
CHERI Concentrate:
Practical Compressed Capabilities

JonathanWoodruff , Alexandre Joannou,Member, IEEE, Hongyan Xia , Anthony Fox, Robert M. Norton ,

David Chisnall, Brooks Davis, Khilan Gudka, Nathaniel W. Filardo, A. Theodore Markettos, Michael Roe,

Peter G. Neumann, Fellow, IEEE, Robert N. M. Watson, and SimonW. Moore , Senior Member, IEEE

Abstract—We present CHERI Concentrate, a new fat-pointer compression scheme applied to CHERI, the most developed capability-

pointer system at present. Capability fat pointers are a primary candidate to enforce fine-grained and non-bypassable security

properties in future computer systems, although increased pointer size can severely affect performance. Thus, several proposals for

capability compression have been suggested elsewhere that do not support legacy instruction sets, ignore features critical to the

existing software base, and also introduce design inefficiencies to RISC-style processor pipelines. CHERI Concentrate improves on the

state-of-the-art region-encoding efficiency, solves important pipeline problems, and eases semantic restrictions of compressed

encoding, allowing it to protect a full legacy software stack. We present the first quantitative analysis of compiled capability code, which

we use to guide the design of the encoding format. We analyze and extend logic from the open-source CHERI prototype processor

design on FPGA to demonstrate encoding efficiency, minimize delay of pointer arithmetic, and eliminate additional load-to-use delay.

To verify correctness of our proposed high-performance logic, we present a HOL4 machine-checked proof of the decode and pointer-

modify operations. Finally, we measure a 50 to 75 percent reduction in L2 misses for many compiled C-language benchmarks running

under a commodity operating system using compressed 128-bit and 64-bit formats, demonstrating both compatibility with and

increased performance over the uncompressed, 256-bit format.

Index Terms—Capabilities, fat pointers, compression, memory safety, computer architecture

Ç

1 INTRODUCTION

INTEL Memory Protection Extensions (MPX) and Software
Guard Extensions (SGX), as well as Oracle Silicon Secured

Memory (SSM), signal an unprecedented industrial willing-
ness to implement hardware mechanisms for memory safety
and security. As industry looks to the next generation, capa-
bility pointers have become a primary candidate to conclu-
sively solve memory safety problems. Capability pointers are
stronger than fault detection schemes such as MPX and SSM,
and are able to achieve provable containment at the granular-
ity of program-defined objects that is as strong as address-
space separation.

The greatest cost for capability pointers involves the
object bounds encoded with each pointer to enforce mem-
ory safety. Encoding both upper and lower bounds as well

as a pointer address requires either larger capabilities [1] or
restrictions on region properties, semantics, and address
space [2], [3].

This paper presents CHERI Concentrate (CC), a compres-
sion scheme applied to CHERI, the most developed capabil-
ity-pointer system at present. CC achieves the best published
region encoding efficiency, solves important pipeline prob-
lems caused by a decompressed register file, and eases
semantic restrictions due to the compressed encoding. The
contributions of this paper are:

� A floating-point bounds encoding with an Internal
Exponent that provides maximum precision for small
objects, spending bits to encode an exponent only for
larger and less common objects.

� The first quantitative characterization of capability
operations in compiled programs to inform capabil-
ity instruction optimization.

� A power-of-two Representable Region beyond object
bounds to allow temporarily out-of-bounds pointers,
enabling compatibility with a broad legacy code base.

� A Representability Check for pointer arithmetic with
delay comparable to a pointer add, enabling integra-
tion with standard processor designs.

CC improves efficiency over Low-Fat Pointers, the previ-
ous best capability bounds format, by inferring the most sig-
nificant bit of the Top field and by encoding the exponent
within the bounds. CC also improves both semantics and
timing by allowiny out-of-bounds pointer manipulations,

� J.Woodruff, A. Joannou,H.Xia, A. Fox, R.M.Norton,D. Chisnall, K. Gudka,
N.W. Filardo, T. Markettos, M. Roe, R.N.M. Watson, and S.W. Moore are
with the Department of Computer Science and Technology, University of
Cambridge, Cambridge CB2 1TN, England. E-mail: {jonathan.woodruff,
alexandre.joannou, Hongyan.Xia, Anthony.Fox, robert.norton, david.
chisnall, Khilan.Gudka, Nathaniel.Filardo, Theodore.Markettos, Michael.Roe,
robert.watson, simon.moore}@cl.cam.ac.uk.

� B. Davis and P.G. Neumann are with SRI International, Menlo Park, CA
94025-3493. E-mail: {brooks, neumann}@csl.sri.com.

Manuscript received 18 June 2018; revised 9 Jan. 2019; accepted 13 Mar.
2019. Date of publication 29 Apr. 2019; date of current version 16 Sept. 2019.
(Corresponding author: Jonathan Woodruff.)
Recommended for acceptance by S. Ha.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2019.2914037

IEEE TRANSACTIONS ON COMPUTERS, VOL. 68, NO. 10, OCTOBER 2019 1455

0018-9340� 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 26,2023 at 10:02:35 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-3971-2681
https://orcid.org/0000-0003-3971-2681
https://orcid.org/0000-0003-3971-2681
https://orcid.org/0000-0003-3971-2681
https://orcid.org/0000-0003-3971-2681
https://orcid.org/0000-0002-8047-899X
https://orcid.org/0000-0002-8047-899X
https://orcid.org/0000-0002-8047-899X
https://orcid.org/0000-0002-8047-899X
https://orcid.org/0000-0002-8047-899X
https://orcid.org/0000-0002-6095-6405
https://orcid.org/0000-0002-6095-6405
https://orcid.org/0000-0002-6095-6405
https://orcid.org/0000-0002-6095-6405
https://orcid.org/0000-0002-6095-6405
https://orcid.org/0000-0002-2806-495X
https://orcid.org/0000-0002-2806-495X
https://orcid.org/0000-0002-2806-495X
https://orcid.org/0000-0002-2806-495X
https://orcid.org/0000-0002-2806-495X
mailto:
mailto:
mailto:
mailto:
mailto:

which simplifies the pointer arithmatic check allowing it to
be performed directly on the compressed format.

2 BACKGROUND

The importance of architectural support for fine-grained
memory protection has been demonstrated in research (e.g.,
Mondriaan Memory Protection [4], [5]; Hardbound [6]) and
in industry (e.g., MPX [7]). In particular, Mondriaan pointed
out that current operating systems use paged memory for
both protection and virtualization, creating tension between
granularity and performance. Capability pointer systems
use bounded pointers for fine-grained protection, and use
paged memory only for virtualization.

Early capability-pointer machines include the CAP com-
puter [8], Intel iAPx432 [9], and the Intel i960 [10]. These
machines used indirection to efficiently store object bounds in
an object table. In contrast, more recent capability machines,
including the M-Machine [2] and the CHERI processor [1],
[11], [12], [13] encode object bounds directly in unforgeable fat
pointers, avoiding an additional memory access to an object
table, or an associative lookup in an object cache.

The increased memory footprint due to encoding bounds
in every pointer can be a major challenge for fat-pointer capa-
bility schemes. Fat-pointer compression techniques, used by
the M-Machine [2], Aries [14], and Low-Fat Pointers [3],
exploited redundancy between a pointer address and its
bounds to reduce their storage requirements. We learn from
these techniques, improve upon them, and solve additional
challenges to apply them in the context of a conventional
RISC pipeline and a large legacy software base.

Notes on Notation. In this paper we use the notation U’V to
indicate a field named U composed of V bits. U ½W : X� indi-
cates a selection of bits W down to X from bit vector U .
fY;Zg indicates a concatenation of the bits of Y above Z.
Thus, U’16 is a 16-bit field, and fU ½7 : 0�; U ½15 : 8�g indicates a
byte-swap ofU .

Furthermore, we use lower-case letters for full-length
values (e.g., a for address and t for top); we use upper-case
letters for fields used for compression (e.g., T for select bits
of the top (t), and E for the exponent).

2.1 CHERI-256

The CHERI instruction-set architecture [1], [13] uses a large
256-bit capability format that encodes the base, length, and
address as independent 64-bit fields. The simplicity of 64-bit
integers is attractive, as complex encoding adds latencies to
common operations. Intel MPX also uses a 256-bit format
with base, top, and address as full 64-bit values [7], enabling

simple low-latency bounds checking but wasting memory.
We have built upon the uncompressed CHERI implementa-
tion shown in Fig. 1, whichwe refer to as CHERI-256.

CHERI-256 supports out-of-bounds pointers; that is, the
address may stray outside of bounds during address calcula-
tions with bounds enforced only on dereference. The term
out-of-bounds pointers carries this meaning throughout this
paper. CHERI-256 naturally supports such promiscuous
arithmetic as the upper and lower bounds are independent of
the address, each fully representedwith 64-bit values that are
unperturbed bywildmodifications to the address field.

Previous fat-pointer systems have found that representing
out-of-bounds pointers was necessary for compatibility with
a broad code base [6], [15], and CHERI-256 relies on this fea-
ture to compile and execute a considerable amount of legacy
C code [12], [13]. Despite these benefits, 256-bit pointers exact
a heavy toll on cache footprint and processor data-path size.
While we seek to encode fat-pointers more efficiently, we
maintain both reasonable latencies for pointer arithmetic and
out-of-bounds pointers.

2.2 M-Machine

The M-Machine [2] is a highly efficient capability-pointer
design developed in the early 1990s. TheM-Machine was not
designed to support legacy software, but its capability format
is elegantly simple and encodes base, top, and pointer
addresswithin 64 bits.

The M-Machine format, shown in Fig. 2, encodes the base
as the bits of a above E (a 53 : E½ �) with the lower bits set to
zero, the top as the base plus 2E , and the current pointer
address as simply a in its entirety. This capability-pointer com-
pression introduces limitations on pointer arithmetic: address
modifications must not change the decoded bounds with-
out invalidating the capability pointer. For the M-Machine,
pointer arithmetic may change only the bits below E, but any
modification of the bits above E changes the decoded base,
and must not produce a valid capability. Thus, all valid
capability pointers maintain their original bounds, and out-
of-bounds pointers cannot be represented.

The M-Machine supports segments that are naturally 2E

aligned and 2E sized. This power-of-two alignment restriction
prevents precise enforcement of irregular object sizes. While
the M-machine could mitigate coarse-grained memory safety
issues by padding large objects with unallocated pages, this
results in severe memory fragmentation, as demonstrated in
Section 4.3. Any imprecise fat-pointer encoding would need
allocator support to ensure memory safety; memory savings
from pointer compression must be balanced against waste,
due tomemory fragmentation.

Finally, theM-Machine supports an unusual 54-bit address
space due to dedicating upper bits to encode the bounds. This
non-standard address size can cause compatibility issues,
and somewhat limits future address-space expansion. The
C language allows integers to be stored in pointers (e.g.,
intptr_t); the CHERI C compiler enables this behavior by plac-
ing the integer in the address field.

Fig. 1. CHERI-256 capability format.

Fig. 2. M-Machine capability format.

1456 IEEE TRANSACTIONS ON COMPUTERS, VOL. 68, NO. 10, OCTOBER 2019

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 26,2023 at 10:02:35 UTC from IEEE Xplore. Restrictions apply.

2.3 Low-Fat Pointers

Similar to the M-Machine, the Low-fat pointer scheme (‘Low-
fat’) compresses its capabilities into 64-bit pointers [3],
with just 46 bits of usable address space (Fig. 3). As in the
M-Machine, memory is described in 2E-sized blocks; how-
ever, regions may be described as a contiguous range of
blocks. Thus, Low-fat supports a finer granularity for bounds
than theM-Machine.

To encode a contiguous segment, Low-fat stores the 6-bit
top (T) and base (B) blocks of the region, with the 6-bit block
size, or exponent (E). T or B is simply inserted into the pointer
address at E to produce the corresponding bound of the
region, as illustrated in Fig. 3. Low-fat can encode any span of
blocks, up to a length of 26, regardless of alignment, by infer-
ring any difference in the upper bits of the bounds. As a
result, the only restriction on Low-fat regions is that the top
and basemust be aligned at 2E .

3 SHORTCOMINGS OF THE STATE-OF-THE-ART

The Low-fat work, an improvement over the similar Aries
[14] scheme, presents an attractive middle ground between
the restrictive M-Machine encoding and the verbose CHERI-
256 approach. The decoding simplicity of Low-fat is promis-
ing; however, it still does not fit naturally into conventional
pipelines, and is not compatible with common language
semantics. CHERI Concentrate clears these hurdles, while
also improving encoding efficiency.

3.1 Encoding Inefficiencies

Low-fat misses two opportunities for a more efficient
encoding. First, if the exponent E is always chosen to be as
small as possible, E directly implies the most significant bit
of the size. This principle is used to save a bit in IEEE float-
ing-point formats; with careful thought, we can save a bit in
region encodings as well (see Section 4.2).

Second, Low-fat devotes equal encoding space for all val-
ues of E. That is, small regions and big regions have the
same number of bits in T and B, despite the fact that small
objects are far more common than large allocations.

3.2 Pipeline Problems

The Low-fat encoding requires all valid capability pointers to
be in-bounds; therefore, pointer arithmetic must never pro-
duce an out-of-bounds pointer. This implies a bounds-check

on all pointer arithmetic. A simple bounds-check requires
decoding the bounds and comparing the bounds against the
arithmetic result. Performing a pointer add, decoding the
bounds, and the final comparisonmust all be completed after
forwarded operands are available. Crucially, the comparison
would need to be done after arithmetic is complete, extending
the critical path of this logic.

The published implementation of Low-fat solves these
issues by decoding capability pointers in the register file to
eliminate additional delay for pointer arithmetic. The register
file does not directly hold the decoded bounds, but holds the
distance from the current address to the base and to the top of
the region. These distances can be compared to the offset
operand directly, in parallel with pointer addition, which
results in no additional delay for the bounds check. This opti-
mization has three costs:

� Delaying pointer loads due to decoding;
� Widening the register file to 164 bits;
� Updating the offsets on pointer arithmetic.
More than doubling the width of the register file for no

architecturally visible benefit is undesirable; also, unpacking
pointers on loads frommemory is detrimental to performance.
Load-to-use delay is a key performance parameter, and rarely
has slack in a balanced design. Low-fat attempts to mitigate
this issue by making the bounds available later in the pipeline
than the address, although this introduces undue complexity;
we demonstrate that there is amore efficient solution.

3.3 Out-of-Bounds Pointers Being Unrepresentable

The authors of Low-fat note that their system can accommo-
date C-pointer calculations going out of bounds by padding
allocations with unusable space – i.e., by simplywidening the
bounds beyond what was requested, and tagging the padded
space as unusable with a separate fine-grained memory-type
mechanism. Ideally, we would neither sacrifice memory nor
require another complex mechanism to accommodate tempo-
rarily out-of-bounds pointers. While addresses should be
allowed to wander temporarily beyond the bounds during
pointer arithmetic, strict segment bounds should be enforced
on dereference.

Both M-Machine and Low-fat invalidate pointers when
arithmetic temporarily pushes them out of bounds, with the
result that all valid pointers are in-bounds and no bounds
check is required on dereference. While conceptually attrac-
tive, this optimization is neither realistic nor necessary. Dere-
ferencewithout a bounds checkmeans that the instruction set
(ISA) cannot support indexed addressing; while avoided in
the bespoke Low-fat ISA, indexed addressing is required by
every widely used ISA. Memory access already supports
exceptions due to address translation, and any bounds check
on the virtual address can be performed in parallel to transla-
tion, making memory access a particularly convenient time to
perform a bounds check. In contrast, pointer-arithmetic oper-
ations are farmore timing sensitive.

3.4 No Evaluation of Compiled Programs

Finally, the Low-fat pointer work was implemented within a
proprietary instruction set without a TLB or even exception
support, and thus was unable to validate support for com-
piled languages or an operating system. Indeed, no previous

Fig. 3. Low-fat capability format (our notation).

WOODRUFF ET AL.: CHERI CONCENTRATE: PRACTICAL COMPRESSED CAPABILITIES 1457

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 26,2023 at 10:02:35 UTC from IEEE Xplore. Restrictions apply.

systems with capability-pointer compression have evaluated
compiled programs. This leaves obvious questions, such as
the frequency of various capability-pointer operations, as
well as the appropriate granularity for bounds.While Low-fat
is promising, its utility, as written, for general-purpose com-
puting has yet to be demonstrated.

4 CC PRINCIPLES I — IMPROVING ON LOW-FAT

CHERI Concentrate includes innovations in encoding effi-
ciency, execution efficiency, and semantic flexibility. We
describe an 18-bit encoding for bounds for direct comparison
with Low-fat, and use this bounds field in our CHERI-64
encoding in Fig. 9. However, the principles are independent
of the field size; our 128-bit implementation (which supports
a full 64-bit address space (Fig. 13)) uses a 41-bit field for
high-precision bounds. This section introduces innovations
that directly improve the Low-fat model before introduc-
ing support for CHERI semantics in Section 5. A complete
specification for decoding 64-bit CC (CHERI-64) is given in
Fig. 9.

4.1 Implied Most-Significant Bit of Top

If we consistently choose the smallest possible E to encode
any set of bounds, the most significant bit of the length will be
implied directly by E. Thus, we designed our instruction that
encodes bounds (CSetBounds) to deterministically choose
the smallest possible E when assigning an encoding from a
full-precision base and length. All capabilities in the system
are in this normal form.

For capabilities in the normal form, we can derive the top
bit of T from the remainder of the encoding.Wemay concep-
tually imagine a 6-bit Length field, L ¼ ðt� bÞ½E þ 5 : E�,
where T ¼ Bþ L. As the top bit of L is known to be 1, to
calculate the top bit of T , we need only the top bit of B and
the carry-out from the lower bits of Bþ L. This carry-out
is 1 if T ½4 : 0� < B½4 : 0� – that is, when adding the lower
bits of L to B has produced a value smaller than B. For
the format in Fig. 4, the formula to reconstitute the MSB
of Top is

Lcarry out ¼
1; if T ½4 : 0� < B½4 : 0�
0; otherwise

�

L½5� ¼ 1(implied)

T ½5� ¼ B½5� þ Lcarry out þ L½5�:

Thus, as all capabilities in the system are in normal form,
one bit can be saved in the encoding. The improved Low-fat
format in Fig. 4 uses this bit to indicate an internal exponent,
as described in the Section 4.2.

4.2 Internal Exponent Encoding

As exponents of zero are most common, we encode a zero
exponent with one bit (internal exponent, IE), allowing 8-bit
precision for small objects, improving on Low-fat for the
common case. For larger objects, the lower bits of the bounds
are used for a 6-bit exponent field.

The most-significant bit of T is implied to be 1 only when
E is nonzero. For all objects with sizes between 29 and 264,
IE is set, T ½8� is implied, and T ½2 : 0� ¼ B½2 : 0� ¼ 0, leaving
6 bits of precision with a 5-bit T and 6-bit B field. In sum-
mary, CC can encode 8 bits of precision for small objects
and 6 bits of precision for all others in the same 18 bits used
by Low-fat, which offers a uniform 6 bits of precision.

4.3 Evaluation of Representability

In order to evaluate the usable precision of CC against the
Low-fat encoding, we used the dtrace framework on Mac OS
X 10.9 to collect traces from every allocator found in six real-
world applications: Chrome 38.0.2125, Firefox 31, Apache 2.4,
iTunes 12, MPlayer build #127, and mySQL 5. Allocators incl-
udedmany forms ofmalloc(), several application-specific allo-
cators, driver internal allocators, andmany other variants.We
eliminatedduplicate entries in the trace due to allocators pass-
ing the same requested allocation down through multiple
lower-level allocators. Fig. 5 shows the precision required for
several sizes that would lose precision in Low-fat. While
Fig. 5 broadly justifies a 6-bit precision, nearly 2 percent of all
allocations have a 7-bit length and require 7 bits of precision
and are representable in CC but not Low-Fat. There are also
notable collections of allocations that require up to 11 bits of
precision, indicating the utility of the greater precision avail-
able in a 128-bit format.

Fig. 6 gives representability results for specific applica-
tions. CC improves the precision of capabilities over Low-
fat without increasing the number of bits required to encode
bounds. As is clear from the encoding, CHERI CC is a strict

Fig. 4. Bounds with Embedded Exponent and Implied T8.

Fig. 5. Percentage of total allocations versus precision required for a set
of requested lengths for applications in Fig. 6.

Fig. 6. The percentage of allocations that cannot be precisely repre-
sented in a capability. Lower is better.

1458 IEEE TRANSACTIONS ON COMPUTERS, VOL. 68, NO. 10, OCTOBER 2019

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 26,2023 at 10:02:35 UTC from IEEE Xplore. Restrictions apply.

improvement, i.e., under no circumstance does CHERI CC
have worse precision than Low-fat.

4.4 Heap Allocators and Imprecision

The prevalence of small allocations is reflected in the design of
the FreeBSD default memory allocator, jemalloc(), which
assumes that applications will primarily allocate objects
under 512 bytes [16]. When object bounds cannot be precisely
represented by CC, the allocator may have to pad the alloca-
tion with unused memory to maintain memory safety. In
practice, we have never observed jemalloc() requiring
more than 6 bits to represent thememory reserved for an allo-
cation, as the allocator itself requires alignment to ease mem-
ory management. Nevertheless, additional precision can be
used to enforce precise object bounds, and enable precise
enforcment of subobjectswhere possible.

5 CC PRINCIPLES II—CHERI SEMANTICS

Up to this point we have presented encoding improvements
that directly translate to the Low-fat model. That is, we
improved the encoding of a memory region in a 46-bit vir-
tual address space where the address is between bounds.
From this point we introduce some CHERI semantics neces-
sary to support a legacy software base.

5.1 Full Address Space

CHERI semantics require a full 32-bit address space for 32-bit
architectures, and 64-bit address space for 64-bit architectures.
CHERI seeks to replace pointers in traditional computer sys-
temswith capability fat-pointers and to interact naturallywith
traditional operating systems and software. A non-standard
address space, such as Low-fat’s 46-bit proposal, would req-
uire a deeper rewrite of the modern software stack. CHERI
Concentrate therefore chooses to support a 32-bit address
spacewith our 18-bit bounds field in a 64-bit capability format,
which we call CHERI-64. The smaller virtual address space
reduces ourE field by one bit, yielding the final 18-bit CHERI
Concentrate format in Fig. 7, which provides the same preci-
sion as the format in Fig. 4, but also guarantees out-of-bounds
representable space at least as large as the object itself.We sup-
port a full 64-bit address space with CHERI-128 described
in Section 6.5.

5.2 Permissions Bits

Unlike Low-fat, CHERI supports permissions bits on capa-
bilities for read, write, and execute, and to limit capability
propagation, with a few permission bits reserved for soft-
ware interpretation. CHERI Concentrate includes 12 per-
mission bits in CHERI-64 and 15 bits in CHERI-128 to
support the full CHERI permissions model.

5.3 Representable Buffer

CHERI-256 supports out-of-bounds pointers, encoding full,
independent 64-bit words for the top, base, and address, to
allow arbitrary pointer arithmetic without losing bounds [12].
This feature enables CHERI to substitute capabilities for
pointers in a wide array of C programswithout violating pro-
grammer expectations, providing memory safety without
requiring unnecessary sourcemodifications.

To confirm that out-of-bounds pointers are required to run
a significant software stack, we implemented our capability
format with the Low-fat strict bounds semantics. That is, we
invalidated capabilities that went beyond object bounds so
that they could no longer be dereferenced. Several binaries
failed to run with these Low-fat semantics. Zlib provided the
following critical example ininftrees.c:

static const unsigned short lbase[31] = ...;

...

base = lbase;

base -= 257;

...

val = base[work[sym]];

This function fails without temporarily out-of-bounds sup-
port because subtraction from base moves it well below the
base of the object, though it actually should continue safely as
base is later dereferenced legally using an offset larger than
257. Support for temporarily out-of-bounds pointers allows
all binaries and libraries depending on zlib (including gzip,
OpenSSH, libpng, etc.) to function as intended with com-
pressed capabilities.

While out-of-bounds pointer support is desirable, our
bounds are encoded with respect to the current pointer
address, and this encoding cannot support unlimited manip-
ulation without losing the ability to decode the original
bounds.Nevertheless, we enable the vastmajority of common
behaviors for CC by extending theB field by 1 bit to provide a
representable space that is at least twice the size of the object
itself. This bit allows us to locate the base and top addresses
with respect to the pointer address as the pointer moves
beyond the object bounds. As a result, there are three address
categories for any capability. Those between the bounds are
in the dereferenceable region. These addresses are a subset of
those within the larger representable space, spaceR. Addresses
outside of spaceR render the region unrepresentable, as
depicted in Figs. 8 and 10. With an extra bit ofB to extend the
representable space, we may now say that we infer the two
most-significant bits of T

Lcarry out ¼ 1; if T ½6 : 2� < B½6 : 2�
0; otherwise

�

Fig. 8. Memory regions implied by a CC encoding.

Fig. 7. 18-bit CHERI concentrate encoding with representable buffer
supporting a 32-bit address space.

WOODRUFF ET AL.: CHERI CONCENTRATE: PRACTICAL COMPRESSED CAPABILITIES 1459

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 26,2023 at 10:02:35 UTC from IEEE Xplore. Restrictions apply.

Lmsb ¼ 1; if IE ¼ 1
L7; otherwise

�

T ½8 : 7� ¼ B½8 : 7� þ Lcarry out þ Lmsb:

6 CHERI CONCENTRATE REGION ARITHMETIC

We have carefully balanced the binary arithmetic needed for
the CHERI Concentrate encoding to allow practical use in a
traditional RISC pipeline. All operations that are traditionally
single-cycle for integer pointers are also single-cycle in CHERI
Concentrate despite enforcing sophisticated guarantees. These
arithmetic operations are a crucial contribution of this work.

6.1 Encoding the Bounds

We have added a CSetBounds instruction to the CHERI
instruction set to allow selecting the appropriate precision
for a capability.1 CSetBounds takes the full pointer address
a as the desired base, and takes a length operand from a
general-purpose register, thus providing full visibility of
the precise base and top to a single instruction – which can
select the new precision without violating a tenet of MIPS
(our base ISA) by requiring a third operand.

6.1.1 Deriving E

The value of E is a function of the requested length, l

index of msbðxÞ ¼ size ofðxÞ � count leading zerosðxÞ
E ¼ index of msbðl½31 : 8�Þ:

This operation chooses a value for E that ensures that the
most significant bit of lwill be implied correctly. If l is larger
than 28, the most significant bit of l will always align with
T ½7�, and indeed T ½7� can be implied by E. If l is smaller
than 28, E is 0, giving more bits to T and B and so enabling
proportionally more out-of-bounds pointers than otherwise
allowed for small objects.

We may respond to a request for unrepresentable preci-
sion by extending the bounds slightly to the next represent-
able bound, or by throwing an exception. These two
behaviors are implemented in the CSetBounds and CSet-

BoundsExact variants respectively.

6.1.2 Extracting T and B

The CSetBounds instruction derives the values of B and T
by simply extracting bits at E from b and t respectively
(with appropriate rounding):

E ¼ 0 E > 0; T ½1 : 0� and B½1 : 0� implied 0s

T ¼ t½6 : 0� T ½6 : 2� ¼ t½E þ 6 : E þ 2� þ round

round ¼ one if nonzeroðt½E þ 1 : 0�Þ
B ¼ b½8 : 0� B½8 : 2� ¼ b½E þ 8 : E þ 2�

6.1.3 Rounding Up length

The CSetBounds instruction may round up the top or
round down the base to the nearest representable alignment
boundary, effectively increasing the length and potentially
increasing the MSB of length by one, thus requiring that E
increase to ensure that the MSB of the new L can be cor-
rectly implied. Rather than detect whether overflow will
certainly occur (which did not pass timing in our 100 MHz
CHERI-128 FPGA prototype), we choose to detect whether
L½7 : 3� is all 1s – i.e., the largest length that would use this
exponent – and force T to round up and increase E by one.
This simplifies the implementation at the expense of preci-
sion for 1=16th of the requestable length values.

6.2 Decoding the Bounds

Unlike Low-fat, CHERI Concentrate can decode the full t
and b bounds from the B and T fields even when the pointer
address a is not between the bounds. We now detail how
each bit of the bounds is produced:

Lower Bits. The bits below E in t and b are zero, that is,
both bounds are aligned at E.

Middle Bits. Themiddle bits of the bounds, t½E þ 8 : E� and
b½E þ 8 : E�, are simply T and B respectively, with the top
two bits of T reconstituted as in Section 5.3. In addition, if IE
is set, indicating that E is stored in the lower bits of T and B,
the lower two bits of T andB are also zero.

Upper Bits. The bits above E þ 8, for example t½31 : E þ 9�,
are either identical to a½31 : E þ 9�, or need a correction of�1,
depending on whether a is in the same alignment boundary
as t, as described below and in Fig. 9.

6.2.1 Deriving the Representable Limit, R

CC allows pointer addresses within a power-of-two-sized
space, spaceR, without losing the ability to decode the origi-
nal bounds. The size of spaceR is s ¼ 2Eþ9, fully utilizing the
encoding space of B. Fig. 10 shows an example of object
bounds within the larger spaceR. Due to the extra bit in B,
spaceR is twice the maximum object size (2Eþ8), ensuring
that the out-of-bounds representable buffers are, in total, at
least as large the object itself.

As portrayed in Fig. 10, spaceR is not usually naturally
aligned, but straddles an alignment boundary. Neverthe-
less, as spaceR is power-of-two-sized, a bit slice from its
base address rb½E þ 9 : E� will yield the same value as a bit
slice from the first address above the top, rt½E þ 9 : E�. We
call this value the representable limit, R. Locating b, t, and a
either above or below the alignment boundary in spaceR
requires comparison with this value R. We may choose R to
be any out-of-bounds value in spaceR, but to reduce com-
parison logic we have chosen

R ¼ fB½8 : 6� � 1; 006g:

This choice ensures that R is at least 1=8 and less than 1=4 of
the representable space below b, leaving at least as much
representable buffer above t as below b.

For every valid capability, the address a as well as the
bounds b and t lie within spaceR. However the upper bits of
any of these addresses may differ by at most 1 by virtue of
lying in the upper or lower segments of spaceR. For example,

1. Prior to this instruction, the bounds of a capability were set
sequentially using CIncBase and CSetLength. CIncBase had to
assign a compressed encoding to the base, possibly losing precision
before the desired length was known, and CSetLength had no way to
restore the lost precision if the final length would have allowed it.

1460 IEEE TRANSACTIONS ON COMPUTERS, VOL. 68, NO. 10, OCTOBER 2019

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 26,2023 at 10:02:35 UTC from IEEE Xplore. Restrictions apply.

if a is in the upper segment of spaceR, the upper bits of a
bound will be one less than the upper bits of a if the bound
lies in the lower segment. We can determine whether a falls
into upper or lower segment of spaceR by inspecting

Amid ¼ a½E þ 8 : E�:

If Amid is less than R, then amust lie in the upper segment of
spaceR, and otherwise in the lower segment. The same com-
parison for T and B locates each bound uniquely in the
upper or the lower segment. These locations directly imply
the correction bits ct and cb (computed as shown in Fig. 9)
that are needed to compute the upper bits of t and b from
the upper bits of a. As we have chosen to align R such that
R½5 : 0� are zero, only three-bit arithmetic is required for this
comparison, specifically

a in upper segment ¼ Amid½8 : 6� < R½8 : 6�:

While Low-fat requires a 6-bit comparison to establish the
relationship between a, t, and b, growing with the precision
of the bounds fields, CC requires a fixed 3-bit comparison
regardless of field size, particularly benefiting CHERI-128,
which uses 21-bit T and B fields. CC enables capabilities to
be stored in the register file in compressed format, often
requiring decoding before use. As a result, this comparison
lies on several critical paths in our processor prototype.

The bounds t and b are computed relative to Aupper

t ¼ fðAupper þ ctÞ; T; 00Eg
b ¼ fðAupper þ cbÞ; B; 00Eg
where Aupper ¼ a½31 : E þ 9�:

The bounds check during memory access is then

b 4 computed address < t:

In summary, CC generalizes Low-fat arithmetic to allow
full use of the power-of-two-sized encoding space for repre-
senting addresses outside of the bounds, while improving
speed of decoding.

6.2.2 Encoding Full Address Space

The largest encodable 32-bit value of t is 0xFF800000,
making a portion of the address space inaccessible to the
largest capability. We can resolve this by allowing t to be a
33-bit value, but this bit-size mismatch introduces some
additional complication when decoding t. The following
condition is required to correct t for capabilities whose rep-
resentable region wraps the edge of the address space

if ððE < 24Þ&ððt½32 : 31� � b½31�Þ > 1ÞÞ then t½32� ¼ !t½32�:

That is, if the length of the capability is larger than E allows,
invert the most significant bit of t.

6.3 Fast Representable Limit Checking

Pointer arithmetic is typically performed using addition, and
does not raise an exception. If we wish to preserve these
semantics for capabilities, capability pointer addition must fit
comfortably within the delay of simple arithmetic in the pipe-
line, and should not introduce the possibility of an exception.
For CC, as with Low-fat, typical pointer addition requires
adding only an offset to the pointer address, leaving the rest
of the capability fields unchanged. However, it is possible

Fig. 10. CHERI Concentrate bounds in an address space. Addresses
increase upwards. To the left are example values for a 0x600-byte
object based at 0x1E00.

Fig. 9. CC capability format.

WOODRUFF ET AL.: CHERI CONCENTRATE: PRACTICAL COMPRESSED CAPABILITIES 1461

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 26,2023 at 10:02:35 UTC from IEEE Xplore. Restrictions apply.

that the address could pass either the upper or the lower lim-
its of the representable space, beyond which the original
bounds can no longer be reconstituted. In this case, CC clears
the tag of the resulting capability to maintain memory safety,
preventing an illegal reference to memory from being forged.
This check against the representable limit, R, has been desi-
gned to be much faster than a precise bounds check, thereby
eliminating the costly measures the Low-fat design required
to achieve reasonable performance.

To ensure that the critical path is not unduly lengthened,
CC verifies that an increment i will not compromise the
encoding by inspecting only i and the original address field.
We first ascertain if i is inRange, and then if it is inLimit. The
inRange test determines whether the magnitude of i is greater
than that of the size of the representable space, s, which
would certainly take the address out of representable limits

inRange ¼ �s < i < s:

The inLimit test assumes the success of the inRange test, and
determines whether the update toAmid could take it beyond
the representable limit, outside the representable space

inLimit ¼ Imid < ðR�Amid � 1Þ; if i 5 0
Imid5ðR�AmidÞ and R 6¼ Amid; if i < 0

�
:

The inRange test reduces to a test that all the bits of Itop
(i½63 : E þ 9�) are the same. The inLimit test needs only 9-bit
fields (Imid ¼ i½E þ 8; E�) and the sign of i.

The Imid and Amid used in the inLimit test do not include
the lower bits of i and a, potentially ignoring a carry in from
the lower bits, presenting an imprecision hazard. We solve
this by conservatively subtracting one from the represent-
able limit when we are incrementing upwards, and by not
allowing any subtraction when Amid is equal to R.

One final test is required to ensure that if E523, any inc-
rement is representable. (If E ¼ 23, the representable space,
s, encompases the entire address space.) This handles a
number of corner cases related to T , B, and Amid describing
bits beyond the top of a virtual address. Our final fast repre-
sentability check composes these three tests

representable ¼ ðinRange and inLimitÞ or ðE 5 23Þ:

To summarize, the representability check depends only
on four 9-bit fields, T , B, Amid, and Imid, and the sign of i.
Only Imid must be extracted during execute, as Amid is
cached in our register file. This operation is simpler than
reconstructing even one full bound, as demonstrated in
Section 8. This fast representability check allows us to

perform pointer arithmetic on compressed capabilities
directly, avoiding decompressing capabilities in the register
file that introduces both a dramatically enlarged register file
and substantial load-to-use delay.

6.4 Examplary Encodings

We walk through a pair of exemplary capability encodings
to illustrate the above encoding details. In Figs. 11 and 12,
the dark fields were requested by CSetBounds, the orange
and green fields are stored in the capability encoding, and
the white fields are implied by the encoded fields. Each
example shows only the bottom 12 bits of each field.

6.4.1 Unaligned 128-Byte Example

A programmer has instantiated a 129-character string on his
stack, and wants to trim the first character and pass the sub-
set to a function. The capability instructions to create the
subset are as follows:

CIncOffset $trimmed, $str, 1
CSetBounds $trimmed, $trimmed, 128

As this string began on the stack that is at least word-
aligned, the trimmed capability is now unaligned. The
requested capability is perfectly representable using CC, as
are all objects less than 255 bytes; the resulting encoding is
shown in Fig. 11. We note that this capability would not be
representable in Low-Fat, which can represent with byte-
precision only up to 63-byte objects.

Spanning alignment boundary: We observe that the upper
bits of the Top are entirely different from the upper bits of Bot-
tom in Fig. 11, though they numerically differ by only 1. Dur-
ing decode, we can ascertain that the upper bits of Top must
be one larger than the upper bits of Bottom using the follow-
ing steps:

T ½8 : 7� ¼ B½8 : 7� þ L½7� þ Lcarry out (1)

¼ 11þ 01þ 00 ¼ 00: (2)

This produces a T ½8 : 0� of 000000001. We may now infer
any difference in the bits above T ½8� in the pointer using the
representable limit, R

Amid ¼ a½8 : 0� ¼ 111110000 (3)

Ru ¼ R½8 : 6� ¼ B½8 : 6� � 001 ¼ 101 (4)

ct ¼
0; if ðRu < T ½8 : 6�Þ ¼ ðRu < Amid½8 : 6�Þ
1; otherwise

�
(5)

Fig. 11. Example capability with Exponent=0.

Fig. 12. Example capability with encoded exponent.

1462 IEEE TRANSACTIONS ON COMPUTERS, VOL. 68, NO. 10, OCTOBER 2019

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 26,2023 at 10:02:35 UTC from IEEE Xplore. Restrictions apply.

T ½11 : 9� ¼ Aupper½2 : 0� þ ct ¼ 011þ 001 ¼ 100: (6)

6.4.2 504-Byte Example

Let us now consider a larger object that cannot be represented
preciselywith CC, and that has an out-of-bounds pointer:

char str [504];
skip16 (str - 16);

The encoding of the new object is shown in Fig. 12 and the
assembly thatwill generate the capability passed to skip16 is:

CSetBounds $str, $sp, 504
CIncOffset $str, $str, -16

Losing precision: The size of this object is 504 bytes, which
is larger than the maximum size of 255 that can be precisely
represented by CC. We select E by inspecting the length that
has been requested, which is 111111000 in binary.

Et ¼ index of msbðl½11 : 8�Þ ¼ 1 (7)

E ¼ Et þ 1; if L½7 : 4� ¼ 1111
Et; otherwise

�
(8)

E ¼ 2: (9)

In this case, due to the length being the maximum possible
length we could represent with this exponent, we increase
E by one to account for the possiblity that the length may
round up. Since E is non-zero, we must encode the expo-
nent in the capability (IE ¼ 1), and T ½1 : 0� and B½1 : 0� are
no longer available for precision. As a result, the bottom
four bits are rounded to the appropriate alignment bound-
ary (away from the object) in the Encoded Top and Bottom
in Fig. 12, and the encoded length is 512 bytes.

Representability Check: After the bounds of the capabil-
ity are set, we move the pointer 16 bytes below the base. We
assert that the result of the add of -16 (111111110000) will be
representable with the following steps:

inRange ¼ �s < i < s ¼ �2048 < �16 < 2048 (10)

R�Amid ¼ 0010000� 0100000 ¼ 1010000 (11)

inLimit ¼ ðImid 5 ðR�AmidÞÞ&ðR 6¼ AmidÞ; as i < 0

(12)

¼ ð1111111 5 1010000Þ&ð0010000 6¼ 0100000Þ (13)

rep: ¼ inRange & inLimit ¼ True: (14)

As the subtraction of 16 will produce a result within rep-
resentable bounds, we may simply perform the subtraction

on the Address field of the capability, producing the result
in Fig. 12.

6.5 CHERI-128

While we have implemented the above format with 18 bits
for bounds for a 32-bit address space in CHERI-64, our
CHERI Concentrate format for a 64-bit address space uses
41 bits for bounds. This CHERI-128 format uses 21 bits for B
and and 19 bits for T, and is shown in Fig. 13. Our CHERI-
64 and CHERI-128 encodings reserve a few bits for future
use (2 bits and 7 bits respectively), which could be applied
to greater precision if needed.

7 INSTRUCTION FREQUENCY STUDY

CHERI Concentrate pipeline optimizations have a firm
grounding in analysis of compiled capability programs.
Table 1 contains the first published study of the frequency of
capability instructions in compiled programs. These programs
include the Duktape Javascript interpreter running the Splay
benchmark from the Octane suite, a SQLite benchmark devel-
oped for the LevelDB project, the P7Zip benchmark from the
LLVM test suite, and a boot of FreeBSD with all user-space
processes compiled in a pure-capability mode. In each case
we traced around 1 billion user-space instructions from the
FPGA implementation, about 10 seconds of execution time on
our 100MHz processor, sampled throughout the benchmark.

This study of capability instructions is unique compared to
studies using conventional instruction sets, as a capability
instruction set distinguishes between pointer and integer
operations. A capability instruction set distinguishes between
memory operations accessing non-pointer data and those that
support pointers; it also distinguishes between pointer modi-
fication and integer arithmetic instructions. According to
Table 1, pointer-sized loads constitute up to 12 percent of
common programs. Thus, pointer loads should minimize
additional delay caused by an unpack operation to decode
capabilities into the register file or else risk greatly impacting
performance. Table 1 further indicates that pointer arithmetic
commonly constitutes over 10 percent of executed instruc-
tions. Therefore pointer add must remain simple, fast, and
energy-efficient, in the face of new requirements imposed by
capabilities. Table 1 shows loads and stores of data and capa-
bilities constituting as much as 35 percent of common

TABLE 1
Dynamic Capability Instruction Mix

Percent of total instruction mix for different benchmarks

Category DukJS SQLite P7Zip Boot

load/store data 13.69% 21.29% 16.93% 16.26%
load capability 11.69% 7.99% 1.52% 4.69%
store capability 6.91% 5.24% 0.62% 3.17%

cap pointer arithmetic 15.15% 13.16% 7.19% 2.82%
stack pointer 5.06% 3.35% 0.99% 0.93%
other 10.09% 9.81% 6.20% 1.89%
jump to capability 2.73% 1.68% 0.50% 0.50%
get special capability 0.08% 0.03% 0.00% 0.02%
compare capabilities 1.38% 1.90% 0.19% 0.15%

set capability bounds 0.36% 0.69% 0.00% 0.07%
read a capability field 1.17% 0.68% 0.00% 0.05%

Fig. 13. CHERI-128 capability format.

WOODRUFF ET AL.: CHERI CONCENTRATE: PRACTICAL COMPRESSED CAPABILITIES 1463

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 26,2023 at 10:02:35 UTC from IEEE Xplore. Restrictions apply.

programs. Therefore the bounds check on the offset addressing
operation must not impede the critical path. or else would
risk greatly impacting programperformance.

As described in Section 8, CHERI Concentrate respects
all three of these requirements by nearly eliminating the
unpack operation, by introducing a fast representability check
for pointer arithmetic using only the compressed format,
and by acknowledging that the more complex bounds check
operation does not lie on the critical path.

8 CHERI CONCENTRATE PIPELINE

Capability compression adds three operations to a pipeline:

1) Unpack: Any logic that transforms a capability from
memory representation to register format.

2) Pointer Add: Any logic required to add an offset to a
capability, producing a new capability, handling any
checks for an unrepresentable result.

3) Bounds Check: Any logic to verify that an offset lands
within the bounds of a capability for memory access.

Fig. 14 shows the placement of these operations in a typical
MIPS pipeline using the Low-Fat and CHERI Concentrate
micro-architectural approaches. In the CC pipeline, Unpack
and Pointer Add lie on a performance-critical path, and
Bounds Check does not. For Low-Fat, all three operations are
moved to a new capability pipeline stage aftermemory access
where bounds are unpacked, updated, and checked. Placing
all bounds operations in a single stage after cache access ena-
bles full pipelining even as capabilities are loaded, as long as
bounds are not required earlier in the pipeline. This is true as
long as loads and stores can be issued with the pointer
address speculatively, verifying bounds only in the cycle
when a loaded value is available.

Unpack.
Low-Fat has a complexUnpack operation that decodes the

distance to the bounds into the register file. Complete Low-
Fat bounds decoding required over 4ns on their Xilinx Virtex
6 [3] and 4.47ns in our experiment in Fig. 15,which is too com-
plex to be performed after memory load and before register
writeback without requiring an additional cycle. Low-Fat
added an Unpack stage to the pipeline and also performed
Pointer Add and Bounds Check there to ensure that these
operations can see capabilities forwarded from a load. It is
preferable to eliminate this stage and maintain a single set of
forwarding paths to Execute.

CHERI Concentrate does not entirely eliminate theUnpack
procedure but reduces its cost dramatically so that it is not in
the critical path. The CC unpack operation requires 1.70ns to
decode the bits of the pointer address at Exp (corresponding
to T and B) and the top two bits of T. This delay is comparable
to the data byte select, which is not required when loading
capabilities; thus, CC avoids extra delay between the cache
and the register file.

Pointer Add.
Low-Fat Pointer Add consists of 3 operations: address

addition, Bounds Check, and a distance update. The address
addition is done in the traditional ALU, but the Bounds
Check and update of the distances to the bounds occur in the
new pipeline stage for bounds. The Bounds Check operation
is highly optimized by fully decoding the distance to the
bounds in the register file, requiring only 1.88ns in our experi-
ment in Fig. 15, and resulting in a full Pointer Add of only
2.74ns – only 70 percent longer than the simple 64-bit add
required by CHERI-256.

CC does not have the advantage of fully decoded bounds,
but uses the representability check described in Section 6.3 to
assert that the result will be representable without checking
the precise bounds. This check achieves a delay of only 2.89ns
to modify the pointer address and to perform the represent-
ability check – only slightly longer than Low-fat’s Pointer

Fig. 14. Crucial capability functions in the pipeline.

Fig. 15. Complexity and speed of key operations. Test bench synthe-
sized in Altera’s Quartus Prime 15.1 for a Stratix V 5SGXEA7N2F45C2
FPGA. Each synthesis performed with three random seeds. Combina-
tional logic usage (ALUTs) was constant, but layout variation perturbed
timing. The Low-fat algorithms were reproduced from their descriptions.
The CC algorithm used here has a 48-bit virtual address and an 18-bit
bounds field for direct comparison with Low-fat.

1464 IEEE TRANSACTIONS ON COMPUTERS, VOL. 68, NO. 10, OCTOBER 2019

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 26,2023 at 10:02:35 UTC from IEEE Xplore. Restrictions apply.

Add.CC’s representability check fits easilywithin the execute
stage of our pipeline.

Bounds Check.
A standalone Bounds Check operation is very fast for Low-

Fat, only 1.88ns, but we consider this a wasted optimization
as the stand-alone bounds check would not lie on the critical
path for memory access. CC required 3.85ns for a precise
Bounds Check, which fits comfortably into the exception path
of our pipeline (which is parallel to cache lookup).

By pushing the full Bounds Check delay from the pointer
load-to-use path to the memory access path, CHERI Concen-
trate avoids pointer load-to-use delays, an inflated register
file, and unusual pipeline forwarding. While we performed
our integration with a canonical MIPS pipeline, these solu-
tions enable a reasonable capability implementation in any
processor without violating the general conventions of high-
performance pipelines.

9 EXECUTION PERFORMANCE

To evaluate the CC, we modified our open-source CHERI
processor from http://www.cheri-cpu.org/, extended the
LLVM compiler [17], created a custom embedded OS based
on CHERI protection, and extended the FreeBSD OS [18].

9.1 Microbenchmarks

We used a modified LLVM to compile a number of small
benchmarks to use capabilities for all data pointers (including
heap and stack allocations) to enforce spatial memory safety,
and to use capabilities for return addresses and function
pointers to enforce Control-Flow Integrity (CFI) [19]. We
included the MiBench [20] suite, which is representative of
typical embedded data-centric C code, and the Olden [21]
suite, which is representative of pointer-based data structure
algorithms. These were executed under a custom embedded
operating system running on a 100MHz Stratix IV FPGA pro-
totype that used a 32KiB, 4-way set-associative, write-through
L1 data cache and a 256KiB, 4-way write-back L2 cache.
Across all benchmarks, we compare CHERI-256, CHERI-128
and CHERI-64. This study allows us to compare CHERI-256
with CHERI-128, which provides a direct improvement by
halving pointer size while supporting the full 64-bit virtual

address space with negligible alignment restrictions. On the
other hand, we can compare CHERI-128 with CHERI-64,
which restricts the virtual address space to 32 bits (based on
the MIPS-n32 ABI), using the upper 32 bits to encode capabil-
ity fields. The three architectures share code generation and
differ only in capability size.

Fig. 16 measures the improvement in execution time and
L2 cache misses of CHERI-128 and CHERI-64 against CHERI-
256, with CHERI-256 normalized at 100 percent. The twomet-
rics represent overall performance and additional DRAM traf-
fic respectively. We have ordered the graphs by pointer
memory footprint as measured from core dumps. The box
plots aggregate all benchmarks with a pointer density of less
than 0.2 percent of allocated memory. These include bitcount,
qsort, stringsearch, rijndael, CRC, SHA, dijkstra and adpcm,
all from the MiBench suite. Apart from Patricia, MiBench has
low pointer density and has little memory impact of using
capabilities of any size. The Olden benchmarks with pointer-
based data structures show up to a 20 percent reduction in
run time and a 50 percent reduction in DRAM traffic when
moving from CHERI-256 to CHERI-128. CHERI-64 further
improves over CHERI-128, with a performance improvement
approaching 10 percent, but achieving an equally dramatic
reduction inDRAM traffic for these pointer-heavy use cases.

The low-pointer density benchmarks show almost no
performance improvement with smaller pointers, indicating
that many applications will see very little cost from adopt-
ing extensive capability protections regardless of capability
size. Nevertheless, these low-pointer-density applications
occasionally saw a notable decrease in L2 misses.

9.2 Larger Applications and Benchmark Suites

We have designed CHERI Concentrate to fit in a standard
RISC architecture and to support compiled C programs. As
a result, we are able to compile many standard applications
and execute them under a full operating system, CheriBSD
(i.e., FreeBSD with capability extensions).

This section uses the same hardware platform and com-
piler configuration as in Section 9.1. All benchmarks (P7Zip
16.02, Octane with Duktape 1.4.0, Sqlite3 3.21.0, and SPECint
2006) run under CheriBSD. SPECint 2006 benchmarks are run
with test datasets due to time andmemory constraints on our
FPGA platform. Unfortunately, due to the lack of LLVM
MIPS-n32 support under FreeBSD, the CHERI-64 results are
replaced with classic 64-bit MIPS benchmarks as a reference.
Note that MIPS code not only has smaller pointer sizes, but
also does not have any overhead from CHERI protection at
all. MIPS code generation also differs significantly from
CHERI code generation when using integer registers for
pointer access, whichwould cause CHERI to be slightly faster
in some cases. This paper demonstrates the benefits of capa-
bility size reduction and does not speculate on optimal capa-
bility code generation, although the CHERI LLVM extension
continues to improve.

Fig. 17 shows the results obtained from these workloads.
P7Zip is an ALU- and data-heavy benchmark with very
few pointers, resulting in the performance of CHERI-256,
CHERI-128 andMIPS being very close. The Octane JavaScript
benchmarks, Splay and Earlay-Boyer, were selected for
pointer density, with around 25 percent of all data memory
holding pointers. These JavaScript benchmarks running under

Fig. 16. Percentage of run time and total L2 misses for CHERI-128 and
CHERI-64 versus CHERI-256 (dashed lines, normalized to 100 percent).
MiBench benchmarks with low pointer density (Low 128/64) are collated
on the left. High pointer-density benchmarks are on the right.

WOODRUFF ET AL.: CHERI CONCENTRATE: PRACTICAL COMPRESSED CAPABILITIES 1465

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 26,2023 at 10:02:35 UTC from IEEE Xplore. Restrictions apply.

http://www.cheri-cpu.org/

Duktape show a dramatic improvement with capability com-
pression, cutting run time by 10 percent and reducing L2 cache
misses by 40 percent. Though the common database applica-
tion Sqlite3 has lower pointer density and relies heavily on file
I/O, there is still a sizable reduction of run time and DRAM
traffic. On average, approximately 10 percent of the total run
time and 30 percent of the DRAM traffic can be eliminated by
deploying CHERI-128 for these benchmarks.

10 PROOF OF CORRECTNESS

The CHERI Concentrate capability compression and decom-
pression algorithms are complex. Consequently, we have
undertaken a machine-checked proof of correctness in
HOL4 for key properties, which identified bugs and con-
firmed the necessity of all corner-case handling required in
the hardware implementation. The first four proofs relate to
compression and decompression, and the last two proofs
verify the fast representable bounds check. These proofs
produced counterexamples for our initial E selection algo-
rithm, and for our initial representability-check algorithm;
the corrections are reflected in the algorithms presented in
Section 6. These proofs are available online: <www.cl.cam.
ac.uk/research/security/ctsrd/cheri/cheri-concentrate/>.

� For any address (a) in the representable region
defined by a requested base and top from which we
derive an encoded b and t:
1) b 4 base
2) base� b < 2Eþ2, that is, the error on the encoded

base is less than the value of least significant bit
of Bwhen there is an internal exponent

3) t 5 top
4) t� top 4 2Eþ2, that is, the error on the encoded

top is less than the value of the least significant
bit of T when there is an internal exponent

� For any address a, increment i, valid exponent E <
26, and representable limit R (see Section 6.2.1):

1) The fast representability check, IsRep, will suc-
ceed only if p ¼ aþ i is within one representable
space, s ¼ 2Eþ9, of the representable base rb

IsRep) p� rb < s:

2) The fast representability check will succeed if p is
reasonably within s of rb

2E � p� rb < s� 2E) IsRep:

11 RELATED WORK

CHERI Concentrate safely encodes fine-grained memory
protection properties similar to the M-machine and Low-Fat
pointers, representing a family of capability fat-pointer
machines. Computer architects have also explored several
other useful approaches to encode memory protection meta-
data in computer systems.

11.1 Table-Based Encoding

Table-based designs encode protection information in an
external table, keyed either by the data memory address,
choice of segment registers, or by an explicit index in the
memory reference. Whereas an arbitrarily large amount of
protection metadata may be encoded in a small index, the
table approach optimizes for a small fixed set of objects, and
does not fit today’s large and layered software landscape.

Early capability systems described a C-list of capabilities
for a process [22]; systems including the CAP computer [8]
and the i960 [10] implemented pointers as indices into this
table. Some foundational capability systems, in addition to
supporting tables of memory descriptor capabilities, sup-
ported capabilities as abstract identifiers that required inter-
pretation from a trusted object manager [23], [24].

Page-based memory protection is a table-based design that
is ubiquitous in commercial hardware and usually inclu-
des protection metadata. Page-based protection has been
extended in various ways to support in-address-space secu-
rity domains including domain-page protection [25] and page
group identifiers in the HP PA-RISC [26]. In page-based sys-
tems, protection metadata is associated with the virtual
address and not with the pointer; costs scale with the size
of the address space and not with the number of pointers.
However, as a consequence any access to memory in a pro-
cess is treated equally, and it is not possible to detect a
corrupted pointer that illegally accesses valid memory in
the process.

Mondriaan [4] also uses table indirection to encode pro-
tection metadata in a Protection Look-aside Buffer (PLB) for
fine-grained address validation. While Mondriaan avoids
page granularities, performance still benefits greatly from
reducing the number of objects, making this approach
undesirable for fine-grained protection.

Segmentation, pioneered in the Multics system [27] and
once common on IA-32 architectures (nowdeprecated in Intel
64 [28]), encodes protection metadata in segment descriptor
tables indexed by segment selector registers. Despite earlier
wide-spread deployment, this memory protection primitive
was not picked up in scalable languagemodels.

Fig. 17. Percentage of run time and total L2 misses for CHERI-128 and
64-bit MIPS versus CHERI-256 (dashed line, normalized to 100 percent):
SPECint 2006 (SP-), Javascript (JS-), and Sqlite3 (SL-). Origins are
non-zero to improve visibility.

1466 IEEE TRANSACTIONS ON COMPUTERS, VOL. 68, NO. 10, OCTOBER 2019

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 26,2023 at 10:02:35 UTC from IEEE Xplore. Restrictions apply.

www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheri-concentrate/
www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheri-concentrate/

11.2 Tagged Memory

Complex tags on memory locations may also encode protec-
tion metadata for pointers in memory [29], [30], [31].

Silicon Secured Memory from Oracle [32] tags all data with
version numbers, which must match in-pointer metadata to
avoid temporal confusion.

Memory Protection Extensions [7] from Intel maps a sha-
dow space for protection metadata for pointers in memory,
and is similar to HardBound [6] (an academic proposal).
Despite hardware support, no form of compression is used,
and the metadata space is four times the size of the pro-
tected address space.

As memory locality suffers from shadow-space or table
lookups, CHERI minimizes the tag to a single bit, which can
be used to protect the integrity of the remainder of the meta-
data that may be stored in-line.

11.3 Capability Pointer Compression

CHERI Concentrate is based on CHERI-256 and inspired by
the M-Machine and Low-fat Pointers (which are thoroughly
discussed in Section 2).

11.4 Software Fat-Pointer Techniques

Software-only techniques for fine-grained protection have
achieved surprising performance, but have had largememory
overheads due to lack of compression. Baggy bounds [33], Soft-
Bound [34] and PAriCheck [35] dynamically check bounds of
fat pointers in software, and trade memory fragmentation for
improved performance.Cyclone [36] explicitly breaks compat-
ibility with C to define a safer C dialect that provides fine-
grained memory safety. Cyclone’s abstraction is close to the
CHERI model, but adds many static annotations. Although
Cyclone was not widely adopted, it influenced pointer anno-
tation in current C compilers. CHERI Concentrate can acceler-
ate such systems to allow precise checks, with negligible
performance overhead.

12 CONCLUSIONS

CHERI Concentrate resolves major roadblocks to the adop-
tion of capability fat-pointers for fine-grained, deterministic
memory protection. CC inherits the mature CHERI capability
semantics, enabling support for a wide software base. CC
also inherits the efficient Low-Fat compression techniques,
improving compression efficiency by eliminating one bit of
the bounds without losing precision and by encoding the
exponent within the bounds field, achieving the highest pub-
lished capability fat-pointer encoding efficiency. In addition,
we developed arithmetic operations that operate directly on
the compressed encoding. These allow the register file to
hold compressed capabilities, eliminating complexity on the
load path, and also allowmore flexible out-of-boundsmodifi-
cations required byCHERI semantics.

We validated our design by building an FPGA prototype
that achieves the same frequency as the original 256-bit
CHERI implementation. We extended CHERI LLVM to sup-
port CHERI-128 andCHERI-64 capability formats to runmul-
tiple benchmarks and applications under both a custom
embedded OS and FreeBSD with CHERI support. CHERI-64
and CHERI-128 provide a convincing performance improve-
ment over CHERI-256, reducing L2 cache misses by up to

75 percent for pointer-heavy benchmarks and greatly reduc-
ing the performance overhead versus unprotectedMIPS pro-
grams. Finally, formal proofs provide assurance that our
aggressive arithmetic optimizations do not compromise the
correctness of our capability implementation.

In conclusion, this work presents a major maturation
of the state of the art in implementing capability fat pointers,
and prepares the way for commercial adoption to harden
systems against security challenges to computer systems.

ACKNOWLEDGMENTS

This work is part of the CTSRD, ECATS, and CIFV projects
sponsored by the Defense Advanced Research Projects
Agency (DARPA) and the Air Force Research Laboratory
(AFRL), under contracts FA8750-10-C-0237, HR0011-18-C-
0016, and FA8650-18-C-7809. The views, opinions, and/or
findings contained in this paper are those of the authors and
should not be interpreted as representing the official views or
policies, either expressed or implied, of the Department of
Defense or the U.S. Government. Approved for Public
Release, Distribution Unlimited. We also acknowledge the
EPSRCREMSProgrammeGrant [EP/K008528/1], the EPSRC
Impact Acceleration Account [EP/K503757/1], Arm Limited,
and Google, Inc. We would also like to acknowledge Alex
Richardson, Lawrence Esswood, Peter Rugg, Peter Sewell,
Graeme Barnes, and Bradley Smith who assisted in various
capacities to complete thiswork.

REFERENCES

[1] J.Woodruff, R.N.M.Watson, D. Chisnall, S.W.Moore, J. Anderson,
B. Davis, B. Laurie, P. G. Neumann, R. Norton, and M. Roe, “The
CHERI capability model: Revisiting RISC in an age of risk,” in Proc.
41st Int. Symp. Comput. Archit., Jun. 2014, pp. 457–468.

[2] N. P. Carter, S. W. Keckler, and W. J. Dally, “Hardware support
for fast capability-based addressing,” SIGPLAN Notices, vol. 29,
no. 11, pp. 319–327, Nov. 1994.

[3] A. Kwon, U. Dhawan, J. M. Smith, T. F. Knight, Jr, and A. DeHon,
“Low-fat pointers: Compact encoding and efficient gate-level
implementation of fat pointers for spatial safety and capability-
based security,” in Proc. 20th Conf. Comput. Commun. Secur.,
Nov. 2013, pp. 721–732.

[4] E. Witchel, J. Cates, andK. Asanovi�c, “Mondrian memory prot-
ection,” ACM SIGPLAN Notices, vol. 37, no. 10, pp. 304–316, 2002.

[5] E. Witchel, J. Rhee, and K. Asanovi�c, “Mondrix: Memory isolation
for Linux using Mondriaan memory protection,” in Proc. 20th
ACM Symp. Operating Syst. Principles, Oct. 2005, pp. 31–44.

[6] J. Devietti, C. Blundell, M. M. K. Martin, and S. Zdancewic,
“HardBound: Architectural support for spatial safety of the C pro-
gramming language,” SIGARCH Comput. Archit. News, vol. 36,
no. 1, pp. 103–114, Mar. 2008.

[7] Intel Plc., “Introduction to Intel� memory protection extensions,”
Jul. 2013. [Online]. Available: http://software.intel.com/en-us/
articles/introduction-to-intel-memory-protection-extensions

[8] M. Wilkes and R. Needham, The Cambridge CAP Computer and Its
Operating System. New York, NY, USA: Elsevier, 1979.

[9] F. J. Pollack, G. W. Cox, D. W. Hammerstrom, K. C. Kahn, K. K. Lai,
andJ. R. Rattner, “Supporting Ada memory management in the
iAPX-432,” ACM SIGARCH Comput. Archit. News, vol. 10, no. 2,
pp. 117–131, 1982.

[10] BiiN CPU architecture reference manual, BiiN, Hillsboro, Oregon,
Tech. Rep., Jul. 1988. [Online]. Available: http://bitsavers.org/
pdf/biin/BiiN_CPU_Architecture_Reference_Man_Jul88.pdf

[11] R. N. M.Watson, P. G. Neumann, J. Woodruff, M. Roe, J. Anderson,
D. Chisnall, B. Davis, A. Joannou, B. Laurie, S. W. Moore,
S. J. Murdoch, R. Norton, and S. Son, “Capability hardware
enhanced RISC instructions: CHERI instruction-set architecture,”
Univ. Cambridge, Comput. Laboratory, Cambridge, U.K., Tech.
Rep. UCAM-CL-TR-876, Nov. 2015.

WOODRUFF ET AL.: CHERI CONCENTRATE: PRACTICAL COMPRESSED CAPABILITIES 1467

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 26,2023 at 10:02:35 UTC from IEEE Xplore. Restrictions apply.

http://software.intel.com/en-us/articles/introduction-to-intel-memory-protection-extensions
http://software.intel.com/en-us/articles/introduction-to-intel-memory-protection-extensions
http://bitsavers.org/pdf/biin/BiiN_CPU_Architecture_Reference_Man_Jul88.pdf
http://bitsavers.org/pdf/biin/BiiN_CPU_Architecture_Reference_Man_Jul88.pdf

[12] D. Chisnall, C. Rothwell, B. Davis, R. N. Watson, J. Woodruff,
M. Vadera, S. W. Moore, P. G. Neumann, and M. Roe, “Beyond
the PDP-11: Processor support for a memory-safe C abstract
machine,” in Proc. 20th Archit. Support Program. Lang. Operating
Syst., 2015, pp. 117–130.

[13] R. N. M. Watson, J. Woodruff, P. G. Neumann, S. W. Moore,
J. Anderson, D. Chisnall, N. Dave, B. Davis, K. Gudka, B. Laurie,
S. J. Murdoch, R. Norton, M. Roe, S. Son, and M. Vadera, “CHERI:
A hybrid capability-system architecture for scalable software
compartmentalization,” in Proc. 36th IEEE Symp. Secur. Privacy,
May 2015, pp. 20–37.

[14] J. Brown, J. Grossman, A. Huang, and T. F. Knight Jr, “A capability
representation with embedded address and nearly-exact object
bounds,” Project Aries Technical Memo 5, http://www.ai.mit.
edu/projects/aries/Documents/Memos/ARIES-05.pdf, Tech. Rep.,
2000.

[15] G. C. Necula, S. McPeak, andW. Weimer,“CCured: Type-safe ret-
rofitting of legacy code,” ACM SIGPLAN Notices, vol. 37, no. 1,
pp. 128–139, 2002.

[16] J. Evans, “A scalable concurrent malloc(3) implementation for
FreeBSD,” in Proc. BSDCan Conf., 2006.

[17] C. Lattner and V. Adve, “LLVM: A compilation framework for
lifelong program analysis & transformation,” in Proc. Int. Symp.
Code Generation Optimization: Feedback-Directed Runtime Optimiza-
tion, 2004, pp. 75–86.

[18] M. K. McKusick, G. V. Neville-Neil, and R. N. M. Watson, The
Design and Implementation of the FreeBSD Operating System. Lon-
don, U.K.: Pearson, 2014.

[19] M. Abadi, M. Budiu, �U. Erlingsson, and J. Ligatti, “Control-flow
integrity: Principles, implementations, and applications,” in Proc.
12th ACM Conf. Comput. Commun. Secur., 2005, pp. 340–353.

[20] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown, “MiBench: A free, commercially representative
embedded benchmark suite,” in Proc. IEEE Int. Workshop Workload
Characterization, 2001, pp. 3–14. [Online]. Available: http://dx.
doi.org/10.1109/WWC.2001.15

[21] A. Rogers, M. C. Carlisle, J. H. Reppy, and L. J. Hendren, “Supp-
orting dynamic data structures on distributed-memory machines,”
ACM Trans. Program. Lang. Syst., vol. 17, no. 2, pp. 233–263,
Mar. 1995.

[22] J. B. Dennis and E. C. Van Horn, “Programming semantics for
multiprogrammed computations,” Commun. ACM, vol. 9, no. 3,
pp. 143–155, 1966.

[23] R. Feiertag and P. Neumann, “The foundations of a Provably
Secure Operating System (PSOS),” in Proc. Nat. Comput. Conf.,
1979, pp. 329–334.

[24] P. G. Neumann, R. S. Boyer, R. J. Feiertag, K. N. Levitt, and
L. Robinson, “A Provably Secure Operating System: The system,
its applications, and proofs,” Computer Science Laboratory, SRI
International, Menlo Park, CA, May 1980. 2nd ed., Tech. Rep. no.
CSL-116. [Online]. Available: http://www.csl.sri.com/users/
neumann/psos/psos80.ps

[25] E. J. Koldinger, J. S. Chase, and S. J. Eggers, “Architecture sup-
port for single address space operating systems,” in Proc. 5th
Int. Conf. Archit. Support Program. Lang. Operating Syst., 1992,
pp. 175–186. [Online]. Available: http://doi.acm.org/10.1145/
143365.143508

[26] R. B. Lee, “Precision architecture,” Comput., vol. 22, no. 1, pp. 78–91,
Jan. 1989.

[27] F. J. Corbat�o and V. A. Vyssotsky, “Introduction and overview of
the Multics system,” in Proc. November 30–December 1, 1965, Fall
Joint Comput. Conf., 1965, pp. 185–196.

[28] Intel Corporation, “Intel 64 and IA-32 architectures, software deve-
loper’s manual, Volume 1: Basic architecture,” Intel Corporation,
Dec. 2015. [Online]. Available: https://software.intel.com/sites/
default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf

[29] N. Zeldovich, H. Kannan, M. Dalton, and C. Kozyrakis, “Hard-
ware enforcement of application security policies using tagged
memory,” in Proc. 8th USENIX Conf. Operating Syst. Des. Implemen-
tation, 2008, pp. 225–240. [Online]. Available: http://dl.acm.org/
citation.cfm?id=1855741.1855757

[30] A. DeHon, B. Karel, J. Thomas, F. Knight, G. Malecha, B. Montagu,
R. Morisset, G. Morrisett, B. C. Pierce, R. Pollack, S. Ray,
O. Shivers, J. M. Smith, and G. Sullivan, “Preliminary design of
the SAFE platform,” in Proc. 6th Workshop Program. Lang. Operating
Syst., Oct. 2011, Art. no. 4.

[31] U. Dhawan, C. Hritcu, R. Rubin, N. Vasilakis, S. Chiricescu,
J. M. Smith, T. F. Knight, B. C. Pierce, and A. DeHon, “Arch-
itectural support for software-defined metadata processing,” in
Proc. 20th Int. Conf. Archit. Support Program. Lang. Operating Syst.,
Mar. 2015, pp. 487–502.

[32] Oracle’s SPARC T7 and SPARC M7 server architecture, Oracle,
Tech. Rep., Aug. 2016. [Online]. Available: https://www.oracle.
com/assets/sparc-t7-m7-server-architecture-2702877.pdf

[33] P. Akritidis, M. Costa, M. Castro, and S. Hand, “Baggy bounds
checking: An efficient and backwards-compatible defense against
out-of-bounds errors,” in Proc. 18th Conf. USENIX Secur. Symp.,
2009, pp. 51–66. [Online]. Available: http://dl.acm.org/citation.
cfm?id=1855768.1855772

[34] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic,
“SoftBound: Highly compatible and complete spatial memory
safety for C,” in Proc. ACM SIGPLAN Conf. Program. Lang. Des.
Implementation, 2009, pp. 245–258. [Online]. Available: http://doi.
acm.org/10.1145/1542476.1542504

[35] Y. Younan, P. Philippaerts, L. Cavallaro, R. Sekar, F. Piessens, and
W. Joosen, “PAriCheck: An efficient pointer arithmetic checker
for C programs,” in Proc. 5th ACM Symp. Inf. Comput. Commun.
Secur., 2010, pp. 145–156. [Online]. Available: http://doi.acm.
org/10.1145/1755688.1755707

[36] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks, J. Cheney, and
Y. Wang, “Cyclone: A safe dialect of C,” in Proc. General Track Annu.
Conf. USENIX Annu. Tech. Conf., 2002, pp. 275–288. [Online]. Avail-
able: http://dl.acm.org/citation.cfm?id=647057.713871

Jonathan Woodruff received the bachelor’s
degree in electrical engineering from the University
of Texas at Austin, and the master’s and PhD
degrees in computer science from the University of
Cambridge. He is a research associate at the Uni-
versity of Cambridge, Department of Computer
Science and Technology. His research interests
include instruction-set support for security, micro-
architectural optimizations for security features,
and FPGAprototyping. He has authored 9 papers.

Alexandre Joannou received the degree of
engineering from Ecole Centrale d’Electronique
Paris, the master’s degreee in computer architec-
ture from Universite Pierre et Marie Currie and
the PhD degree in computer science from the
University of Cambridge. He is a research associ-
ate with the University of Cambridge, Department
of Computer Science and Technology. His
research interests include instruction modeling,
FPGA prototyping, and security. He is an author
of 3 papers and a member of the IEEE.

Hongyan Xia received the bachelor’s degree in
electrical and computer engineering from the Uni-
versity of Birmingham, themaster’s degree in com-
puter science from the University of Cambridge. He
is working toward the PhD degree at the University
of Cambridge, Department of Computer Science
and Technology. His current research interests
include memory safety for embedded systems and
secure real-time operating systems.

Anthony Fox received the bachelor’s and PhD
degrees in computer science from Swansea
University. He is a Principal Security Engineer at
Arm Ltd. His research interests include formal
models of instruction set architectures, interactive
theorem proving, and the formal verification of
compilers and machine code. He has authored
sixteen papers.

1468 IEEE TRANSACTIONS ON COMPUTERS, VOL. 68, NO. 10, OCTOBER 2019

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 26,2023 at 10:02:35 UTC from IEEE Xplore. Restrictions apply.

http://www.ai.mit.edu/projects/aries/Documents/Memos/ARIES-05.pdf
http://www.ai.mit.edu/projects/aries/Documents/Memos/ARIES-05.pdf
http://dx.doi.org/10.1109/WWC.2001.15
http://dx.doi.org/10.1109/WWC.2001.15
http://www.csl.sri.com/users/neumann/psos/psos80.ps
http://www.csl.sri.com/users/neumann/psos/psos80.ps
http://doi.acm.org/10.1145/143365.143508
http://doi.acm.org/10.1145/143365.143508
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
http://dl.acm.org/citation.cfm?id=1855741.1855757
http://dl.acm.org/citation.cfm?id=1855741.1855757
https://www.oracle.com/assets/sparc-t7-m7-server-architecture-2702877.pdf
https://www.oracle.com/assets/sparc-t7-m7-server-architecture-2702877.pdf
http://dl.acm.org/citation.cfm?id=1855768.1855772
http://dl.acm.org/citation.cfm?id=1855768.1855772
http://doi.acm.org/10.1145/1542476.1542504
http://doi.acm.org/10.1145/1542476.1542504
http://doi.acm.org/10.1145/1755688.1755707
http://doi.acm.org/10.1145/1755688.1755707
http://dl.acm.org/citation.cfm?id=647057.713871

Robert M. Norton received the bachelor’s and
PhD degree in computer science from the Univer-
sity of Cambridge. He is currently a research asso-
ciate, also with the University of Cambridge. His
research interests include architectural support
for security features including memory safety
and formal semantics of instruction sets. He has
authored 3 papers.

David Chisnall received the bachelor’s and PhD
degrees in computer science from Swansea Uni-
versity. He is a researcher with the Microsoft
Research Cambridge. His research interests incl-
ude hardware-language co-design and security.

Brooks Davis received the BS degree in com-
puter science from Harvey Mudd College. He is a
senior computer scientist at SRI International
based in Walla Walla, Washington. His research
interests include the operating systems, security,
and tools to aid the incremental adoption of new
technologies. He is the author of numerous
papers on the open-source FreeBSD operating
system. He is a member of the ACM and the
IEEE Computer Society.

Khilan Gudka received the bachelor’s, master’s
and the PhD degrees in computer science from
Imperial College London. He is a research asso-
ciate with the University of Cambridge, Depart-
ment of Computer Science and Technology. His
research interests include program analysis,
compilers, application compartmentalisation and
concurrency. He has authored 4 papers.

Nathaniel W. Filardo received the bachelor’s
degree in physics and computer science from
Carnegie Mellon University and the master’s and
PhD degrees in computer science from Johns
Hopkins University. He is a research associate
with the University of Cambridge, Department of
Computer Science and Technology. His research
interests include architectural security and static
type systems.

A. Theodore Markettos received the MA and
MEng degrees in electrical and information scien-
ces, and subsequently the PhD degree in com-
puter science, from the University of Cambridge.
He is a senior research associate with the
Department of Computer Science and Technol-
ogy, University of Cambridge. His research inter-
ests include hardware security, notably security
architectures and I/O security, FPGA design and
electronics manufacturing. He has authored 12
papers on related topics.

Michael Roe received the PhD degree in com-
puter science from Swansea University. He is a
senior research associate with the University of
Cambridge, Computer Laboratory. His research
interests include capability systems, crypto-
graphic protocols, and formal methods.

Peter G. Neumann received the AM, SM, and
PhD degrees from Harvard, and a Dr rerum natu-
ralium degree from Darmstadt. He is chief scien-
tist of the SRI International Computer Science
Lab (a not-for-profit research institution), involved
primarily in system trustworthiness – including
security, safety, and high assurance. In the com-
puter field since 1953, he has numerous pub-
lished papers and reports. He is a fellow of the
IEEE, ACM, and AAAS.

Robert N. M. Watson received the BS degree in
logic and computation with double major in com-
puter science from Carnegie Mellon University,
and the PhD degree in computer science from the
University of Cambridge. He is a University Senior
lecturer (associate professor) with the University of
Cambridge, Department of Computer Science and
Technology. His research interests span computer
architecture, compilers, program analysis and
transformation, operating systems, networking,
and security. He is amember of the ACM.

Simon Moore is a professor of computer engi-
neering in the Computer Architecture Group, Uni-
versity of Cambridge, Department of Computer
Science and Technology, where he conducts
research and teaching in the general area of
computer design with particular interests in
secure computer architecture. He is a senior
member of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

WOODRUFF ET AL.: CHERI CONCENTRATE: PRACTICAL COMPRESSED CAPABILITIES 1469

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 26,2023 at 10:02:35 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

