
An Improved Automatic Hardware Trojan
Generation Platform

Shichao Yu
CSIT, ECIT

Queen’s University Belfast
Belfast, United Kingdom

syu08@qub.ac.uk

Weiqiang Liu
College of EIE

Nanjing Uni. Aero. & Astro.
Nanjing, China

liuweiqiang@nuaa.edu.cn

Maire O’Neill
CSIT, ECIT

Queen’s University Belfast
Belfast, United Kingdom
m.oneill@ecit.qub.ac.uk

Abstract—Over the past 10 years, various Hardware Trojan
(HT) detection techniques have been proposed by the research
community. However, the development of HT benchmark suites
for testing and evaluating HT detection techniques lags behind.
The number of HT-infected circuits available in current public
HT benchmarks is somewhat limited and the circuits lack
diversity in structure. Therefore, this paper proposes a new
method to generate HTs using a highly configurable generation
platform based on transition probability. The generation platform
is highly configurable in terms of the HT trigger condition, trigger
type, payload type and in the number and variety of HT-infected
circuits that can be generated. In this research the transition
probability of netlists is employed to identify rarely activated
internal nodes to target for HT insertion rather than functional
simulation as utilised in previous research. The authors believe
transition probability provides a more realistic reflection of the
netlist activity for use in determining the appropriate position
for HT insertion. Finally, the generated HT-infected circuits are
tested by a machine learning (ML)-based HT detection technique,
which is known as Controllability and Observability for HT
Detection (COTD). The resulting false positive and false negative
rates illustrate the feasibility of the benchmark suite.

Index Terms—Hardware Trojans, benchmarks, automatic gen-
eration, highly configurable, transition probability

I. INTRODUCTION

As a result of the globalization of the semiconductor supply
chain, the design and fabrication of Integrated Circuits (ICs)
are now distributed worldwide. It benefits IC companies but
also raises serious concerns about IC trustworthiness triggered
by the use of third-party vendors. For instance, through the use
of third party Intellectual Property (IP), offshore foundries and
third party test facilities, many different untrusted entities may
be involved in the design and assembly phases. Therefore, it is
becoming very difficult to ensure the integrity and authenticity
of devices. A Hardware Trojan (HT) can be inserted into IC
products at any untrusted phase of the IC production chain by
third-party vendors or adversaries with an ulterior motive.

To defeat HTs and prevent HT-infected chips from being
supplied to the market, researchers have proposed various HT
detection techniques over the past decade [1], [2]. Benefiting
from the development of training algorithms and computa-
tional power, very recent research shows a new trend in
adopting machine learning (ML) approaches for HT detection
[3], [4].

In order to evaluate the efficiency of HT detection tech-
niques, HT-infected circuits created from reference circuits
[5] are widely adopted as test samples in experiments by
the research community. However, the use of “home-grown”
HT-infected circuits in some research makes their detection
results difficult to compare with others, which in turn makes
the declared advantages and efficiency unconvincing [6]. Ac-
cordingly, a public HT benchmark suite was proposed in [6]
to provide a fair evaluation platform for different kinds of HT
detection techniques and it has been adopted in much of the
recent research in this field.

However, current public HT benchmarks have limitations
for the development of detection techniques. For example,
the limitation in the amount of HT-infected circuits and the
similarity of circuit structures results in overfitting of detection
results, making it insufficient in supporting ML-based model
training. Meanwhile, as these HT benchmarks are pre-designed
and static after generation, they can not be updated in a
timely manner when new HTs appear. Improving upon these
drawbacks, an automatic HT insertion framework has recently
been proposed in [7], which can insert Hardware Trojans into
gate-level designs based on rarely activated internal nodes
identified from functional simulation.

Functional simulation can provide an estimation of the
switching activity of internal nodes. However, its accuracy
is closely related to the number and quality of test patterns
applied to the design inputs, which means it can take a long
time to prepare and simulate all of the input test patterns to
achieve high accuracy.

Motivated by the limitations mentioned above, in this paper,
we propose an new method to generate HTs using a highly
configurable generation platform based on transition proba-
bility [8] to identify the rarely activated internal nodes to
target for HT insertion, rather than functional simulation as
used in existing platforms. Transition probability can provide
a good estimation of the switching activity for each net in
the gate-level netlist without requiring a large number of test
patterns. And the high flexibility of this platform is provided
through configurations in terms of the HT trigger condition,
trigger type, payload type and in the number of HTs generated.
Furthermore, user-defined Trojans are permitted and the host
circuits for HT insertion can be freely defined by the user.

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 20,2023 at 09:06:18 UTC from IEEE Xplore. Restrictions apply.

��������

	��
���

��������

	��
���
����������

�������

���

	����

�������

�������

	��
���

	������������

������

����

(a)

��

��

��

�������

	��
���

���������	��
���
����

����

��

��

��

����������

�������

(b)

Fig. 1. (a) Combinational Trojan in circuitry; (b) Sequential Trojan

The main contributions of this paper are as follows:

1) A new method to generate HTs using a highly config-
urable generation platform based on transition probabil-
ity is proposed, rather than functional simulation as used
in existing platforms.

2) The structural design of a highly configurable automatic
HT generation platform retains strong extensibility and
supports user-defined HT types.

3) A ML-based detection technique, COTD [3], is applied
to the HT-infected circuits generated by this platform.
The detection results show this platform was able to
generate failing test conditions for COTD with a high
false negative rate (FNR) on nearly all generated HT-
infected circuits.

The remainder of this paper is organized as follows: Section
II discusses the related HT benchmarks work and transition
probability. The architecture of the proposed platform and its
work flow are presented in Section III. Section IV presents the
experimental results and Section V provides some concluding
remarks.

II. RELATED WORK

A. Trojan Structure

Hardware Trojans (HTs) implemented in ICs can alter a
chips’ structure and function in many ways. Typically, based
on the type of physical characteristic, HTs can be classified
into two categories: parametric and functional. This paper
focuses on functional HTs which can be inserted at gate-level.

A functional HT comprises trigger circuitry and payload
circuitry. The trigger part is a sensing circuit that monitors a set
of signals in order to activate the payload after a specific event.
Normally, it is kept in an inactive state. Once triggered, the
payload will execute a malicious attack on the target circuit.

Furthermore, functional HTs can be further catergorised as
either combinational or sequential depending on their trigger
circuit. Combinational Trojans, as shown in Fig. 1(a), depend
on the simultaneous occurrence of a set of rare signal con-
ditions to trigger the payload. While sequential Trojans are
more stealthy, and remain inactive before a series of signal
states have occurred in sequence. As shown in Fig. 1(b), the
Trojan will experience state S0 to Sn before triggering.

B. Trojan Benchmarks

Trojan benchmarks provide a fair test environment to
evaluate different HT detection techniques and allow for a
meaningful comparison between different detection methods.

��

��

��

�

�!

�"

�#

�$

�%

���

���

���

���

��

���

(a)

� ��� ��� ��� ��� ���
�	
�����������������

���

����

���

����

���

����

���

��
���
��
��

��
�
��

��
���

��������	�
�������������������

���
���
���

(b)

Fig. 2. (a) Netlist 1 [8]; (b) Netlist 1 switching probabilities

1) Static Benchmarks: In 2013, a HT benchmark suite
was developed in [9] and published on Trust-Hub [10]. This
benchmark suite currently contains 94 HT-infected benchmark
circuits, which is a great contribution to the standardization of
HT testing. However, it still has some limitations. As a static
set of benchmarks, the Trojan location and trigger conditions
are static, which means detection techniques can be optimized
to target HTs in this benchmark suite rather than generic HTs.
Also, when new types of HT appear, the benchmarks can not
be updated in a timely manner.

2) Dynamic Benchmarks: To address these limitations, a
tool for generating HT circuits was recently proposed in [7].
The most significant feature of their automatic HT insertion
framework is that it can dynamically insert Hardware Trojans
into gate-level designs based on rarely activiated internal nodes
identified from functional simulation.

Functional simulation can provide an estimation of the
switching activity of internal nodes through statistical analysis.
However, the accuracy of functional simulation is closely
related to the number and quality of test patterns applied to the
design inputs, which means simulation can take a lengthy time
to run through a sufficient number of test patterns to achieve
accurate results.

As shown in Fig. 2(a), netlist 1 consists of 7 gates in 3
levels. Under functional simulation, the switching probability
of net i (SPi) can be calculated as in (1), where Nsa,i repre-
sents net i’s switching activity, while Npse is the total number
of possible switching edges. For combinational circuits, the
possible switching edge is the clock edge when the input
pattern changed, while for sequential circuits, the switching
edge can be either a clock’s rising or falling edge based on
the Flip-Flop’s trigger condition.

SPi =
Nsa,i

Npse
(1)

Fig. 2(b) shows the switching probabilities of net N13, N14
and N22 in Netlist 1 obtained from functional simulation. The
simulation results show that when applying 500 random test
patterns to the circuit sequentially the switching probabilities
fluctuate during the simulation. When the number of test
patterns is small, the fluctuation of the switching probabilities
is large and a large number of test patterns is needed to achieve
stable results.

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 20,2023 at 09:06:18 UTC from IEEE Xplore. Restrictions apply.

TABLE I
SWITCHING PROBABILITY OF NETLIST 1

Net Transition
Probability

Functional Simulation (Fig. 2(b))
40 100 200 500

N12 0.1875 0.3250 0.3600 0.3200 0.3600
N13 0.1523 0.3500 0.3400 0.3350 0.3360
N14 0.2460 0.4250 0.4700 0.5000 0.4960
N22 0.2484 0.5750 0.5300 0.5650 0.5160

Time(ms) 67.2 478.9 485.7 495.2 519.6

C. Transition Probability

Transition probability is modeled using geometric distribu-
tion (GD) and is used to estimate the time required to generate
a transition on a net [8]. This method can provide a good
estimation of the switching activity for each net in a gate-level
netlist without requiring lengthy simulation times. Suppose the
probability of activating a “0” or “1” at net i is P0 or P1
respectively, the switching probability from “0” to “1” or “1”
to “0” can be defined as in (2):

Pi = P0i · P1i (2)

According to the GD, suppose that X is defined as the
number of clock cycles needed to produce a transition, then
the probability function of X on net i at the nth clock cycle
(n = 1, 2, 3, 4...) can be defined as in (3):

PTi(X = n) = Pi · (1− Pi)
(n−1) (3)

Then (4) is the expected value of X:

Ei(X) =
∞∑

k=1

Pi · (1− Pi)
k−1 · k

= P−1
i (4)

The expected value E(X) indicates the average number of
required clock cycles to generate a transition on net i, which
means the smaller Pi is, the longer the time it takes to make
a transition. Pi indicates the transition probability.

For example, assuming random inputs (P1 = 0.5, P0 =
0.5) are applied to the input pins of netlist 1 (Fig. 2(a)), the
transition probability of each net can be calculated based on
the logic function of each gate. For N12, according to the
truth table of an AND gate, P1N12 = P1N7 · P1N8 = 1/4 ,
P0N12 = 1−P1N12, so the transition probability of net N12
is P1N12 ·P0N12 = 0.1875 as shown in Table I. This indicates
that an average of 5.3 clock cycles is required to generate a
transition at N12. The calculation steps for the whole netlist
are introduced in Algorithm 1 in pseudocode.

When comparing the transition probabilities with the func-
tional simulation results in Table I, the ordering of the results
from the transition probability is the same as the functional
simulation (i.e. N22 > N14 > N12 > N13) with 500
patterns. However, with 40 and 200 patterns, the switching
probability of N12 is smaller than N13, which indicates that
an inadequate number of test patterns leads to a untrustworthy
results. Hence, the simulation results can not provide a realistic
reflection of net switching activities when testing patterns
are insufficient. Moreover, the software simulation needs to

��������	�
��	�������

�������	�

���
�����������	��
&�'(��������
��)��������*+

��
�������
��������	�
,-�.�������*�+(/�����0�

�������
�	�����	�
�����

�������
���
������	�
,��������+0

��
�������	�
���

���
�	������	�

�	���������	�

���������

,�������������1�

��������
��������1�

����������*� 0

-�+���

2����&�)��������+�

,�������.���0

��

 ������

3��/�*���

2����&�)��������+�

,���������.�
���0

-�+���4��������

���	��
���
������	�
,��������+0

5�������
�3���'�����������2�������������.���

Fig. 3. Flowchart of the proposed automatic HT generation platform

compile and run the test patterns within a testbench each time,
so the functional simulation takes much more time than the
calculation based on transition probability.

With the above drawbacks of functional simulation, this
proposed platform improves upon the previous research by
utilizing transition probability [8] to more accurately estimate
the switching activities for each net, which helps identify the
rarely activated internal nets to target for HT insertion.

III. PROPOSED PLATFORM

The HT generation platform, as detailed in Fig. 3 consists
of 8 components, 7 functional modules and 1 HT library. The
input to this platform is a gate-level design and configuration
parameters. The output is the HT-infected design and a feed-
back report on the HTs generated. The architecture is built in
a modular manner to easily allow for extension and update.

A. Configurable Features

As the platform can generate various HTs and insert single
or multiple HTs into a given netlist, configurable parameters
are proposed within a configuration dictionary for use with
the platform to control the types of HTs and their embedding
methods. Overall, they can be divided into two. One set
provides global control for the whole generation, while the
other provides the local control for the generation of indidviual
HTs. Table II provides an overview of all the configurable
parameters and their description. Specifically, any parameter
that can be set to “None” means it can be automatically
configured and “Random” means the value can be randomly
selected by the platform. In addition, the “user def” parameter
allows the platform to insert in a user-defined HT design.

B. Trigger Net Allocation

Generally speaking, HTs are stealthy in nature [6]. If
designed to activate rarely this can help to evade detection.
Therefore, it is preferable to connect the Trojan trigger to nets
with low activity to create a rare trigger condition to reduce
detectability.

Algorithm 1 shows how we allocate the low activity trigger
nets and normal trigger nets for HT insertion. There are 3

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 20,2023 at 09:06:18 UTC from IEEE Xplore. Restrictions apply.

TABLE II
HT CONFIGURATION DICTIONARY

Parameter Type Parameters Value Description

Global Parameter
no low trig Number Total number of low activity triggers
no normal trig Number Total number of normal activity triggers
no trojan Number Total number of generated HTs

Local Parameter Trojan 1

no trig Number/None Total number of triggers for Trojan 1
no low trig Number/None Number of low activity triggers for Trojan 1
no normal trig Number/None Number of normal activity triggers for Trojan 1
trig type Type name/Random Type of trigger for Trojan 1
pay type Type name/Random Type of the payload for Trojan 1
no pay Number/None Number of payload pins for Trojan 1
user def True/False Read in a user-defined Trojan 1

Trojan

Algorithm 1 Trigger Net Allocation Algorithm
Input:

Gate-level design file, design.v;
Logic function library of gates, lib.v;
Transition probability threshold for classification, θth;
no low trig and no normal trig in Table II;

Output:
List of low activity trigger nets and normal trigger nets,
listlow trig and listnormal trig;

1: {Transition Probability Calculation Module:}
2: netlist info ← NetlistParser(design.v);
3: for each net in netlist info do
4: if net in nets info.DesignInput then
5: net.prob0 ← 0.5
6: net.prob1 ← 0.5
7: end if
8: end for
9: for each gate in netlist info do

10: prenets ← gate.innets
11: for each net in gate.outnets do
12: (net.prob0, net.prob1) ← PC(prenets, gate, lib.v)
13: {PC is probability calculation function};
14: (net.tranprob) ← net.prob0 × net.prob1
15: end for
16: end for
17: {Nets Classification Module:}
18: for each net in netlist info do
19: if net.tranprob < θth then
20: LowGroup ← LowGroup ∪ net
21: else
22: NormGroup ← NormGroup ∪ net
23: end if
24: end for
25: {Trigger Nets Selection Module:}
26: listlow trig ← RSel(no low trig, LowGroup)
27: listnormal trig ← RSel(no normal trig,NormGroup)
28: return listlow trig , listnormal trig;

functional modules involved in this procedure which are Tran-
sition Probability Calculation, Net Classification and Trigger
Net Selection. First, as the transitions in a netlist are generally
induced by transitions in scan cells and primary inputs [11],
the P0 and P1 of each scan flip-flop and primary input are

TABLE III
CIRCUIT TYPES IN TROJAN LIBRARY

HT Part Type Name Description

Trigger

comb Combinational Trigger composed of
AND gates

seque CNT Counter based sequential trigger

seque FSM Finite-state machine based
sequential trigger

user def trig User-defined trigger circuits

Payload

func XOR gate based
functional error payload

leak LFSR Linear feedback shift register based
information leakage payload

leak SHIFT Shift register based
information leakage payload

user def pay User-defined payload circuits

set to 0.5 respectively. Next the switching probability of each
net is calculated respectively based on the input probabilities
and the logic function of the component. As a trade-off be-
tween memory space consumption and precision, reconvergent
fanouts are not considered to simplify the calculation. Then,
the Net Classification module classifies all of the nets into
a low activity list or a normal list based on the transition
probability threshold, θth, as defined by the user.

Lastly, the Trigger Net Selection module will randomly
select nets from these two lists based on the number of low
activity triggers and normal triggers defined in the parameters.
Normal trigger pins are used to obfuscate the trigger condition
against smart adversaries as mentioned in [7].

C. Built-in Trojan Types

In order to generate a wide variety of HTs, a extensible
Trojan library which contains different types of basic Trojan
circuits has been defined in this platform. The Trojan library
is composed of trigger circuits and payload circuits. In order
to improve the flexibility of the HTs generated, the Trojan
library can be extended by adding user-defined trigger and
payload circuits. Table III lists the circuit types defined in the
Trojan library. As the structures of the “comb” trigger and
“func” payload are simple, Fig. 4 shows the structure of the
four other types of Trojan circuits given in Table III.

Based on the trigger and payload type defined in the con-
figuration dictionary, different kinds of HTs can be generated.
For example Fig. 4(e) is a FSM-based sequential trigger with
a shift register (SHIFT) based information leakage payload.

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 20,2023 at 09:06:18 UTC from IEEE Xplore. Restrictions apply.

�����������

��.��4���

	�������������

&���

	������
���

(a)

���

�6

�����������

	�������������

&���

��.��4+����+

77 77

(b)

&7�/

*����������

�6

������

(c)

������ *����������

� � � � � � �
+8�.� ��

+8�.�4����+���

(d)

������
*����������

� � � � �

+8�.�4��

+8�.�4�����*������

�6

7�9������

���

�����������

7
7

������

	��
���

7
7

���

(e)

Fig. 4. (a) Seque CNT; (b) Seque FSM; (c) Leak LFSR; (d) Leak SHIFT;
(e) FSM based sequential Trojan with a SHIFT based leakage payload

The FSM-based trigger is activated only when a series of
sequential signals have been followed in a particular order.
The shift register is pre-loaded with an alternating sequence
of zeros and ones. The payload is only activated when both
the trigger output and payload net is high. The shifting action
can result in additional dynamic power consumption to leak
internal signal state [6]. If another trigger or another payload
type is selected, the structure could also follow one of the
designs in Fig. 4(a)(b)(c)(d) or user-defined ones.

D. Payload Net selection

Payload nets refer to the attacked nets that are leaked by
an information leakage payload or affected by a functional
error payload. Users can manually specify the payload nets
or enable random selection. In order to guarantee an effect on
payload nets, the random payload net selection follows several
rules in the proposed platform.

• The trigger nets are not allowed to be payload again.
• The topological order of each payload net should be

larger than all trigger nets to avoid logical loops [7].
• Nets related to scan-chain and clock signals are avoided

in the payload net selection process because of their
higher risk of detection.

E. Trigger Condition Check

Before the HT insertion and net connection step, the Trigger
Condition Check module ensures that the HTs can be correctly
triggered under rare conditions. As all of the input pins of the
trigger circuits in the Trojan library have been designed to be
activated at a high level to simplify the coding of the Trojan
generation process, this module checks the signal probability
of each selected trigger net and adds an inverter to the trigger
pin when needed.

IV. EXPERIMENTAL EVALUATION

A. Experimental Setup

The proposed platform was implemented in Python using
open source tools [12]. The calculation of the transition
probability is based on the TPC script provided by Trust-
Hub [10]. This platform supports reading in RTL or gate-level

designs in Verilog and all of the design files are compiled into
ungrouped gate-level netlists using the Synopsys SAED90nm
standard cell library.

The platform has been tested to generate HT-infected cir-
cuits from ISCAS benchmark circuits [13] and opensource
cores (UART [14] and AES-128 [15]). In order to evaluate the
generated HT-infected circuits, and to allow for a comparison
with the evaluation results in [7], the machine learning based
HT detection technique, COTD, adopted in [7], is then applied
to the generated HT-infected circuits. It utilizes unsupervised
k-means clustering to analyze the combinational controllability
(CC) and observability (CO) of the gate-level netlists and
isolates Trojan signals from normal ones [3]. We utilized
TetraMAX to extract the controllability and observability of
the netlists and used MATLAB to do the k-means clustering
in the COTD approach. The clustering iteration number is set
to 5 to get a stable classification result. The trigger condition
of all the benchmark circuits is set to 5 low activity nets,
and 1 normal net. The resulting false positive (FP) and false
negative (FN) rates are obtained and illustrate the feasibility
of the benchmark circuits generated.

B. Experimental Results

Table IV present the results of applying COTD to the
HT-infected circuits generated by our platform. We inserted
HTs into both scan-enabled and non-scan implementations
of benchmark circuits(s13207 and s15850). For each imple-
mentation, 4 types of HT-infected circuit are generated and
tested (Column 3 and 4). The transition probability thresh-
olds are listed in column 2. Column 5 lists the number of
normal signals in each netlist while column 6 lists Trojan
ones. FN in column 7 is the number of Trojan signals
detected as normal ones (FNR=FN/No.HT signals), while
FP in column 8 means normal signals detected as Trojan
ones (FPR=FP/No.Normal signals). Column 9, 10 and 11
present the number of normal signals and HT signals inside
each cluster. The signals in the Normal Cluster generally have
low CO and CC values, while signals in HT Cluster 1 and HT
Cluster 2 have either high CO values or high CC values.

From Table IV we observed that the detection efficiency on
non-scan implementations are lower than scan-enabled ones
according to both the high FNR and high FPR. In most
cases, the Trojan circuits with a combinational trigger and
functional error payload result in the highest FPR. Trojans
with an information leakage payload result a high FNR in
both scan-inserted and non-scan implementations. Compared
with HTs with a sequential trigger, HTs with a combinational
trigger are easier to detect according to the low FNR.

When compared with the COTD detection results of the HT-
infected s13207 and s15850 benchmarks from [7] (see Table
V), the false negative rates (FNRs) are all zero, which means
all Trojan signals are detected, while in our equivalent bench-
mark circuits (s13207 scan, s15850 scan) the FNRs are non-
zero values, which means some Trojan signals are classified as
normal ones so the samples generated by our platform gives
more misclassification errors using COTD detection.

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 20,2023 at 09:06:18 UTC from IEEE Xplore. Restrictions apply.

TABLE IV
EXPERIMENTAL RESULTS OF COTD-BASED HT DETECTION ON GENERATED HT-INFECTED BENCHMARKS

Benchmark θth
Trigger

Type
Payload

Type

No.
Normal
Signals

No.
HT

Signals

FN
FNR(%)

FP
FPR(%)

Normal
Cluster

(Norm/HT)

HT
Cluster 1

(Norm/HT)

HT
Cluster 2

(Norm/HT)

s13207

0.1 comb func 6622 22 1(4.5) 5210(78) 1412/1 4900/21 310/0
0.1 comb leak LFSR 6622 175 95(54) 1936(29) 4686/95 1626/46 310/34
0.1 seque CNT func 6622 54 50(92) 1936(29) 4686/50 1626/4 310/0
0.1 seque fsm leak SHIFT 6622 210 48(23) 4996(75) 1626/48 4686/154 310/9

s13207 scan

0.1 comb func 7946 26 6(23) 31(0.39) 7915/6 11/10 20/10
0.1 comb leak LFSR 7946 173 61(35) 20(0.25) 7926/61 20/33 0/79
0.1 seque CNT func 7946 52 10(19) 33(0.41) 7913/10 12/41 21/1
0.1 seque fsm leak SHIFT 7946 209 36(17) 31(0.39) 7915/36 20/130 11/43

s15850

0.1 comb func 7310 22 18(82) 2328(32) 4982/18 2094/4 234/0
0.1 comb leak LFSR 7310 173 148(86) 2320(31) 4990/148 234/2 2086/23
0.1 seque CNT func 7310 56 47(84) 2293(31) 5017/47 285/0 2008/9
0.1 seque fsm leak SHIFT 7310 180 178(99) 2328(32) 4982/178 234/0 2094/2

s15850 scan

0.1 comb func 8207 24 6(25) 1015(12) 7192/6 1007/18 8/0
0.1 comb leak LFSR 8207 175 70(40) 8(0.10) 8199/70 8/32 0/73
0.1 seque CNT func 8207 58 10(17) 9(0.11) 8198/10 1/20 8/28
0.1 seque fsm leak SHIFT 8207 178 34(19) 8(0.10) 8199/34 0/50 8/94

uart

0.15 comb func 840 22 0(0) 768(91) 72/0 66/4 702/18
0.15 comb leak LFSR 840 175 44(25) 768(91) 72/44 75/89 693/42
0.15 seque CNT func 840 56 4(7) 768(91) 72/4 66/0 702/52
0.15 seque fsm leak SHIFT 840 178 49(28) 768(91) 72/49 66/46 702/83

aes-128

0.15 comb func 636704 26 1(4) 598750(94) 37954/1 414544/19 184206/6
0.15 comb leak LFSR 636704 177 108(61) 598722(94) 37982/108 414516/26 184206/43
0.15 seque CNT func 636704 58 43(74) 598750(94) 37954/43 414543/4 184207/11
0.15 seque fsm leak SHIFT 636704 176 157(89) 596619(94) 40085/157 414544/7 184075/12

TABLE V
COTD-BASED HT DETECTION RESULTS FROM [7]

Benchmarks Trigger Conditon
(Rare/Total) Type FPR(%) FNR(%)

s13207-c5 6 5/6 comb 25 0
s13207-s5 6 5/6 seq 0.11 0
s15850-c5 6 5/6 comb 27 0
s15850-s5 6 5/6 seq 0.09 0

Overall, the detection results show this platform was able
to generate failing test conditions for COTD detection with a
high FNR on nearly all generated HT-infected circuits.

V. CONCLUSION

In this paper, we propose an new method to generate HTs
using a highly configurable generation platform based on
transition probability to identify the rarely activated internal
nodes to target for HT insertion, rather than functional simu-
lation as used in existing platforms. The platform is highly
configurable and can be easily updated and support user-
defined HT circuits. The platform has been tested to generate
HT-infected circuits from ISCAS benchmark circuits [13] and
evaluated by the COTD detection technique.

In future, we will extend the built-in Trojan library and
update the platform to support new HT insertion methodolo-
gies. The HT-infected benchmarks generated by this platform
will be made publicly available to the research community for
research and evaluation.

REFERENCES

[1] C. Bao, D. Forte, and A. Srivastava, “On reverse engineering-based
hardware trojan detection,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 35, no. 1, pp. 49–57, Jan 2016.

[2] Y. Huang, S. Bhunia, and P. Mishra, “Scalable test generation for
trojan detection using side channel analysis,” IEEE Trans. Inf. Forensics
Security, vol. 13, no. 11, pp. 2746–2760, Nov 2018.

[3] H. Salmani, “Cotd: Reference-free hardware trojan detection and recov-
ery based on controllability and observability in gate-level netlist,” IEEE
Trans. Inf. Forensics Security, vol. 12, no. 2, pp. 338–350, Feb 2017.

[4] K. Hasegawa, M. Yanagisawa, and N. Togawa, “Hardware trojans
classification for gate-level netlists using multi-layer neural networks,” in
Proc. IEEE 23rd Int. Symp. On-Line Testing and Robust System Design,
July 2017, pp. 227–232.

[5] F. Brglez, D. Bryan, and K. Kozminski, “Combinational profiles of
sequential benchmark circuits,” in Proc. IEEE Int. Symp. on Circuits
and Systems, May 1989, pp. 1929–1934 vol.3.

[6] B. Shakya, T. He, H. Salmani, D. Forte, S. Bhunia, and M. Tehranipoor,
“Benchmarking of hardware trojans and maliciously affected circuits,”
Journal of Hardware and Systems Security, vol. 1, no. 1, pp. 85–102,
Mar 2017.

[7] J. Cruz, Y. Huang, P. Mishra, and S. Bhunia, “An automated configurable
trojan insertion framework for dynamic trust benchmarks,” in Proc.
Design, Automation Test in Europe Conf. Exhibition, March 2018, pp.
1598–1603.

[8] H. Salmani, M. Tehranipoor, and J. Plusquellic, “A novel technique
for improving hardware trojan detection and reducing trojan activation
time,” IEEE Trans. Very Large Scale Integr. Syst., vol. 20, no. 1, pp.
112–125, Jan 2012.

[9] H. Salmani, M. Tehranipoor, and R. Karri, “On design vulnerability
analysis and trust benchmarks development,” in Proc. IEEE 31st Int.
Conf. Computer Design, Oct 2013, pp. 471–474.

[10] H. Salmani and M. Tehranipoor, “Trust-Hub,” accessed on 2018-08-02.
[Online]. Available: https://www.trust-hub.org/home

[11] R. Sankaralingam, R. R. Oruganti, and N. A. Touba, “Static compaction
techniques to control scan vector power dissipation,” in Proc. 18th IEEE
VLSI Test Symp., April 2000, pp. 35–40.

[12] S. Takamaeda-Yamazaki, “Pyverilog: A python-based hardware design
processing toolkit for verilog hdl,” in Proc. Int. Symp. Applied Recon-
figurable Computing, 2015, pp. 451–460.

[13] M. Jenihhin, “Iscas89 verilog benchmark,” accessed on 2018-06-15.
[Online]. Available: http://www.pld.ttu.ee/˜maksim/benchmarks/iscas89

[14] Jamieiles, “Verilog uart,” accessed on 2019-02-05. [Online]. Available:
https://github.com/jamieiles/uart

[15] H. Hsing, “Tiny aes,” accessed on 2019-02-05. [Online]. Available:
https://opencores.org/projects/tiny aes

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 20,2023 at 09:06:18 UTC from IEEE Xplore. Restrictions apply.

