate the improved
method with a 128-bit reference implementation, showing that we retain
the sampler’s efficiency and decrease memory consumption by a factor of
100. We show that this amounts to memory savings by a factor of almost
5, 000, in comparison to an optimised, state-of-the-art implementation of
another popular sampling method, based on cumulative distribution ta-
bles.

1 Introduction

Lattice-based Cryptography (LBC) has become popular in the field of post-
quantum public-key primitives and aids research into more advanced crypto-
graphic schemes such as fully-homomorphic, identity-based and attribute-based
encryption. For a thorough review on applications and background of LBC, see
[1]. This attention is partly due to the low precision arithmetic required to imple-
ment a lattice scheme, which rarely extends beyond common standard machine
word lengths. The algorithmic complexities are based on vector operations over
the integers.

There is one, increasingly contentious, component which requires extra pre-
cision: Gaussian sampling. By cryptographic standards, this extra precision is
low and begins and ends in the sampling phase. First introduced theoretically to
LBC in [2], Gaussian sampling has been shown to reduce the required key sizes

of lattice schemes, but also to be prone to side channel attacks. As an example of
this, an attack [3] on the sampler in the lattice-based signature scheme, BLISS
[4], has been demonstrated using timing differences due to cache misses.

Regardless of the push toward other solutions for cryptographic primitives,
Gaussian sampling is prevalent in LBC. It appears in the proofs of security of the
fundamental problems [2] and the more advanced applications, especially those
using lattice trapdoors [5], rely on it. Each of these applications will be expected
to adapt to constrained devices in an increasingly connected world. The NIST
call for post-quantum cryptographic standards [6] has resulted in a large number
of lattice-based schemes being submitted, of which a significant proportion use
Gaussian sampling [7,8,9].

Issues around the timing side channel exposed by the Gaussian sampling
phase would ideally be dealt with by implementing outright constant-time sam-
pling routines. However, popular candidates for LBC include the CDT [10] and
Knuth/Yao [11] samplers, based on cumulative distribution tables and random
tree traversals, respectively. The impact of ensuring constant-time sampling with
these methods is a reduction in their performance.

1.1 Related Work

The large inherent memory growth of these samplers with increasing precision
and standard deviation, combined with constant-time constraints, prompted the
work of Micciancio and Walter [12]. An arbitrary base sampler was used to sam-
ple with low standard deviation, keeping the memory and time profile low, then
convolutions on the Gaussian random variables were used to produce samples
from a Gaussian distribution with higher standard deviation. The result was a
significant reduction in the memory required to sample the same distribution
with just the base sampler, with no additional performance cost. Importantly,
given a constant-time base sampler operating at smaller standard deviation, the
aggregate method for large standard deviation is constant-time.

The Micciancio-Walter paper boasts a time-memory trade off similar to that
of Buchmann et al.’s Ziggurat sampler [13]. The former outperforms the latter
as an efficient sampler, but the latter has a memory profile better suited to
constrained devices. It can be seen in the results of [12] that the convolution
method’s lowest memory usage is at a point where the Ziggurat has already
maximised its increasing performance. The potential performance of the Ziggurat
method exceeds that of the CDT, for high sigma, the latter being commonly
used as a benchmark. We ported the former to ANSI C using only native 64-
bit double types, we compared their performances and memory profiles, finding
the Ziggurat to be favourable for time and space efficiency, for increasing size of
inputs and parameters. See Figure 1 for throughput performance and Table 1 for
memory consumption. This comparison is the first of its kind, where Buchmann’s
Ziggurat has been implemented in ANSI C, free from the overhead of the NTL
library and higher-level C++ constructs, as the CDT and others have been.

The problem with the Ziggurat method is that it is not easy to contain timing
leakage from rejection sampling. The alternative is to calculate the exponential

Fig. 1: Time taken for preliminary Ziggurat and CDT samplers to sample 1
million Gaussian numbers. These early experiments were done to 64 bit precision
using floating point arithmetic on one processor of an Intel(R) Core(TM) i7-
6700HQ CPU @ 2.60GHz

function every time. But it is the exponential function, in fact, which causes the
most difficulty. Both the NTL [14], used in [13], and glibc [15], used in Figure 1,
exponential functions are prone to leakage, the former from early exit of a Taylor
series and the latter from proximity to a table lookup value.

Sampler Memory usage(Bytes)

CDT 32,778
Ziggurat 1,068

Table 1: Memory usage of the 64-bit CDT and Ziggurat samplers at σ = 215.
Value for Ziggurat is for 64 rectangles, where its performance peaks.

1.2 Our Contribution

We build on the work of Buchmann et al. [13] by securing the Ziggurat sam-
pler with respect to information leakage through the timing side channel. The
algorithms proposed in this paper target schemes which use a large standard
deviation on constrained devices.

– We highlight side-channel vulnerabilities in the Ziggurat method, not men-
tioned in the literature, and propose solutions for their mitigation.

– The Ziggurat algorithm is redesigned to prevent leakage of information through
the timing of operations.

– We propose a novel algorithm for evaluating the Gaussian function in con-
stant time. To the best of our knowledge, this is the first such constant-time
algorithm.

– The Gaussian function, and the overall Ziggurat sampler, is a fixed-point
algorithm built from 64-bit integers, using no division or floating point arith-
metic, written in ANSI C.

– The reference implementation achieves similar performance to the original
sampler by Buchmann et al. and, as it is optimised for functionality over
efficiency, we expect the performance can be further improved upon.

– The amount of memory saved by using our algorithm is significantly greater
than the advantage seen, already, in the original sampler.

– We argue that the proposed sampler now has sufficient resilience to physical
timing attacks to be considered for constrained devices (such as microcon-
trollers) and hardware implementations not making use of a caching system.

The paper is organised as follows. After a preliminary discussion in Section 2,
Gaussian sampling via the Ziggurat method of [13] is outlined in Section 3. The
new fixed-point Ziggurat algorithm is described in Section 4, as is the new fixed-
point, constant-time Gaussian function, in Section 4.2. We discuss the results of
the sampler and the security surrounding the timing of operations in Section 5.

2 Preliminaries

Notation We use the shorthand {xi}ni=a
def
= {xi|i ∈ Z, a ≤ i ≤ n}. When

dealing with fixed-point representations of a number x, we refer to the fractional
part as xQ and the integer part as xZ. The same treatment is given to the results
of expressions of mixed numbers, where the expression is enclosed in parentheses
and subscripted accordingly. The approximate representation of a number y is
denoted ȳ.
Discrete Gaussian Sampling A discrete Gaussian distribution DZ,σ over
Z, having 0 mean and a standard deviation denoted by σ, is defined as ρσ(x) =
exp(−x2/2σ2) for all integers x ∈ Z. the support, β, of DZ,σ is the (possibly
infinite) set of all x which can be sampled from it. The support can be super-
scripted with a + or − to indicate only the positive or negatives subsets of β
and a zero subscripted to either of these to indicate the inclusion of 0.

Considering Sσ = ρσ(Z) =
∑∞
k=−∞ ρσ(k) ≈

√
2πσ, the sampling probability

for x ∈ Z from the Gaussian distribution DZ,σ is calculated as ρσ(x)/Sσ. For
the LBC constructions undertaken in this research, σ is assumed to be fixed and
known, hence it suffices to sample from Z+ proportional to ρ(x) for all x > 0
and to set ρ(0)/2 for x = 0, where a sign bit is uniformly sampled to output
values over Z.

Other than the standard deviation, σ, and the mean, c = 0 for brevity,
there are two critical parameters used to describe a finitely computed discrete
Gaussian distribution. The first is the precision parameter, λ, which governs the
statistical distance between the finitely represented probabilities of the sampled
distribution and the theoretical Gaussian distribution with probabilities in R+.

The second is the tail-cut parameter, τ , which defines how much of the Gaus-
sian distribution’s infinite tail can be truncated, for practical considerations.
This factor multiplies the σ parameter to give the maximum value which can be
sampled, such that β = {x | 0 ≤ x ≤ dτσe}. The choice of λ and τ affects the
security of LBC schemes, the proofs of which are often based on the theoretical
Gaussian distribution. The schemes come with recommendations for these, for
a given security level.

The parameters λ and τ are not independent of each other. Sampling to λ-bit
precision corresponds to sampling from a distribution whose probabilities differ
by, at most, 2−λ. The tail is usually cut off so as not to include those elements
with combined probability mass below 2−λ. By the definition of the Gaussian
function, this element occurs at the same factor, τ , of σ. For 128-bit precision,
τ = 13, and for 64-bit precision, τ = 9.2.

Taylor Series Approximation The exponential function, ex, expands as a
Taylor series evaluated at zero like such, ex =

∑∞
i=0 x

i/i!. When the term to be
summed is < 2−λ, the function has been approximated to λ bits.

3 Discrete Ziggurat Sampling

The Ziggurat sampling technique of Marsaglia and Tsang [16], is a rectangle-
wedge approach to rejection sampling originally proposed for both normal and
exponential distributions. The basic method of ‘rejection’ sampling a distribution
is to uniformly sample two numbers, x and y. If y ≤ ρσ(x), then x is returned as
the sampled variable. In other words, x is rejected with probability determined
by the distribution Dσ. The computational expense in calculating ρσ(x), or,
the alternative, storing all the information in the distribution, motivated the
development of the Ziggurat method.

The distribution is enclosed by a set of m rectangles, {Ri}ni=1, such that
the bottom-right corner of each rectangle is a point on the distribution. Figure
1 shows the first few and the mth rectangles of such a set. Each Ri, in the
continuous case, is the area given by xi(yi−1 − yi) and R0 is simply the x0
co-ordinate. A continuous description is given here and then adapted for the
discrete case.

For eachRi 6=1, there is a continuous set of xj ≤ xi−1 such that every yj within
Ri is completely under the distribution and such that every rectangle contains
the same 2-dimensional sample space. In the continuous case, this corresponds to
rectangles of equal area. It is therefore possible to uniformly sample an Ri and
accept the majority of xjs without having to compute f(x) = ρσ(x). Increasing
the number of rectangles covering the distribution decreases the probability of
x being in the ‘rejection zone’ and improves the efficiency of the algorithm.

Fig. 2: The Ziggurat setup. Rectangles of equal area enclose a Gaussian distri-
bution.

However, more rectangles require more storage and a balance must be found
between time and space. With the Ziggurat method, f(x) need only be computed
in a relatively low number of instances; when the number to be sampled is in
the rejection zone. Also, the second co-ordinate, y, need only be generated in
these instances. Generating a random integer within the range of the number of
rectangles is more efficient than generating a number to the required precision
of the sampled distribution.

The discrete Gaussian distribution, and the Ziggurat method for sampling
from it, are similar to their continuous counterparts. The intuitive difference is
that the distribution now takes the form of a histogram. The x value which mul-
tiplies the y value to give the common area, as opposed to being the horizontal
distance from zero to xi, is now the number of integer values on the x- axis
contained within the rectangle. This will be the value bxc + 1, to account for
zero.

The discrete Ziggurat of [13] is summarised in Algorithm 1, although note
that we have omitted the sLine() phase, for simplicity, as we do not use it in
our algorithm. For now, we wish to simplify and merge the paths through the
sampler, so we restrict the algorithm to its minimally essential form.

In Algorithm 1, the 2-dimenional sample space is uniformly sampled in y, i.e.
an Ri is chosen, then uniformly sampled in x over {bxic}mi=1. These samples are
mostly accepted. In some cases, when x is higher than xi−1, sampling to finer
precision is needed in y. Then, the vertical space of the rectangle is discretised
into 2λ elements and uniformly sampled. Should this point lie within the vertical

Algorithm 1 Zig Ntl Sample(m, σ, λ, {bxic}mi=1, {ȳi}mi=0)

1: while true do
2: r

$← {i}mi=1, s
$← {−1, 1}, x $← {i}xri=0

3: if 0 < x ≤ xi−1 then
4: return sx
5: else
6: if x = 0 then
7: b

$← {0, 1}
8: if b = 0 then
9: return sx

10: else
11: continue
12: else
13: y′

$← {i}2
λ−1
i=0 , ȳ = y′ · (ȳi−1 − ȳi)

14: if ȳ ≤ ρ̄σ(x)− ȳi then
15: return sx
16: else
17: continue

region covered by the distribution, it is accepted. Rejection of a sample causes
the process to begin again, until the function outputs a sample.

4 Fixed-Point Ziggurat Method with Time
Considerations

Here, we describe and analyse how the proposed sampler operates. Specifically,
this section details the novel contribution of this work. Section 4.1 provides an
overview of how the Ziggurat method has been adapted to consider the timing
side-channel and suitability for constrained devices at parameters for lattice
signatures, namely, high standard deviation, σ. Section 4.2 sets up the theoretical
basis of the constant-time Gaussian function with Theorem 1 and discusses the
required input precision, with Theorem 2. Finally, the Gaussian function is given
explicitly in Algorithm 4 and described throughout the section.

4.1 Timing Attack Resilient, Time-Independent Ziggurat Sampling

A purely constant-time rejection sampler over discrete Gaussians is hard to en-
visage, apart from one that calculates the probability function at every sample,
which is a low memory, low performance extremum. Rather than focus on sam-
ple by sample uniformity in the temporal distribution of the sampler, we reduce
the number of possible timings of the Ziggurat method from arbitrarily many,
depending on how the Gaussian function is called, to two: sampling in the re-
jection zone in constant time over the integers, or accepting straight away in
constant time over the integers.

Apart from the constant-time routine for the Gaussian function, there are a
few paths through the Ziggurat which need to be merged before the above can
be done. As can be seen in Algorithm 1, the original Ziggurat method will take
a unique path when x = 0. An attacker with the ability to time the operations
of the sampler would, hence, know those samples with value zero, which are also
the most frequent. Not all paths through the algorithm are as obviously insecure.
For instance, should x = 0 be rejected, the attacker still gains information about
the state of the underlying PRNG. Either way, information leakage of the kind
which gives an attacker a high degree of confidence in the values of variables in
the sampler (near certainty, in this case), is required to be mitigated.

Algorithm 2 shows the proposed Ziggurat sampling algorithm. Note that Al-
gorithm 3 is the function which calls ρσ(x), the Gaussian function of Algorithm 4.
For descriptions of the other functions called, see the prose which follows.

Algorithm 2 Ziggurat Sample(m, s, λ, {bxic}mi=1, {ȳi}mi=0)

1: while true do
2: r

$← {i}mi=1, s
$← {0, 1}, x $← {i}2

λ−1
i=0

3: x = bx · (xr + 1)c . x/2λ 7→ Rr
4: acc = ct lte(x, xr−1) ∧ (ct isnonzero(x) ∨ s)
5: if acc then
6: break
7: else
8: acc = Ziggurat Sample y(x, yr−1, yr, σ, λ)
9: acc = acc ∧ ct isnonzero(x)

10: if acc then . y ≤ y′
11: break
12: return x− ct select(0, 2x, s)

Algorithm 3 Zig Sample y(x, ȳb, ȳa, σ, λ)

1: y′
$← {i}2

λ−1
i=0

2: ȳ = y′ · (ȳb − ȳa)
3: return ct lte(ȳ, ρσ(x)− ȳa)

In Algorithm 2, the table of y values of the rectangles, the {ȳi}mi=0, are p-bit
unsigned integers representing numbers in [0, 1). For all cryptographic purposes,
p is greater than the length of machine words and requires high precision arith-
metic. {bxic}mi=1 are unsigned integers which normally fit within 32 bits. Only
when σ is a value higher than those which have so far been proposed, does this
change.

Uniform sampling of {xi} to p-bit precision is performed by sampling x
to p bits from a cryptographically secure pseudo-random number generator

(CSPRNG). This number is interpreted as an integer representing the numerator
of a fixed-point fraction in [0, 1). Thus, by multiplying this uniformly random
fraction by the discrete size of the rectangle, as in Line 3 of Algorithm 2, and
taking the floor, we get a uniform sample in the rectangle.

The important novelty in this algorithm, with regards to timing, is the pair
of accept (acc) conditions. In Algorithm 1, if a non-zero sample was accepted, it
was negated with probability 1/2. If the sample was zero, it was accepted with
probability 1/2. We use this fact in Algorithm 2 to handle these cases in the
same computational step. Line 4 gives the logical shortcut to the desired out-
come. Before describing this shortcut, a note on constant-time logical operations
follows.

All functions beginning ct are constant-time functions which return a 0 or
a 1 as an unsigned integer. As an example, ct lte(a,b) returns 1 if a ≤ b and 0
otherwise. All logical operations in these algorithms are implemented as bitwise
operations on values returned from these functions. Hence, the logical binary
operations can be synthesised in constant time by bitwise operations restricted
to values of 0 and 1.

The particular logic of Line 4 comes from the fact that the same bit is used to
determine if the case x = 0 is accepted, as is used to determine the sign of non-
zero accepted samples. The logic for accepting is thus (x = 0 → s) ∧ x ≤ xi−1.
As P → Q ≡ ¬P ∨Q, we get Line 4.

If the accept condition holds, the loop breaks and the sample is returned in
Line 12. If it does not hold, the algorithm goes into the rejection phase. The
algorithm sends rejected x = 0 samples through a redundant rejection phase, to
prevent a timing attack revealing such a rejection. Thus, an attacker can know
when a sample has been rejected, which is probably unavoidable with a rejection
sampler, but not what the sample was. This is crucial for ensuring that the state
of the underlying CSPRNG is not compromised.

The loop will continue until it breaks, in which case a sample will be ready
to be returned. A constant-time select function, ct select(a, b, c), returns a
if c = 0 and b if c = 1. Thus, Line 4 converts a sample x 6= 0 to a negative if
the sign bit is set and leaves it alone if not. This operation will leave an x = 0
sample alone and the sampler will have two possible timings for an accepted
sample and all rejections traverse the same computational path. If the function
ρσ(x) is made constant-time, the Ziggurat sampler is now significantly more
robust against side-channel analysis.

4.2 Constant-Time Gaussian Evaluation

The Ziggurat sampler requires the evaluation of the exponential function to high
precision, which must be done in constant time if it is to be suitable for crypto-
graphic purposes. This is the fundamental design specification. The exponential
function must also preserve, if not accentuate, many of the advantageous quali-
ties of the Ziggurat sampler. Particularly, the Ziggurat method offers comparable
performance to the CDT and Knuth/Yao samplers, but at a fraction of the mem-

ory consumption. This quality makes it a desirable candidate for hardware and
embedded lattice-based cryptosystems.

Accordingly, the exponential function must have a small memory footprint,
require as few hardware features (e.g. floating point arithmetic) as possible and
avoid hardware-expensive division. The 8kB tables of glibc’s standard 128-bit
exp() function [15], for example, would triple the memory required for a 128-bit
Ziggurat sampler with 128 rectangles. The lack of large lookup tables will result
in a performance hit. However, there are numerous areas where at least some of
this penalty can be diminished.

For example, the use of unsigned integers instead of floating point types
and the replacement of divisions with multiplications should soften the penalty
incurred. Combining this with the fact that the Ziggurat can be tuned so that
calls to exp() will be made only for a small fraction of samples, the performance
should remain comparable to that of the competing samplers.

Several challenges arise from the design criteria:

– Generating multi-precision arithmetic operations from the largest unsigned
integer types which can be deemed standard (64 bits in this paper).

– Avoiding division for rational approximations, where division is a common
component.

– Utilising these operations to mimic the floating point operations often used
to approximate real numbers.

– Maintaining the Ziggurat’s light-weight memory profile, whilst ensuring that
the performance is comparable to other attempts at extending to high σ or
λ.

Mathematical Underpinnings Recall that the Gaussian function is the eval-
uation of the exponential function over negative reals.

Theorem 1. The evaluation of the exponential function f(x′) = exp(x′), ∀x′ ∈
R−0 and f(x′) ∈ [0, 1), can be formulated to output an integer in Zq, where
q = 2λ, representing the numerator of the closest fraction, over q, to f(x′). The
problem is transformed to that of calculating a left shift,

lZ =
(

log2 e · (λ · ln 2− s · x2)Z
)
Z, (1)

and yχ = exp(χ), for the fractional exponent

χ = ln 2 ·
(

log2 e · (λ · ln 2− s · x2)Z
)
Q + (λ · ln 2− s · x2)Q (2)

Proof. The objective is to calculate y′ such that

y′

2λ
≈ y = e−x

2/2σ2

, (3)

for all x ∈ β+. Changing the denominator of the left hand side to base e and
rearranging gives

y′ = e−x
2/2σ2+λ ln 2. (4)

Let x′ = −x2/2σ2 and k = x′ + λ ln 2, then observe that the range of values
input to the exponential function shifts from −τ2/2 ≤ x′ ≤ 0 to λ ln 2− τ2/2 ≤
k ≤ λ ln 2. For λ = 128 and τ = 13, for example, the range is from ∼ 4.2 to
∼ 88.7. Also, y′ ∈ Z2λ , always.

The new exponent k will consist of an integer part, kZ, and fractional part,
kQ. Thus,

ekZ+kQ = ekZ · ekQ (5)

= 2kZ log2 e · ekQ , (6)

where a change to base 2 is made to convert the integer exponentiation to a
shift on the result of the fractional exponentiation. Before this can be done, the
fractional part of kZ log2 e must be subtracted and added back into the fractional
exponentiation.

Let l = kZ log2 e. Hence,

2l = 2lZ · 2lQ (7)

= 2lZ · elQ·ln 2 (8)

and, therefore,

ek = 2lZ · elQ·ln 2+kQ . (9)

Hence, the final left shift is lZ, and the input to the Gaussian Taylor Series is
χ = lQ · ln 2 + kQ. Here,

k = λ · ln 2− s · x2 (10)

and
l = kZ · log2 e (11)

�

Theorem 1 shows that the Gaussian function can be approximated with an
integer, so long as a suitable approximation method is used for yχ. Algorithm 4
presents the Gaussian function explicitly.

The design criteria which limits the choice of approximation method the most
is the absence of division. For example, whereas methods such as continued frac-
tions converge more rapidly, they require division by the input value. As the
input values cannot be stored as precomputed fixed-point fractions, the crite-
ria demands that the algorithm does not divide by the input. Hence, the only
(immediately obvious) choice for the approximation method is the Taylor series.
Theorem 1 is useful because, without converting the integer component of the
exponentiation to a shift, the terms of the Taylor series, although converging,
would contain x to too high a power to efficiently store and process.

Algorithm 4 ρ(x, s, λ)

1: Require: {fi = 1
i!
}Ni=1 . N s.t. fN+1 < 2−λ

2: kZ = (λ · ln 2− s · x2)Z
3: kQ = (λ · ln 2− s · x2)Q
4: lZ =

(
kZ · log2 e

)
Z

5: lQ =
(
kZ · log2 e

)
Q

6: χ = lQ · ln 2 + kQ
7: ψ = 1 +

∑N
i=1 χ

i · fi
8: return

(
(ψ · αe) << lZ

)
Z

The exponential function takes, as its fundamental input, a uniformly sam-
pled x ∈ β+

0 and returns a y ∈ [0, 1), to λ bits of precision. This y will be
represented as a fraction over 2λ, or more precisely, as a λ-bit extended un-
signed integer type with the implied denominator having been accounted for by
the operations which act on x. There are three steps: (i) Calculate shift and
input to Taylor series, (ii) Evaluate the Taylor series and iii) apply shift to the
result of the Taylor series.

Let fi be an approximation, to p bits of precision, of 1/i!. Hence, the fixed-
point Taylor series is given by

y =

n∑
i=1

χi · fi. (12)

Because of the propagation of uncertainty through operations on finite rep-
resentations of numbers in R, the constants (such as ln 2, the inverse factorials,
etc.) are required to have greater precision than the output precision, λ.

Theorem 2. The precision, p, to which χ and the set of fi must be stored is
given by

p = λ+ log2

(n∑
i=1

|i · χi−1 · fi|+ |χi|
)
. (13)

Proof. As yχ =
∑n
i=1 χ

i · fi, and has λ bits of precision, the input value χ and
the factorial constants, fi, will be required to have p bits of precision such that
δχ = 2−(p+1) and δfi = 2−(p+1). From this it is required that

δ
(n∑
i=1

χi · fi
)
≤ 2−(λ+1). (14)

Uncertainty propagates through this expression in the following ways

δχi

|χi|
= |i| · δχ

|χ|
,

δ(χi · fi)
|χi · fi|

=
δχi

|χ|
+
δfi
|fi|

(15)

and, hence,

δ
(n∑
i=1

χi · fi
)

=

n∑
i=1

δ(χi · fi) (16)

=

n∑
i=1

(
δχi

|χ|
+
δfi
|fi|

)
· |χi · fi| (17)

=

n∑
i=1

(
|i| · δχ
|χ|

+
δfi
|fi|

)
· |χi · fi| (18)

Substituting in the required uncertainties in terms of λ and p and rearranging
gives

2−(λ+1) = 2−(p+1) ·
n∑
i=1

(
|i · χi−1 · fi|+ |χi|

)
(19)

and

p = λ+ log2

(n∑
i=1

|i · χi−1 · fi|+ |χi|
)
. (20)

�

Note that the i = 0 term, which goes to 1, contributes nothing to the error and
has furtively disappeared from the analysis. Equation (20) gives the precision to
which the inverse factorials must be stored and a similar analysis on the constants
used before the Taylor Series shows that, in total, 32 extra bits would suffice.
The reference implementation uses an extra 64 bits for maintaining simplicity
in the arbitrary precision arithmetic, so the algorithm can be further optimised
for performance as the Taylor series is the bottleneck of the Gaussian function
and sensitive to the size of the input.

The number of terms, n, is small for values close to the point around which
a Taylor expansion was taken, x = 0 in this case. As this algorithm must exit
all iterations as if it were the worst case, n and, hence, χ must not grow large.
Equation (20) is monotonically increasing, but grows to only 2 extra bits for χ
between 0 and 1, whereas for χ approaching 2, the required extra bits is above 40.
This amounts to extra storage required for the inverse factorials and overhead in
the most computationally expensive part of the algorithm, in dealing with the
non-zero, increasing integer components χi.

The potential overflow from converting between base 2 and base e to get
Equation (9) is to be avoided and we choose to allow χ to overflow or underflow,
keeping track of this with a selective multiplication by either 1, 1/e or e. We
propose a constant-time solution to this issue with the final Gaussian function
defined in Algorithm 5.

The constant-time underflow and overflow operations adhere to the same
logical conventions as described in Section 4.1. The function ct lt is a constant-
time < operation and ct select is the same as before, although it is now used
twice in succession to select between 1, e or 1/e.

Algorithm 5 Gauss Exp(x, s, λ)

1: Require: {fi = 1
i!
}Ni=1 . N s.t. fN+1 < 2−λ

2: x′Z = (s · x2)Z
3: x′Q = (s · x2)Q
4: lZ =

(
log2 e · (λ · ln 2− x′Z)

)
Z

5: lQ =
(

log2 e · (λ · ln 2− x′Z)
)
Q

6: χ = lQ · ln 2− x′Q
7: be = 0 . Let be be unsigned.
8: be −= ct underflow(χ, lQ · ln 2, x′Q)
9: t = χ

10: χ += (λ · ln 2)Q
11: be += ct overflow(χ, t, (λ · ln 2)Q)
12: ψ = 1 +

∑N
i=1 χ

ifi
13: ce = ct lt(0, be)∧ ct lt(be, 0− 1) . 1 if be = 1
14: αe = ct select(1, e, ce)
15: ce = ct lt(1, ce)
16: αe = ct select(αe, 1/e, ce)
17: return

(
(ψ · αe) << lZ

)
Z

Listing 11 shows the code for the constant-time operations used in the refer-
ence implementation of the Ziggurat sampler. The UINT types are the standard
unsigned integers prefixed by whichever number of bits they have. The fix t

types are also labelled by their bit precision and represent fixed point fractions
composed of a number of UINT64 types. For example, if n is a fix128 t, it will
contain two UINT64 types in a struct, called n.a0 and n.a1. The logical functions
return a 0 or 1 and the selection functions return the selected value.

UINT32 ct_isnonzero_f128(fix128_t x)

{

return ((x.a0|-x.a0) >> 63) & ((x.a1|-x.a1) >> 63);

}

UINT32 ct_isnonzero_u32(UINT32 x)

{

return (x|-x)>>31;

}

UINT32 ct_lt_u32(UINT32 x, UINT32 y)

{

return (x^((x^y)|((x-y)^y)))>>31;

}

UINT32 ct_lt_u64(UINT64 x, UINT64 y)

1 These functions are adapted from https://cryptocoding.net/index.php/Coding_

rules and have been extended to use multi-precision logic.

https://cryptocoding.net/index.php/Coding_rules
https://cryptocoding.net/index.php/Coding_rules

{

return (x^((x^y)|((x-y)^y)))>>63;

}

UINT32 ct_lte_u32(UINT32 x, UINT32 y)

{

return 1 ^ ((y^((y^x)|((y-x)^x))) >>31);

}

UINT32 ct_lte_f128(fix128_t a, fix128_t b)

{

return ct_lt_u64(a.a1, b.a1) |

ct_select_64 (0, (1^ ct_lt_u64(b.a0, a.a0)),

(1^((a.a1-b.a1)|(b.a1 -a.a1))> >63));

}

UINT32 ct_neq_u32(UINT32 x, UINT32 y)

{

return ((x-y)|(y-x))>>63;

}

UINT32 ct_select_u32 (UINT32 a, UINT32 b, UINT32 bit)

{

/* -0 = 0, -1 = 0xffff */

UINT32 mask = - bit;

UINT32 ret = mask & (a^b);

ret = ret ^ a;

return ret;

}

fix256_t ct_select_f256 (fix256_t a, fix256_t b, UINT64 bit)

{

/* -0 = 0, -1 = 0xffff */

UINT64 mask = - bit;

fix256_t ret;

ret.a0 = mask & (a.a0 ^ b.a0);

ret.a1 = mask & (a.a1 ^ b.a1);

ret.a2 = mask & (a.a2 ^ b.a2);

ret.a3 = mask & (a.a3 ^ b.a3);

ret.a0 = ret.a0 ^ a.a0;

ret.a1 = ret.a1 ^ a.a1;

ret.a2 = ret.a2 ^ a.a2;

ret.a3 = ret.a3 ^ a.a3;

return ret;

}

Listing 1: Constant-time operations to the various precisions required for a 128-
bit implementation of the Ziggurat sampler.

5 Results

This section discusses the enhancements to the Ziggurat method provided by
our algorithm. In particular, the low-level construction of the sampler leads to a
significant reduction in the memory footprint, as presented in Section 5.1, and,
as outlined in Section 5.2, the side-channel resilience of our algorithm makes the
Ziggurat method, and the range of parameters to which it is suited (i.e. high
standard deviation), a more attainable objective for LBC.

5.1 Performance and validation

The algorithm presented in this paper solves issues involved with sampling from
the discrete Gaussian distribution over the integers via the Ziggurat method,
with significantly better resilience to side-channel attacks. The sampler retains
its efficiency, improves upon use of memory resources and is more suitable for
application to low-memory devices and hardware due to the integer arithmetic
and lack of division.

Section 5.1 shows the performance and memory profiles of our proposed sam-
pler, as well as the original Ziggurat and the CDT [17] samplers. We refer to our
sampler as Ziggurat O and to the original algorithm, proposed by Buchmann et
al. [13], as Ziggurat B. We notice only a slight decrease in performance, accom-
panied by improvements of orders of magnitude in memory use, especially when
code is taken into account (as can be seen by the sizes of executables). It should
be noted, however, that the reference implementation was built with function-
ality in mind, and there is room for optimising the code, see Section 4.1. The

Sampler Time (ms for Stack and Heap Size of executable (B)
106 samples) Allocations (Max) (B)

Ziggurat O 1,102 1,200 27,376
Ziggurat B 1,012 123,000 2,036,608

CDT 320 5,961,000 45,576

Table 2: Performance and memory profile of 106 samples at σ = 19600 for
our sampler, Ziggurat O, Buchmann et al.’s sampler, Ziggurat B, and the CDT
sampler [17]. All measurements were made with a single CPU on an an Intel(R)
Core(TM) i7-6700HQ CPU @ 2.60GHz. Note, the number of rectangles was 64.

results show significant improvements in the memory consumption of the Ziggu-
rat sampler. It should be noted that the CDT algorithm has been optimised for
both efficiency and memory, as it is a core component of the Safecrypto library
[17]. For example, the full table sizes of the cumulative distribution function
for σ = 19600 is a few times the value given here. The table sizes have been
decreased using properties of the Kullback-Leibler divergence of the Gaussian
distribution [18]. The Ziggurat’s memory profile is orders of magnitude better

than that of the CDT and its performance is a small factor slower. With al-
gorithmic ideas for increasing performance suggested in Section 4.1, alongside
low-level optimisations already applied to the CDT sampler (e.g. struct pack-
ing), we expect the small factor by which the performance drops can be reduced,
possibly to the extent of becoming a performance gain.

For qualitative assurance of functionality, see Figure 3 which shows the fre-
quency distributions for 108 samples for Buchmann’s sampler and that proposed
in this paper. The sampler behaves as expected, producing a discrete Gaussian
distribution at high standard deviation.

Fig. 3: Histograms obtained from 108 samples of the two Ziggurat algorithms.

5.2 Side Channel Security

We referred to a possible attack on the unmodified Ziggurat sampler in Sec-
tion 4.1, where the x = 0 sample is readily obtained by the difference in timing
of the logic in Line 6 in Algorithm 1 to every other sample. It is seemingly not
mentioned elsewhere in the literature. Furthermore, most implementations of
the exponential function are not constant-time and will perform the approxima-
tion over a given, low valued, domain and raise it to a power dependent on how
large the initial exponent was. Large lookup tables are often used to achieve high
performance and, should the exponent match a member exactly, the worst-case
scenario is direct leakage of samples through any timing method.

Typical side-channel protections to timing attacks involve ensuring that oper-
ations which depend on secret data are done in constant time. This is, seemingly,
impossible for a rejection sampler. For the Ziggurat sampler, limiting to two pos-
sible paths from beginning to accept/reject is, hence, the best that can be done.
It is important, however, that all elements of the sample space can be found to
have been sampled via both accept paths, which is the case for the enhanced
Ziggurat.

Further to the more general timing attacks, the “Flush, Gauss and Reload”
attack [3] is a topic of on-going research for which the solutions must be tested
on the Ziggurat method. This paper presents an attack on the Gaussian samplers
of the BLISS signature scheme [4], but also provides unique countermeasures for
each sampling method. Fitting these countermeasures individually and assessing
the impact on performance is beyond the scope of this paper, but the authors
of the cache attack have discussed how the Ziggurat’s countermeasures have sig-
nificantly less overhead, in theory, than than those of the CDT and Knuth/Yao.

The attack can be summarised as follows. Any non-uniformity in the access-
ing of table elements can lead to cache misses and timing leakage. It requires
that the attacker have shared cache space, which is not typical of constrained
systems, but also not an impossible situation. The countermeasure for the Zig-
gurat sampler amounts to ensuring a load operation is called on all rectangle
points, regardless of whether they are needed. The data is loaded but not used
further in most cases.

General solutions also exist to counter this attack. One such solution was
proposed by Roy [19], whereby the samples are shuffled and the particular sam-
ples for which a timing difference can be made are obscured. An analysis of the
shuffling method was carried out by Pessl [20] and improvements were made,
but research into the effect of these on the performance and memory profile of
samplers is, also, on-going.

Despite the uncertainty surrounding this attack, and the performance penal-
ties induced by the suggested solutions, we expect that the sampler proposed in
this paper will not be impacted negatively under the imposed constraints of the
“Flush, Gauss and Reload” attack. It is suggested by the authors of the paper
that the Knuth/Yao and CDT samplers be implemented in constant time to
counter the attack. In contrast, the countermeasures for the Ziggurat sampler
amount to two more (blind) load operations with every sample, which is both
negligible compared to the operations already being performed and significantly
less expensive than implementing the Ziggurat in constant time. We argue, how-
ever, that the sampler is required to be secure against attacks from direct timing
measurements of operations, before countermeasures against cache attacks can
be facilitated.

6 Conclusion

We proposed a discrete Gaussian sampler using the Ziggurat method, which
significantly negates its vulnerability to side-channel cryptanalysis. Our research
improves the Ziggurat sampler’s memory consumption by more than a factor of
100 and maintains its efficiency under the new security constraints. Compared
with the CDT sampler, the Ziggurat is nearly 5,000 times less memory-intensive.
A significant amount of work has been carried out on making the sampler more
portable and lightweight, as well as less reliant on hardware or software features,
such as floating-point arithmetic and extended precision integers. The result is a
sampler which is notably more suitable for use in industry, for its portability and

lack of dependencies, and as a research tool, for its self-contained implementation
of the low-level components which make up the entire sampler.

References

1. C. Peikert, “A decade of lattice cryptography,” Foundations and Trends in
Theoretical Computer Science, vol. 10, no. 4, pp. 283–424, 2016. [Online].
Available: http://dx.doi.org/10.1561/0400000074

2. D. Micciancio and O. Regev, “Worst-case to average-case reductions based on
Gaussian measures,” in 45th Annual IEEE Symposium on Foundations of Com-
puter Science, Oct. 2004, pp. 372–381.

3. L. G. Bruinderink, A. Hülsing, T. Lange, and Y. Yarom, “Flush, gauss, and reload–
a cache attack on the BLISS lattice-based signature scheme,” in International
Conference on Cryptographic Hardware and Embedded Systems. Springer, 2016,
pp. 323–345.

4. L. Ducas, A. Durmus, T. Lepoint, and V. Lyubashevsky, “Lattice signatures and
bimodal Gaussians,” in Advances in Cryptology–CRYPTO 2013. Springer, 2013,
pp. 40–56.

5. N. Genise and D. Micciancio, “Faster Gaussian sampling for trapdoor lattices with
arbitrary modulus,” Cryptology ePrint Archive, Report 2017/308, 2017, https:
//eprint.iacr.org/2017/308.

6. L. Chen, S. Jordan, Y.-K. Liu, D. Moody, R. Peralta, R. Perlner, and D. Smith-
Tone, Report on post-quantum cryptography. US Department of Commerce, Na-
tional Institute of Standards and Technology, 2016.

7. J. Hoffstein, J. Pipher, W. Whyte, and Z. Zhang, “pqntrusign: update and recent
results,” 2017. [Online]. Available: https://2017.pqcrypto.org/conference/slides/
recent-results/zhang.pdf

8. Z. Zhang, C. Chen, J. Hoffstein, and W. Whyte, “NTRUEncrypt,” Techni-
cal report, National Institute of Standards and Technology, 2017. available at
https://csrc. nist. gov/projects/post-quantum-cryptography/round-1-submissions,
Tech. Rep., 2017.

9. T. H. Le Trieu Phong, Y. Aono, and S. Moriai, “Lotus,” Technical report, Na-
tional Institute of Standards and Technology, 2017. available at https://csrc. nist.
gov/projects/post-quantum-cryptography/round-1-submissions, Tech. Rep., 2017.

10. C. Peikert, “An efficient and parallel Gaussian sampler for lattices,” in Interna-
tional Cryptoology Conference CRYPTO 2010, ser. CRYPTO ’10. Santa Barbara,
CA, USA: Springer Berlin Heidelberg, 2010.

11. S. Sinha Roy, F. Vercauteren, and I. Verbauwhede, “High precision discrete
Gaussian sampling on FPGAs,” in Selected Areas in Cryptography – SAC 2013,
T. Lange, K. Lauter, and P. Lisoněk, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2014, pp. 383–401.

12. D. Micciancio and M. Walter, “Gaussian Sampling over the Integers:
Efficient, Generic, Constant-Time,” Tech. Rep. 259, 2017. [Online]. Available:
https://eprint.iacr.org/2017/259

13. J. Buchmann, D. Cabarcas, F. Göpfert, A. Hülsing, and P. Weiden,
“Discrete Ziggurat: A Time-Memory Trade-Off for Sampling from a Gaussian
Distribution over the Integers,” in Selected Areas in Cryptography – SAC
2013, ser. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2013, pp. 402–417, dOI: 10.1007/978-3-662-43414-7 20. [Online]. Available:
http://link.springer.com/chapter/10.1007/978-3-662-43414-7 20

http://dx.doi.org/10.1561/0400000074
https://eprint.iacr.org/2017/308
https://eprint.iacr.org/2017/308
https://2017.pqcrypto.org/conference/slides/recent-results/zhang.pdf
https://2017.pqcrypto.org/conference/slides/recent-results/zhang.pdf
https://eprint.iacr.org/2017/259
http://link.springer.com/chapter/10.1007/978-3-662-43414-7_20

14. V. Shoup, “Number theory c++ library (ntl) version 10.3.0,” http://www.shoup.
net/ntl, 2003.

15. GNU, “glibc-2.7,” https://www.gnu.org/software/libc/, 2018.
16. G. Marsaglia and W. W. Tsang, “The Ziggurat Method for Generating Random

Variables,” Journal of Statistical Software, vol. 5, no. 1, pp. 1–7, 2000. [Online].
Available: https://www.jstatsoft.org/index.php/jss/article/view/v005i08

17. “libsafecrypto: WP6 of the SAFEcrypto project - a suite of lattice-based
cryptographic schemes,” Jul. 2018, original-date: 2017-10-16T14:56:31Z. [Online].
Available: https://github.com/safecrypto/libsafecrypto

18. T. Pöppelmann, L. Ducas, and T. Güneysu, “Enhanced Lattice-Based Signatures
on Reconfigurable Hardware,” in Cryptographic Hardware and Embedded Systems
CHES 2014, ser. CHES ’14. Busan, South Korea: Springer Berlin Heidelberg,
2014, pp. 353–370.

19. S. S. Roy, O. Reparaz, F. Vercauteren, and I. Verbauwhede, “Compact and side
channel secure discrete gaussian sampling.” IACR Cryptology ePrint Archive, vol.
2014, p. 591, 2014.

20. P. Pessl, “Analyzing the shuffling side-channel countermeasure for lattice-based
signatures,” in International Conference in Cryptology in India. Springer, 2016,
pp. 153–170.

http://www. shoup. net/ntl
http://www. shoup. net/ntl
https://www.gnu.org/software/libc/
https://www.jstatsoft.org/index.php/jss/article/view/v005i08
https://github.com/safecrypto/libsafecrypto

	Addressing Side-Channel Vulnerabilities in the Discrete Ziggurat Sampler
	Introduction
	Related Work
	Our Contribution

	Preliminaries
	Discrete Ziggurat Sampling
	Fixed-Point Ziggurat Method with Time Considerations
	Timing Attack Resilient, Time-Independent Ziggurat Sampling
	Constant-Time Gaussian Evaluation

	Results
	Performance and validation
	Side Channel Security

	Conclusion

