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Abstract—In this paper, we investigate the effectiveness of
four different modeling attack algorithms, including Logistic
Regression (LR), Naı̈ve Bayes, AdaBoost and Covariance Matrix
Adaptation Evolutionary Strategies (CMA-ES), on attacking
arbiter physical unclonable functions (APUFs). A comparison
of experimental results using theses algorithms is presented. The
results show that the performance of the algorithms is related to
the number of training data, the noise level involved in the APUF
design and the number of stages in the generation of each bit
response. It is found that the mainstream LR and CMA-ES are
worse for a small number of data compared with Naı̈ve Bayes
and AdaBoost.

Index Terms—Physical Unclonable Functions, Machine Learn-
ing, Modeling Attacks

I. INTRODUCTION

Physical unclonable function (PUF) is a promising
lightweight security primitive for applications of the internet of
things (IoT), which extracts random differences in integrated
circuits (ICs) and produces a unique response. To a certain
extent, PUF combines the features of biometric-based identity
authentication and hardware-based identity authentication. As
a new security hardware primitive, PUF is characterized by un-
predictability, low cost, and unclonable capability. Currently,
PUF has developed several architectures. Depending on the
number of challenge response pairs (CRPs), PUFs can be di-
vided into strong PUFs and weak PUFs, which can be applied
to low-cost authentication [1] and security key generation [2],
respectively. The security of PUF has been one of the main
focuses of PUF research. The larger the number of CRPs, the
easier the attacker to break a strong PUF. Additionally, most
strong PUFs are based on a linear function architecture, which
means that it is possible to be attacked with a large number of
CRPs. APUF [3] is one of the most widely studied PUF de-
signs. APUF can be successfully attacked by several machine
learning algorithms, such as Logistic Regression (LR) and
Covariance Matrix Adaptation Evolutionary Strategies (CMA-
ES) [4]. With the development of machine learning based
techniques, it is interesting to investigate the vulnerability of
the PUF designs using advanced machine learning techniques.
In this paper, a variety of classical modeling attack algorithms
including LR, Naı̈ve Bayes, AdaBoost and CMA-ES is used.
Naı̈ve Bayes is a simpler algorithm which is less sensitive
to missing data. AdaBoost can combine weak classifiers into
strong classifiers ,which has higher prediction rates than single
weak classifiers. We perform attacks on APUF with the four

algorithms in a variety of cases and found that although
the overall performance of CMA-ES and LR are generally
excellent, for the case of a small data set, the prediction rate
of LR as well as CMA-ES is not as good as Naı̈ve Bayes
and AdaBoost. The experiments show that Naı̈ve Bayes and
AdaBoost are more effective for small data sets.

The rest of the paper is organized as follows. Section II
introduces the classical algorithms in this work. In Section III,
the model of a 1-bit APUF design and the result of average
prediction rate for APUF using several algorithms under
different environment are presented. Finally, a conclusion is
draw in Section IV.

II. CLASSICAL MODELING ATTACK ALGORITHMS

A. Logistic Regression (LR)

LR is a common machine learning method for PUF attacks
[5]. It is a linear classification model based on the maximum
likelihood. For a traditional APUF with n stages, challenge
C = c1c2. . . cn corresponds to response R ∈ {0, 1}. The
final decision boundary is decided by the sigmoid function
as follows:

hθ(x) = σ(x) = (1 + e−x)−1 (1)

where θ indicates weight of the sample.
For a given training set T of an APUF, one of the samples

can be represented as (xi, yi). The probability of each sample
(xi, yi) is represented as follows:

P (yi|xi) =∏
(P (yi = 1|xi)y

(i)
i (1− P (yi = 1|xi)1−y

(i)
i )

(2)

When the tag value is “1”, the expression represents the
probability that P (y = 1, xi); on the other hand, the formula
expresses the probability of P (y = 0, xi) when the tag value
is “0”.

The logarithmic likelihood function can be expressed as

l(θ) =
m∑
i=1

m∑
i=1

yiloghθ(x
(i)) + (1−y(i))log(1− hθ(x(i)))

(3)

As the equation is difficult to solve directly, it is usually
solved by iterative gradient descent method

θ(x) := θ − α∇θ(θ) (4)
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where α is called learning rate (step size), which determines
the rate of gradient descent.

In general, LR is a probabilistic linear regression model.
The dependent variable can be two-class or multi-classified.

B. Naı̈ve Bayes

Naı̈ve Bayes method is a classification method based on
Bayesian theorem and feature condition independent hypoth-
esis. The Naı̈ve Bayes Classifier (NBC) originates from clas-
sical mathematical theory, which has a stable classification
efficiency [7].

The relationship between prior probability and posterior
probability can be expressed as:

P (y|x1, . . . , xn) =
P (y)P (x1, . . . , xn|y)

P (x1, . . . , xn)
(5)

where x indicates the feature while y indicates the label. P (y)
represents the prior probability that can be obtained from the
frequency of labels in the training set. The probability can
be obtained according to the frequency of the response in the
PUF training set.

Conditional independence hypothesis means independence
between every pair of features.

P (y|x1, . . . , xn) =
P (y)

∏n
i=1 P (xi|y)

P (x1, . . . , xn)
(6)

Naı̈ve Bayes is one of the classic machine learning algo-
rithms based on probability theory.

C. AdaBoost

AdaBoost [8] is an iterative algorithm and its core idea
is to train different classifiers (weak classifiers) for the same
training set and then group these weak classifiers to form a
stronger final classifier (strong classifier). The block diagram
of AdaBoost is shown in Fig. 1.

Fig. 1. AdaBoost algorithm structure.

Initially, the weight distribution of the training data is
initialized according to number N, and each training sample is
initially given the same weight. In this way, the initial weight
distribution is as follows

D1(i) = (ω1, ω2, . . . , ωN ) = (
1

N
, . . . ,

1

N
) (7)

Select a weak classifier h with the lowest error rate as the
number t basic classifier, and calculate the error of the weak
classifier on the distribution. The error rate is as follows:

et = P (Ht(xi) 6= yi) =
n∑
i=1

ωtiI(Ht)(xi) 6= yi) (8)

Calculate the weight of the classifier in the final classifier
(weak classifier weight is denoted by α)

αt =
1

2
ln(

1− et
et

) (9)

Finally, combine the weak classifiers by weak classifier
weights. Through the role of the sign function, the strong
classifier can be expressed as follows

H = sign(
T∑
y=1

αtHt(x)) (10)

The AdaBoost algorithm is a modified boosting algorithm,
which can adaptively adjust the errors of weak classifiers.

D. CMA-ES

CMS-ES is one of the most famous ESs, with good results
on medium-sized complex optimization problems [9]. CMA-
ES does not use gradient information and performs well on
complex optimization problems, while gradientless algorithms
in local search are usually slower than gradient algorithms. The
core idea of CMA-ES is to handle the dependencies between
variables by adjusting the covariance matrix in the normal
distribution.

III. MOLDELING ATTACKS ON APUF

A. Model of a 1-bit APUF Design

Fig. 2. The structure of APUF [2].

The architecture of a 1-bit APUF is shown in Fig. 2.
For an n-bit APUF, an additive linear delay model can be
described as [6]. The 1-bit response R, is decided by the final
delay difference between the two delay paths, which can be
expressed as

∆ = ~ωT ~ϕ (11)

where the dimension of ~ω and ~ϕ is n + 1. The parameter
~ω represents the delay for the subcomponents in the APUF
stages as shown in (12), while the feature vectors ~ϕ as shown
in (13) shows the multiply results related to challenge C.
δ
0/1
i represents the delay in the stage i which includes a

crossed path or an uncrossed path.

~ω = (ω1, ω2, . . . , ωk, . . . , ωn+1)T (12)
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where ω1 =
δ01−δ

1
i

2 , ωi =
δ0i−1+δ

1
i−1+δ

0
i−δ

1
i

2 for all i = 2, . . . , n

and ωn+1 =
δ01+δ

1
i

2

~ϕ(~C) = (~ϕ1(~C), . . . , ~ϕk(~C), 1)T (13)

where ~ϕl(~C) =
∏n
i=1(1− 2bi) for l = 1, . . . , n.

According to the difference ∆, we can express output r of
the A PUF by the sign function as:

r = θ(∆) = θ(~ωT ~ϕ) (14)

where θ(x) is called Heaviside step function and decide the
final output, i.e. θ(x) = 0 if x < 0 and θ(x) =
1 if x ≥ 1.

B. Moldeling Attacks on APUF

The LR and CMA-ES attack results on APUF are shown
in [4]. In addition, Naı̈ve Bayes and AdaBoost are presented
in this paper. In this experiment, we use Python (version 3.6)
simulation to implement APUF sample generation and various
machine learning methods. In order to obtain accurate results,
the experimental results in this work take the average of 100
repeated samples.

Fig. 3. The average prediction rates for 64-stage APUF.

The results of the above modeling attack algorithms for
APUF are shown in Fig. 3. To predict the APUF design
using different modeling attack algorithms, a group of tests
on different numbers of training samples is performed. To
examine the performance of the four algorithms when the
number of CRPs is small, the prediction rates is token for
64-stage APUF with the numbers of training sample sets of
100, 200, 300 ,400, 500 and 1000, respectively. The number
of test samples is set as the same as the training samples.

For the case of a 64-stage APUF, a small number of data
( CRPs < 400 ) is tested, and the average prediction rate
of Naı̈ve Bayes is 84.30% and AdaBoost is 83.10%, which are
higher compared with LR (79.05%) and CMA-ES (74.8%).

Comparing theses different methods, it can be seen that
LR and CMA-ES are suitable for large data sets, especaially
CMA-ES has the best performance under large data sets.

However, Naı̈ve Bayes and AdaBoost can be applied to smaller
data sets. And Naı̈ve Bayes has the best performance for
small number of data. Suppose the attacker conducts a model
attack on the PUF with limited number of CRPs. For example,
only CPRs with less than 300 can be obtained. In this case,
using Naı̈ve Bayes is a better choise compared with the other
algorithms.

At the same time, we compare the training time of different
modeling attack algorithms, as shown in Table 1. Note that
Naive Bayes, Adaboost and LR are run on PyCharm(Version
3.6) using Python. While, CMA-ES is run on Matlab (Version
2016a). The comparison can only provide a preliminary insight
on the speed performance of the four algorithms. From Table
1, we can see that the training time of Naı̈ve Bayes is the
shortest, especially when CRPs=100, the training time is only
0.0007s. Meanwhile, the training time of LR is also very
short, about several times that of Naive Bayes. AdaBoost has
a longer training time, but can still be completed in 1s when
CRPs=10000. For CMA-ES, the training time at CRPs=100
exceeds the training time of other methods at CRPs=10000,
reaching 16.36s. It is slower when CRPs=10000, and the
training time is 1272s. Therefore, Naı̈ve Bayes has a much
faster speed than CMA-ES. In the case of limited time, Naı̈ve
Bayes can be very efficient.

TABLE I
TRAINING TIME OF MODELING ATTACKS

Training Time(s)
CRPs Naı̈ve Bayes Adaboost LR CMA-ES
100 0.0007 0.0753 0.0017 16.36
500 0.0011 0.1167 0.0024 76.19
2000 0.0025 0.1942 0.0082 256.15

10000 0.0163 0.6913 0.0698 1272

In the Fig. 4, various noises are added to the original
data in order to simulate the practical APUF under different
noise conditions. Gaussian noises with variances of σ = 0,
σ = 0.25, σ = 0.5 and σ = 1 are utilized. The experimental
results show that the average prediction rate of the four attack
methods has decreased compared with the noise-free case. As
the AdaBoost algorithm is more sensitive to the noise, the
prediction rate under the impact of noise is studied in detail.
The prediction rate when σ = 1 and CRPs=100 is reduced by
nearly 20% compared with that when σ = 0. When the CRPs
is greater than 10,000, the prediction rate tends to be stable.
The prediction rate when σ = 0.25 and σ = 0.5 is reduced by
2% and 4%, respectively, compared with the noise-free case.
It can be seen that the larger the noise, the lower the average
prediction rate.

An investigation of the effect of different stages of the
APUF using Naı̈ve Bayes and Adaboost is described in Figs.
5-6. The results of the prediction rates useing Naı̈ve Bayes
and AdaBoost, are shown with different numbers of CRPs.
As the number of stages increases, the prediction rates of the
three methods reduce. The prediction rate of APUF with the
number of 256 stages is 2% lower than that of 64 stages when
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Fig. 4. The average prediction rates for AdaBoost under different noise.

the number of training data is 20,000. The increment of the
number of stages has made the attacks more difficult, and the
prediction rate has relatively declined. It can be seen that when
increasing the number of stages of APUF design, the security
of the APUF can be improved.

Fig. 5. The average prediction rates for NB with different stages.

IV. CONCLUSION

LR and CMA-ES are methods known to be effective in
estimating APUF in modeling attacking algorithms. In this
paper, we use the machine learning algorithms, including
Naı̈ve Bayes and AdaBoost to attack APUF and compare the
results with LR and CMA-ES. The average prediction rates
of various algorithms under different numbers of CRPs are
compared. Moreover, the average prediction rate of the Ad-
aBoost algorithm under different noise conditions is presented.
The higher the noise level, the more difficult the APUF to be
attacked. The effects of the number of stages on the prediction
rates of three algorithms are also demonstrated. The CMA-
ES outperforms other methods in general and next is LR.
However, when the number of CRPs is small, it is not as

Fig. 6. The average prediction rates for AdaBoost with different stages.

good as other methods. In addition, for the 64-stage APUF, the
average prediction rate of Naı̈ve Bayes and AdaBoost reached
84.3% and 83.1%, respectively, while the prediction rate of LR
and CMA-ES were 79.05% and 74.8%. When the number of
training data becomes larger, the prediction rate of CMA-ES
is higher than Naı̈ve Bayes and AdaBoost. For the AdaBoost
algorithm, it performs well on data sets of various sizes. Naı̈ve
Bayes and AdaBoost achieves higher prediction rates than LR
and CMA-ES for a small number of training data.
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