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In recent years, physical unclonable functions (PUFs) have gained a lot of attention as mechanisms for
hardware-rooted device authentication. While the majority of the previously proposed PUFs derive entropy
using dedicated circuitry, software PUFs achieve this from existing circuitry in a system. Such software-
derived designs are highly desirable for low-power embedded systems as they require no hardware over-
head. However, these software PUFs induce considerable processing overheads that hinder their adoption
in resource-constrained devices. In this article, we propose DTA-PUF, a novel, software PUF design that ex-
ploits the instruction- and data-dependent dynamic timing behaviour of pipelined cores to provide a reliable
challenge-response mechanism without requiring any extra hardware. DTA-PUF accepts sequences of instruc-
tions as an input challenge and produces an output response based on the manifested timing errors under
specific over-clocked settings. To lower the required processing effort, we systematically select instruction
sequences that maximise error-rate. The application to a post-layout pipelined floating-point unit, which is
implemented in 45 nm process technology, demonstrates the effectiveness and practicability of our PUF de-
sign. Finally, DTA-PUF requires up to 50× fewer instructions than existing software processor PUF designs,
limiting processing costs and resulting in up to 26% power savings.
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1 INTRODUCTION

The continuous scaling of transistor sizes and technology advances are driving the demand for
low-power portable devices [36, 64]. The International Data Corporation (IDC) [3] estimates
that there will be 41.6 billion devices connected to the Internet, generating 79.4 zettabytes (ZB)

of data in 2025. Therefore, with the advent of Internet of Things (IoT) era, secure communi-
cation among computing devices is of prime importance [6, 23]. Traditional security methods
(e.g., cryptography) [65, 75] require intense computations and thus are undesirable for low-power,
resource-constrained platforms. As such, research has been conducted into new lightweight and
low overhead techniques for addressing hardware weaknesses [45, 55, 79] as early as possible at
design cycle [12, 23]. Physical Unclonable Functions (PUFs) [35] are one security primitive,
which has been proposed in this space.

1.1 Physical Unclonable Function Overview

PUFs are security primitives that derive entropy from low level manufacturing process variation
in physical components. PUFs are good candidates to address the security problems of resource-
constrained computing platforms, especially in regard to device identification (ID) and authenti-
cation. PUF signatures are produced by a challenge-response protocol: a unique response (output)
is generated for a specific challenge (input). The form of the challenge and response is dependent
on the design and desired properties. The main target of a PUF design is to generate sufficient
entropy that each instance gives a unique response, while simultaneously ensuring the responses
are reliable—within a range of acceptable limits—under different environmental conditions [67].

Typically a PUF is implemented on a discrete chip, added as a component to a complex circuit, or
implemented on an FPGA. Such PUFs form the vast majority of PUF literature to date. The most
well studied designs are the arbiter PUF [31, 44], which generates entropy from the difference
in two identically placed delay paths with an arbiter at the end, and the Ring Oscillator (RO)

PUF [47, 67], which uses the difference in frequency between two nominally identical oscillators
to generate the response. Such studies have introduced designs with desirable security properties
but that are not always suitable for use in the context of resource-constrained and pre-existing
devices due to the need to make circuit design changes and add hardware components to carry
out the PUF function.

1.2 Software PUFs

A potential solution to these issues are software PUFs, the entropy of which is extracted from
circuitry already present in a system without modification and purely by means of software. These
PUFs have the advantage of having no hardware overhead and requiring no design changes to the
device hardware. In addition, as they are software-based, it is often possible to deploy such PUFs
onto devices that are already in use. Several such designs have been proposed [38, 43, 44, 48, 63].
By their nature, each software PUF design relies on the characteristics of an existing component
of hardware in the system. Hence, to allow these PUFs to be usable on a broad range of devices it
is necessary to have viable designs using as wide a range of underlying hardware as possible.

The primary example of a software PUF is the SRAM PUF [38], in which the PUF response is
formed from the power-on values of cells in SRAM memory modules. Although effective, SRAM
PUFs require power cycling to access the PUF response, which is not practical in all systems. De-
signs for software memory PUFs based on other memory technologies, such as DRAM and NAND
flash memory, have also been proposed [10, 25, 49, 61] though like the SRAM PUF specific condi-
tions are required for the PUF to be viable in a given system. For instance, not every electronic
device is equipped with DRAM and flash memories.
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In an attempt to widen the body of devices that can viably use a software PUF, the concept
of PUFs deriving entropy from a processor itself has been explored [43, 44, 48, 63]. Such designs
leverage processor delays, which are prone to variations, to derive the PUF challenge-response
mechanism. Although effective, and in some cases relatively lightweight, the majority of these de-
signs are not software PUFs and require additional hardware to achieve the PUF challenge response
mechanism [43, 44, 63]. The only existing software processor PUF [48] may generate responses
without the need of extra circuitry, but it requires onboard precise high-speed pulse generators.
Particularly, it requires the characterization of each instruction for various clock reduction levels to
achieve a sufficient number of response bits. This complicates the challenge-response mechanism,
which consumes a significant amount of time/power to produce unique outputs.

1.3 Contributions and Outline

In this article, we introduce DTA-PUF,1 a software PUF design that achieves unique and reliable re-
sponses with a minimal power overhead compared to existing designs. By leveraging timing errors
of structures inherent to microprocessors instead of building additional circuit/logic, we propose
a low-power PUF architecture. The basic principle of the proposed DTA-PUF lies in the system-
atic exploitation of the dynamic timing behaviour of logic, which has never been fully exploited,
to minimise processing effort. The proposed PUF design is derived from ubiquitous circuitry and
hence can be employed to many platforms—especially to those requiring low-power computations
such as IoT devices. The main contributions of our work can be summarized as follows:

• We develop a novel, processor-based, software PUF design leveraging the instruction- and
data-dependent timing behaviour of pipelined cores. DTA-PUF derives entropy from the in-
herent complex manifestation of timing errors under carefully selected overclocked settings.
Revealing such properties require pre-fabrication simulations, which we perform at one of
the most accurate phases before the actual manufacturing, i.e., at post-layout timing analysis
phase.
• We implement a design flow using commercial tools that allow us to systematically select

instruction sequences that maximize timing error rates in any target pipelined core. DTA-
PUF requires considerably smaller size of input challenge than comparable designs to pro-
vide the challenge-respone mechanism, limiting required processing efforts and leading to
power savings.
• We demonstrate the concept on a pipelined, out-of-order, IEEE-754 compliant [1] floating-

point unit (FPU) implemented in 45 nm process technology. The generated PUF responses
are evaluated with regard to several statistical quality metrics including uniqueness, min-
entropy and reliability. Our results show high values of uniqueness, min-entropy and relia-
bility among the evaluated chips.

The article is organized as follows: Section 2 outlines background information and limitations of
existing processor-based PUFs. Section 3 introduces the proposed PUF design, while Section 4 dis-
cusses the implementation of the proposed DTA-PUF. Section 5 presents the experimental results
and Section 6 discusses related work. Conclusions are drawn in Section 7.

2 BACKGROUND AND MOTIVATION

In this section, we provide background information and discuss the most common processor-based
PUF designs, analysing the challenges that motivate our work.

1DTA-PUF: Dynamic Timing-aware Physical Unclonable Function.
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2.1 PUF Designs - Background

PUFs are typically characterised by a set of input challenges and corresponding output responses.
These are referred to as Challenge-Response Pairs (CRPs), the form of which vary depending
on the PUF design. It is generally assumed for a PUF design being used for hardware ID that some
agent, either the system provider or the user, will initially characterise the PUF to derive the full
set of CRPs. It is further assumed that this information will be stored somewhere separate from
the PUF. This is referred to as “enrolment.” When the system needs to be verified a given challenge
will be sent to the PUF and the response will be compared to the expected value. This is referred
to as “query.”

Depending on the number of CRPs that can be generated from a single device, PUFs can be
distinguished into weak and strong PUFs:

Strong PUFs are those PUFs that have a very large CRP space. Ideally, a PUF classed as such
should have a CRP space that grows exponentially with the resources dedicated to the PUF. PUFs
that have only a linearly increasing CRP space are not typically classed as strong PUFs. Strong
PUFs are the more well studied class of PUF, but have seen minimal adoption. This is in part due
to the proven vulnerability of many strong PUFs to modelling via machine learning (ML) [28, 60],
though in recent years proposals to mitigate this issue have been made [50].

Weak PUFs are those PUFs that have a relatively small CRP space—in many cases only a single
CRP as in the case of SRAM PUFs [38]. Despite being labelled as “weak,” these PUFs have seen much
more usage in practice as they generally have quite a high cost for an adversary to model [20, 59].
Typically, weak PUFs are jointly considered with cryptographic methods [74] (e.g., encryption) to
compensate for CRP scarcity.

2.2 Variability in Nanometer Circuits

Several PUFs leverage intrinsic timing variations of circuits to provide secure protocols [43, 44,
48, 63]. In fact, the microelectronic substrate, on which modern circuits are built, is increasingly
prone to variability. Most profound is the variation in circuit parameters of the manufactured chips
(1) within die, (2) die-to-die, and (3) over time.

Within-die (intra-die) variations account for the the variations that arise between different
devices and interconnects that reside within the same chip. There are different sources of these
variations (e.g., process, voltage, temperature, and environmental factors) and may result up to
50% frequency fluctuations [34].

Die-to-die (inter-die) variations refer to the variations that arise between different chips in
the same wafer or different wafers. Die-to-die variations are mostly design independent and are
mainly related to equipment properties (e.g., wafer placement, manufacturing lithography).

Over time variations. Wires and transistors in integrated circuits suffer substantial wear-out,
leading to power and performance changes over time of usage. One of the main sources of such
dynamic variations is the phenomenon of device aging, which became much more troublesome
for the sub-45 nm nodes [7].

Such variations affect the point of first failure [17] and thus the safe clock frequency between
different chips or different cores within the same chip. To mitigate such phenomena, design-
ers apply a global frequency constraint that forces all the manufactured chips to operate at dif-
ferent frequency groups [57] depending on the minimum frequency achieved in their cores. In
Section 5.2, we use this performance or speed grouping of chips to represent delay variations
effects.
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Fig. 1. Delay and point of failure (PoF) variations of the same timing path across variable chips.

2.3 Processor-based PUFs

Those entirely software-based, processor PUFs proposed to date accept instructions as input chal-
lenge and take advantage of the fact that the point of failure of a given instruction and path delays
vary from chip to chip to generate the output response.

To better illustrate how these PUFs work, let us assume a synchronous processor consisting of a
set of N combinatorial paths P = {P1, P2, . . . , PN }, which are characterized by their delays D (Pi )2

for i = 1, 2, . . . ,N . As in any synchronous design, the conventional static timing analysis (STA)

evaluates the longest timing path across all S pipeline stages and determines the the clock period
(ClkP ) at design time, such as

ClkP � max
s=1....S

{
max
p∈Ps

{
D (p)
}}
= max

p∈P

{
D (p)
}
, (1)

where Ps is the set of paths of pipeline stage s (s = 1, 2, . . . , S). During circuit operation, the
executed instruction activates a path Pi that has a positive timing slack, slackPoF = ClkP − D (Pi ),
until the point of failure (PoF). Under any clock period reduction, also known as overclocking,
more than slackPoF , the activated path Pi will fail, since D (Pi ) > ClkP , leading to a setup timing
error [13]. Figure 1 provides an example where due to variations the same path Pi has variable
delay (D (Pi )) and PoF (slackPoF ) in different chips. Based on this figure, a processor PUF takes an
instruction Ii as input challenge chi , which sensitizes Pi , and generates an output response resi

exploiting variations in D (Pi ) and slackPoF .

2.3.1 Non-software Processor-based PUFs. The majority of the existing processor PUFs extract
entropy from path delay variations by introducing new circuitry to the processor for the purposes
of response generation and extraction. In some cases, this is simply the addition of arbiters to
measure existing delay paths [44], in others custom cores [8], and in others signal generation
circuitry [5, 78, 81]. Such approaches require design changes to already complex circuits and incur
a cost in terms of hardware resources, power budget, or both. These drawbacks limit their adoption
in industry, especially in low-power platforms. A full discussion of the various processor-derived
designs proposed to date can be found in Section 6.

2.3.2 Software Processor-based PUFs. In an effort to trim down the overheads induced by non-
software PUFs, a software processor PUF [48] has been proposed. To the best knowledge of the

2D (Pi ) also considers the clock-to-output delay and the setup time of a register [13].
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authors this is the only fully software-based, processor-derived PUF design proposed to date. In
this design, the response bits are generated by exploiting the fact that a given instruction fails
under different frequency points across different chips. As such, it requires no extra circuitry or
design changes to extract responses so long as the clock frequency can be controlled to induce the
necessary instruction failures. Although effective, such an approach requires precise overclocking
to a wide range of values and a high number of repeated instruction calls to generate just 2 bits of
a response. Further, the overall CRP space is limited by the resolution of the clock. Each distinct
clock period can generate only 2 bits per unique instruction, requiring a considerable number of
instructions executed at different overclocking levels to generate an adequate output response
(e.g., 128-bit response). While subsequent studies have tried to address these issues via added
custom instruction logic [8], we demonstrate in this work that it is possible to generate PUF re-
sponses quickly and with much lower power consumption, while retaining a fully software-based
design. This is achieved by targeting pipeline cores and through the careful selection of instruction
sequences as input challenges.

2.4 Dynamic Timing Behaviour and Instruction Execution History

The existing software processor PUF [48] exploits the data-dependent path activation [30] to gen-
erate unique responses. However, it neglects the impact of instruction execution history (i.e., type
and order of instructions within a pipeline at any instant) on the dynamic timing behaviour of
computational paths. Instructions that are executed concurrently (i.e., they share the same hard-
ware circuitry in a time-sharing fashion) may affect the possibility of timing errors, because these
instructions share control signals and execution stages, affecting the state of the forwarding logic,
and thereby place great demand on circuit timing deadlines [69, 70]. In a previous study [37], it
was shown that instruction sequences (ISQs) have a significant impact on timing error rates,
but they have not indicated how many instructions within a sequence affect this dynamic tim-
ing behaviour. Intuitively, all those instructions that precede an instruction in the pipeline may
have an effect on the timing error behaviour of this instruction. To investigate this, we extract real
floating-point instructions executing on an ARM A7 board. To achieve this, we extend an open-
source profiling tool [52] and extract a trace of 1M floating-point ISQs from the bt program of NAS
benchmark suite [11]. Then, we run post-layout gate-level simulation (see Section 4.2) based on
this trace of an FPU, the details of which will be discussed later (see Section 5.1). We simulate this
trace in windows of increasing number of concurrently executed instructions under 15% clock re-
duction. Specifically, we start simulation with a window size of 1 instruction and increase it up to
the pipeline depth, which is six stages in the FPU under test. Each experiment records the timing
error rate (ER), defined as

ER =
Faulty ISQs

Total ISQs
. (2)

Figure 2 indicates that sequences consisting of six instructions have exactly the same ER when
running the full trace (full history) through simulation. By contrast, a window size of one instruc-
tion leads to ∼46.6% lower ER when compared to the six-instruction window. From these findings,
we conclude that all the pipelined instructions preceding the currently executed instruction may
trigger a timing error in that instruction.

Taking into consideration the above, we propose DTA-PUF: a processor PUF design that over-
comes the limited response bit generation and minimises processing/power overheads by fully
exploiting all the factors that affect error rate in pipelined units. The design is described in detail
in the following section.
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Fig. 2. Impact of instruction execution history on errors.

Fig. 3. Challenge response mechanism of DTA-PUF.

3 PROPOSED SOFTWARE PUF

DTA-PUF is a novel software PUF that extracts entropy with minimal resource usage by fully
exploiting the dynamic timing behaviour of microprocessor circuits. DTA-PUF aims to jointly
consider the inherent complexity of timing error manifestation with the intrinsic chip variations,
proposing a new approach that inseparably intertwines PUF performance with dynamic error be-
haviour of pipelined cores. Our PUF implementation and evaluation rely on detailed post-layout
gate-level simulation, which is one of the most accurate, pre-fabrication steps of the standard ASIC
flow used in industry [58]. Figure 3 shows the proposed PUF design for generating the challenge-
response mechanism.

3.1 Challenge Procedure

In this work, the input challenge consists of a set of N instructions I = {I_1, . . . , I_N }. An instruc-
tion is composed of a string of k bits. It is important to note that these instructions are carefully
selected to activate timing critical paths that maximise timing errors under a potential clock re-
duction. To this end, we use microarchitecture-aware timing information extracted at the design
cycle (see Design Phase of Figure 4). As already explained, instruction execution history plays
an important role in timing error manifestation. To create an execution history-aware challenge,
while considering the data-dependent error occurrence, we split I into sequences ISQ_n consisting

of d instructions such that ∪N /d
n=1 ISQ_n = I .
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Fig. 4. Design and analysis phases of DTA-PUF.

3.2 Microprocessor Operation

The generated challenge is then given as an input to the target microprocessor. This PUF accepts
I as a challenge and produces the count of the bit errors in the output of the microprocessor as
the response. Since I consists of N instructions (or N /d ISQs), the microprocessor outputs a string
consisting of N × p bits, where p depends on the architecture of the design under test. Timing
errors are captured by operating the microprocessor pipeline at a reduced clock period, known
as overclocking. We refer to the magnitude of this clock reduction as ΔT . Note that ΔT should
not exceed a certain clock period beyond which the microprocessor fails completely (we refer to
as Tf ail ). In particular, ΔT should be between PoF and Tf ail such that Tf ail > ΔT � PoF . It is
important to mention that such an overclocking technique is applied to target microprocessor
when it operates as a PUF; during the normal operation, the nominal clock period is used (see
Section 3.4).

3.3 PUF Response

The response is extracted from the output of the ISQs by counting the bit errors of the final in-
struction in each sequence. While in some cases multiple erroneous instructions occur within a
sequence, we observed that the greatest entropy was achieved only in the final instruction of a
sequence of d instructions. Additionally, we observed that some bits had near zero entropy, and
thus were not useful for constructing the response. This is explained in further detail in Section 5.
The number of errors is encoded as a 6-bit binary value (the amount of bits needed to represent the
possible error values of the 64-bit output minus the excluded bits). These values are concatenated
to create a response of the desired length. For example, assume an n =18-bit response is required.
Three ISQs are used that produce 1-, 9-, and 7-bit errors, respectively. The corresponding binary
responses would be 000001, 001001, and 000111. The resultant 18-bit response is the concatenation
of these bit strings, i.e., 000001001001000111.

3.4 Microarchitectural Support

The target microprocessor supports two modes: (i) the normal, fully accurate mode where a set
of instructions executed in the pipeline at the nominal clock period, and (ii) the PUF mode where
the microprocessor operates at a reduced clock period. To this end, we extend the instruction set
of microprocessor by two special instructions PUFstart and PUFstop. PUFstart indicates that
the microprocessor will explicitly operate as a PUF (PUF mode). Once the PUF response has been
generated, the PUFstop instruction forwards the PUF response and switches the microprocessor
to the normal operation mode. Since the PUF mode disrupts the microprocessor normal operation,

ACM Journal on Emerging Technologies in Computing Systems, Vol. 17, No. 3, Article 32. Publication date: August 2021.



Dynamic Timing-aware Physical Unclonable Function 32:9

there is an execution time overhead on programs executed in normal mode. However, as we will
explain in Section 5.6, DTA-PUF’s high bit generation speed limits such overhead.

4 IMPLEMENTATION WORKFLOW

The implementation workflow of DTA-PUF is depicted in Figure 4. The design phase is being
executed only once, while the analysis phase runs for each challenge.

4.1 Design Phase

The first step of this phase is the Synthesis, which is followed by the Place and Route steps. These
steps are performed utilizing optimizations that aim to achieve maximum performance. The design
phase outputs the following files:

(i) A library verilog file, which specifies the logic and the rise and fall times of the standard
cells.

(ii) A gate-level netlist, which is stored in a verilog format (.v). This file consists of a list of the
electronic components in the circuit and a list of nodes they are connected to.

(iii) A standard delay format (SDF) file, which describes the cell and interconnect delay. This
file is obtained at the Place and Route step.

Design phase also generates a timing report that includes delays of the timing paths. This helps
to create an input challenge set (see Section 3.1) that activates timing critical paths, leading to an
increased number of timing errors at a reduced clock period.

4.2 Analysis Phase

Dynamic Timing Analysis (DTA). To enable characterization of the data-dependent path acti-
vation, we perform DTA using post-layout gate-level simulation. DTA identifies the actual timing
margins of the target core at runtime by including path activation information (instruction type,
operand values, pipeline sequence) that is unavailable during static timing analysis. The DTA tool
uses as input the generated challenge (see Section 3), the outputs of the design phase and the set
clock period. Providing that every set of instructions under nominal conditions and clock period
produces an error-free output, we define this simulation output as Oдold . We estimate the num-
ber of timing failures by comparing Oдold with the simulation output under the reduced clock
period. Timing errors in the final instruction of each ISQ are then used to form an n-bit PUF re-
sponse. Based on the output response, we utilize three quality metrics to evaluate the DTA-PUF
performance: uniqueness, min-entropy and reliability.

Such an analysis phase also helps to extract a value change dump (VCD) file essential for
power analysis. This file contains information about the switching activity and value changes
occurred during the simulation.

5 EVALUATION RESULTS

In this section, we first present our experimental set-up. Second, we evaluate the efficacy of DTA-
PUF for generating unique and reliable responses. Third, we estimate any possible power gains
by exploiting the high bit generation speed of DTA-PUF compared to an existing processor-based
software PUF design. Then, we present several use cases of DTA-PUF and last, we discuss our PUF
vulnerability to potential attacks.

5.1 Experimental Set-up

For the case study of using DTA-PUF, we focus on arithmetic, floating-point operations, since
those are more prone to timing errors, as also reported by existing studies [15, 40, 48, 72].
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Fig. 5. Microarchitecture of the floating-point additions/subtraction related stages.

We apply our approach to a six-stage pipelined, out-of-order, IEEE-754 compatible [1] FPU
that supports double precision operations. According to the IEEE-754 Standard, a floating-point
number follows the representation −1S × M × 2E , where S: sign, E: exponent, and M: mantissa.
In a double precision FP number the most significant bit (MSB) indicates the sign, the next
11 bits represent the exponent and the mantissa consists of the last 52 bits. This unit is part of
the mor1kx MAROCCHINO pipeline, which is a single-core processor based on the OpenRISC-
1000 instruction set architecture [4]. The FPU supports the following floating-point instructions:
multiplication, division, addition and subtraction, integer-to-float and float-to-integer conversions.
Figure 5 illustrates the microarchitecture of the targeted FPU, highlighting the floating-point addi-
tion/subtraction. At Stage 1, an Order Control Buffer and a Pre-Normalize block are implemented,
which permits data dependencies detection and adjustment of the exponent and mantissa, respec-
tively. Stage 2 is responsible for the pre-addition/subtraction alignment, while Stage 3 performs
the necessary multiplexing and shifting of the operands. Mantissa addition and exponent update
are performed at Stage 4; rounding occurs in the last two stages.

Based on OpenRISC 1000 instruction set architecture and IEEE-754 Standard, the input challenge
of the PUF consists of N instructions from k = 140 bits each. We simulate these instruction in
sequences consisting of d = 6 instructions, where d corresponds to the pipeline-depth of the FPU
under test and thus to the maximum number of concurrently executed instructions in the pipeline.
While simulation output of the FPU is composed of p × N bits, where p = 64. N strongly depends
on the number of the bits in PUF response (see Section 5.5).

This FPU design is implemented using the typical corner of the CCS NanGate 45 nm library
(@1.1 V) [2]. For hardware Synthesis and Place and Route, we use the Design Compiler (version:
N-2017.09-SP3) from Synopsys and Innovus (version: v16.13-s0451) from Cadence, respectively. For
the power measurements, we invoke Voltus (version 16.2) from Cadence. DTA is performed using
detailed post-layout gate-level simulation supported by ModelSim (version 10.7c) from Mentor
Graphics. The maximum clock frequency achieved is 425 MHz, i.e., ClkP = 2.35 ns. For these
experiments, we capture timing error by reducing ClkP by ΔT = 30%. We refer to the reduced
clock period as ClkPr ed = 1.65 ns.

5.2 Representing Delay Variability of Integrated Circuits

Due to increased static and dynamic variations of nanometer circuits, the delay of chips after
fabrication will be different (see Section 2). In fact, such a delay uncertainty is manifested in the
form of core-to-core and chip-to-chip frequency variations. As explained in Equation (1), the clock
frequency/period can be modeled as the maximum delay of all the timing paths in the chip under
test. For example, in the Intel’s 65 nm 80-core chip (@1.2 V) [34], the maximum core frequency
is achieved at 7.3 GHz, whereas the minimum one is 5.7 GHz. Such a frequency fluctuation has
been also observed between different chips [14, 21, 34, 41]. The most common technique to model
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Fig. 6. Speed binning. Random/Gaussian distribution of clock period across the considered chips.

this, is the so-called speed or frequency binning [19, 62], where different chips (that implement
the same functionality) fall into separate speed/frequency bins.

Therefore, we sort the considered chips within 10 clock frequency bins depicted in Figure 6.
Following [16, 44, 77], we also assume that clock period variations in different chips follows a
random/Gaussian distribution N (μ,σ 2) with σ = 0.08 ns and μ = ClkPr ed = 1.65 ns. We vary the
clock period between −3σ to +3σ from ClkPr ed and the clock period of each chip is estimated as
follows:

Clk_Cm = ClkPr ed ±Tvarm ,

where m (m ∈ [1, 50]) denotes the total number of considered chips and Tvarm (Tvarm ∈
[−3σ ,+3σ ]) the deviation ofClk_Cm fromClkPr ed . In other words, this clock stretching technique
represents as a single factor the overall influence of potential worst-case delay variations between
chips. Additionally, the levels of variation-induced delay fluctuations (i.e., σ and Tvarm ) used in
these experiments are consistent with what have been reported in literature [14, 34, 43, 63]. It is
important to note that such a technique does not provide a perfectly accurate representation of
real hardware; however, it sufficiently reflects the actual timing behaviour of circuits after fabri-
cation as recently indicated [40, 73]. Nonetheless, such a delay representation is based on detailed
post-layout gate-level simulation, which is among the final steps of the typical ASIC design flow
used in industry [58]. In general, in the IoT regime where million of devices are connected to the
Internet, there is a need to address hardware security challenges and validate the effectiveness of
security protocols at design cycle, i.e., before the actual manufacturing of the chips.

Overall, we perform 50 simulations, representing m = 50 different chips. Based on Gaussian
distribution properties, we randomly select 34 chips (68% of total chips) from bin 3 to bin 6 and 16
chips from the rest of the bins. The plots in Figures 7, 8, and 9 reflect this setting.

5.3 Uniqueness

In this subsection, we evaluate the effectiveness of our PUF in generating unique response to a
given challenge in any two randomly selected chips in the overall population.
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Fig. 7. Uniqueness distribution of the analysed CRPs using (a) 9M instructions with no post-processing and

(b) best-case selection of 90K instructions with minimal processing effort.

Uniqueness is calculated here by comparing the response of each chip to every other chip in the
population as shown below, where m is the number of PUFs in the population, Rn is the response
of a given PUF instance, and n is the number of response bits:

U =
2

m(m − 1)

m−1∑
i=1

m∑
j=i+1

HD (Ri ,R j )

n
× 100%. (3)

Ideally, the uniqueness of all the possible CRPs will be a normal distribution centred around 50%.
As can be seen in Figure 7, the median uniqueness of this design is in the order of 26%. Note that
we use |I | = 9M or 1.5M ISQs as input challenge across m = 50 chips/simulations to extract the
uniqueness distribution depicted in Figure 7(a). Some ISQs show higher uniqueness than others
across the entire population of devices and as such it is possible to be more selective when choosing
which ISQs will be used as CRPs to improve the uniqueness value at the cost of reducing the CRP
space. When such a technique is applied to select the best 90K rather than 9M instructions as in
the full experiments, the average uniqueness increases to 27.9%. Additionally, if certain bits are
excluded from the raw response and the resultant error rate encoded as a 6-bit response along
with the previous technique, then the average uniqueness further improves to 31.4%; and it is
likely that with further development this could be improved at the cost of increased complexity.
The derivation of this 6-bit response is thoroughly explained in Section 5.4 below.

5.4 Min-entropy

Min-entropy (Hmin ) measures the worst-case entropy of the design, i.e., the minimum difference
that will be seen between any two instances in the worst-case. The ideal value of 100% will be
measured in a design in which any given bit being equal to 0 or 1 is equal probable. Min-entropy
is calculated as follows for an n-bit response measured acrossm devices, where Pbmax denotes the
maximum bit probability:

Pbmax =

⎧⎪⎪⎪⎨
⎪⎪⎪
⎩

HWb

m
HWb >

m
2

1 − HWb

m
HWb ≤ m

2

, (4)
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Fig. 8. Distribution of Min-entropy across output bits. X axis depicts the sign (S) bit, the exponent (E) bits,

and the mantissa (M) bits.

Hminb = −loд2 (Pbmax ), (5)

Hmin =
1

n

n∑
b=1

Hminb . (6)

An initial evaluation of Hmin was performed using the raw 64-bit output of every instruction
in the instruction set for all devices, i.e., for n = 64 andm = 50, to evaluate if the raw output itself
was usable as a PUF response. The encoding of bits into PUF responses in this case was kept as
simple as possible, with the each bit of the response being a 0 if the bit was the expected output
and a 1 if the bit was erroneous. The average Hmin measured across this set of instructions was
11.68%, which is very low. However, it was observed that there were distinct trends, when the
bitwise Min-entropy (Hminb) was averaged across the instruction set.

First, the sign and exponent bits had near zero min entropy. This matches with what would be
expected as the uppermost bits of a pipelined core are in general the least prone to error, mean-
ing that these bits across almost all instructions were the expected value and hence produced a
0 in the PUF response. Further, even within the mantissa bits the first 10 bits were much lower
in terms of average Hminb; and while after this point the values remain relatively high, there are
still distinct peaks and troughs. This can be clearly seen in Figure 8. From this, it can be implied
that it is beneficial to exclude specific bits from the output when encoding the response as these
bits will very rarely generate any errors, and hence will produce near identical response bits even
across a relatively large number of challenges such as the 9M instructions evaluated here. Conse-
quently, we select to filter out the low entropy bits and compare only the output of the bits that
are likely to generate errors when forming the response. Specifically, the worst 33 bits in terms
of Hminb were excluded and the error rate of the remaining 31-bit output was encoded using 6
bits. Even then, the average Hminb is still only in the order of 15%, however, this can be further
improved by encoding the bit error rate as the response rather than the raw output, in which case
the overall average Hmin increases to 25.78%. This combined with more selective choice of ISQs
when forming challenges can also increase the uniqueness of the design to 31.4%, as can be seen in
Figure 7(b).

Each of these improvements in Hmin and uniqueness come at the cost of lowering the amount
of bits generated per ISQ. With only the simplest post processing, 64 bits are generated per ISQ,
while in the final scheme this is reduced to 6. However, even with this reduction in throughput, the
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Fig. 9. Average reliability of response generation across different levels of environmental induced delay

increase.

number of instructions required in comparison to existing fully software-based, processor-derived
PUFs is still greatly reduced with a corresponding reduction in the power consumption. This is
explained in Section 5.6.

5.5 Reliability

As they exploit low level variations in the circuit fabrication, PUFs are often vulnerable to influence
from environmental factors such as transistor aging or supply voltage fluctuations [7]. Reliability
measures the amount by which the response of a given chip will vary under non-nominal envi-
ronmental conditions. Reliability has been calculated by comparing a set of responses measured
under varying conditions to a reference response, where m is the number of measurements taken,
Rref is the reference response, Ri is the response under varying environmental conditions, and n

is the number of response bits:

Rel =
1

m

m∑
i=1

HD (Rr ef ,Ri )

n
× 100%. (7)

As our evaluation results are based on an accurate, post-layout gate-level simulation (see Fig-
ure 4), we have added an additional delay increase on top of the static delay variance, reflecting
dynamic/over-time variations of the same chip. To provide a robust analysis of the likely PUF
performance, we have measured the average reliability under increasingly high, environmentally
induced variation up to 5% [43, 63].

As depicted in Figure 9, even under relatively large amounts of environmentally induced vari-
ance, the average reliability does not drop below 74%. Further, so long as this variance can be
controlled such that it does not exceed 3.2%, the average reliability will remain above 80%. This
is insufficient for use as input to a cryptographic algorithm, but it suffices for the purpose of
chip ID or IoT node ID. The three primary sources of such dynamic variance in this instance
are temperature, supply voltage, and transistor-aging. In regards to temperature and supply volt-
age, we can mitigate the influence of these factors by enrolling the PUF initially at a variety of
temperature-voltage combinations [56]. The current supply voltage and temperature can then be
passed as supplementary data with the response, such that the PUF response can be compared
with the expected response for the temperature and voltage that is closest to the current condi-
tions. To account for transistor aging, it is possible to completely or partially re-enrol the PUF after
a set period or to provide low cost, aging-aware mechanisms [7]. Re-enrolling our PUF induces an
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Fig. 10. Power consumption and required number of instructions across DTA-PUF and the existing software

processor PUF [48] under different response bits.

execution time overhead on the executed application, but as we explain in Section 5.6, the high-
speed response generation keeps this overhead small. The circuit level, aging-aware technique pre-
sented in Reference [7] explores approximate computing principles [51, 80] in the context of aging.
Thus, it comes with an output quality loss that may be accepted by many applications [24, 33]. Spe-
cific methods to improve the reliability of this design are planned for future work, but are out of
scope for this article.

5.6 Power Consumption, Execution Time, and Output Response

Using the simple concept explained in Section 3.3, we generate 6 response bits per each ISQ (i.e., 6
bits per 6 instructions) in the input challenge. Therefore, the number of the instructions needed for
ann-bit response is: �n/6�·6. For example, we will need an input challenge consisting of 132 instruc-
tions (or 22 ISQs) to generate an 128-bit response. Conversely, the existing fully software-based
processor PUF [48] (we refer to as soft-PUF) uses 12.8k instructions as challenge to generate the
128-bit response. Using the analysis phase of Figure 4 and the extracted VCD files (see Section 4),
we estimate the dynamic power consumption under different number of response bits. Figure 10
compares the power consumption incurred by our PUF with the one obtained by soft-PUF across
increasing number of response bits. The number of the instructions that DTA-PUF and soft-PUF
require for generating responses is also depicted in the right y axis of the same figure. Note that for
the sake of this comparison, we simulate the target FPU using different number of instructions re-
quired for DTA-PUF and soft-PUF to generate the n-bit response. As shown in Figure 10, DTA-PUF
requires up to 50× less instructions than soft-PUF to generate output responses. Such a property,
allows DTA-PUF to save up to 26% power when compared with soft-PUF.

As we discussed, DTA-PUF interrupts normal microprocessor operation and uses the target
design only as a PUF. This imposes an execution time penalty on the executed applications, which
strongly depends on the number of instructions required to generate an n-bit PUF response. In fact,
this penalty will be equal to the execution time of the PUF query procedure. To better understand
the involved overhead, we define the execution time (ExT ) of any PUF running at ClkPr ed as

ExT = #cycles ×ClkPr ed = (#instructions + pipeline_depth) ×ClkPr ed . (8)

As explained, DTA-PUF requires 132 instructions to generate an 128-bit response leading to
ExTDT A−PU F = 138 × ClkPr ed . When compared to the execution time overhead incurred by
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soft-PUF for generating the 128-bit response (ExTsof t−PU F = 12806×ClkPr ed ), DTA-PUF reduces
the execution time penalty by ∼92.8×.

5.7 Potential Use Cases

As shown, DTA-PUF achieves a low-power security primitive without needing any hardware ad-
dition. Such a PUF can be used in any (micro)processor to provide a secure challenge-response
mechanism. Additional use cases of DTA-PUF are discussed next.

5.7.1 IoT Device Identification and Authentication. Lightweight and low cost authentication and
identification are very important security aspects for IoT devices, because they often cannot af-
ford resource-demanding cryptographic protocols. DTA-PUF is a fully software-derived (i.e., no
need for extra circuitry or design changes), low-power solution to secure IoT. Further, DTA-PUF
proposes a simple and fast challenge-response mechanism that generates relatively large output
responses, while limiting the processing effort and size of input challenges. Therefore, DTA-PUF
could be extremely beneficial for low-power device ID and authentication in IoT nodes or in any
other system that lacks computational resources [29].

5.7.2 DTA-PUF and Approximate Computing. DTA-PUF leverages the inherent complex mani-
festation of dynamic timing errors to provide a lightweight secure protocol. In our design, timing
errors are induced by overclocking the design under test. Increasing the clock frequency (i.e., re-
ducing the clock period) [18, 66] or decreasing the supply voltage [42, 71] are common techniques
that the approximate computing paradigm [51, 80] exploits to significantly reduce the energy con-
sumption of a system. Frequency and voltage scaling may increase the energy savings, but as
we showcase in this article, it comes with the cost of timing errors. The quality loss incurred by
these errors [41, 71, 73] may be tolerated by inherent resilient algorithms such as signal/image
processing, machine learning and scientific computation [24, 33]. In this space, there are design
methodologies that opportunistically ignore timing errors in memory units [26] and CPUs [32, 66],
trading off energy, output quality and error resiliency.

Hence, DTA-PUF could be jointly considered with approximate computing methods [46] to offer
resource and power/energy savings, while sacrificing quality in applications that are amenable to
approximations and can tolerate inaccurate results. In such a system, the PUF responses could be
extracted from the error prone least significant bits of approximate computations. As shown in
Section 5.4, the bits in which error can be tolerated in approximate calculations are also the bits
from which the best PUF response can be extracted. A scheme making proper use of this principle
could in effect generate PUF responses while incurring near zero power and execution time costs
relative to normal operation.

Finally, modern platforms allow operations beyond the nominal voltage/frequency values for
improving energy efficiency [9, 53, 54, 68]. This makes it possible to integrate DTA-PUF in these
platforms without requiring any extra mechanism (e.g., clock generator, voltage regulator) to dy-
namically adjust the voltage or frequency margins.

5.8 Discussion on DTA-PUF Vulnerability to Attacks

The proposed PUF leverages the data-dependent dynamic timing behaviour of pipelined cores to
generate unique and reliable responses. At the most fundamental level, the entropy source is the
variance in delays within the core. It has been previously demonstrated that many delay-based
PUFs are vulnerable to attacks based on ML modelling [59]. Further, obfuscation of the PUF re-
sponse and other established methods of impeding ML modelling attacks are not possible without
the addition of hardware, which invalidates the fully software-based nature of the design. As such,
while a full analysis of ML attacks against the proposed design is beyond the scope of this work
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(though it may form the basis of future work), it is useful to discuss the possible vulnerability to
this kind of attack.

Conventional delay-based PUFs are in most cases fairly simplistic in their underlying architec-
ture. In the case of conventional arbiter and RO PUFs this can be as simple as a fixed size chain of
delay elements [31, 67]. Derivation of a mathematical model able to represent the variables that
contribute to entropy within them is fairly trivial. Conversely, the scale and complexity of even
a moderately complex pipelined core is an order of magnitude higher in regard to the number of
variables and their interaction to form the final PUF response. As such, it is not clear that deriving
a model will be trivial in comparison to conventional delay-based PUFs, even with a sufficiently
large set of training data.

In regards to the gathering of training CRPs, there are also non-trivial challenges. Unlike in
conventional delay-based PUFs, the possible inputs and the challenge set significantly vary. In
fact, depending on the exact implementation, the challenge set may be as small as 15K ISQs out

of the total possible
(
6 × 264 × 264

)6
≈ 7.24 × 10235 (based on six instruction ISQs with two 64-bit

operands as discussed in Section 5.1). The vast majority of the ISQs outside of this set will produce
minimal or zero entropy (since they do not produce timing errors) and hence will not be useful for
training a model. It has been estimated [76] that roughly 99% of timing critical paths are triggered
by less than 10% of all ISQs; and the probability to obtain the worst-case input conditions, which
result in timing errors, is extremely small [22].

Which ISQs are useful for triggering critical paths can be determined quite readily with full ac-
cess to the original design files and using the methods outlined above. Nevertheless, for an attacker
without such access or prior knowledge of the ISQs, to target the model must be trained using ar-
bitrarily chosen ISQs. As the vast majority of these will be non-entropic, this can be compared to
the well known poisoning attack [39].

Hence, even if an adversary has full access to the PUF for a relatively long period the odds of
generating a valid training dataset without prior knowledge of the challenge set, are very low. In
fact, an adversary need to know precise details of the chip as well as all the parameters that affect
the dynamic timing behaviour of errors (i.e., clock reduction, type of instructions, input operands,
instruction execution history). In effect, the necessity of acquiring or deriving the challenge set
itself acts as a layer of obfuscation. However, the security of DTA-PUF would be compromised if
an attacker had access to the challenge set and could overwrite it. To protect challenges from being
overwritten, secure access mechanisms and data authentication protocols (e.g., digital signature
and cryptographic hash) have been proposed [63, 65]. Note that we focus on the scenario that the
input challenge set is secured and cannot be used for malicious activities.

While neither of these factors in themselves render the proposed PUF definitively immune to
modelling attacks [27], they are non-trivial barriers. This raises the bar of entry and forces an
adversary to expend greater time and resources than it would seem at first glance.

6 RELATED WORK

In this section, we present an overview of work in the field to date regarding processor-based PUFs,
considering designs that are non-software-based, requiring the addition of substantial additional
hardware; lightweight non-software-based, where the additional hardware required is relatively
small; and fully software-based processor PUFs where the response is entirely derived using soft-
ware. The comparison of all the PUFs explained below is shown in Table 1.

6.1 Fully Software Processor-based PUFs

There are relatively few designs for processor-derived PUFs that are fully software-based (i.e.,
which require no additional hardware whatsoever to perform the PUF query procedure).
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Table 1. Processor-derived PUF Designs

PUF Type
Hardware
Additions

Practical
Considerations

Average
Uniqueness

Suitable for
Resource-constrained

Devices

HELP
[5]

Non-Software Large test circuit
Long query time,

Limited response size
49.9% ✗

PASC
[8]

Non-Software Instruction logic
Must implement a
custom instruction

38.2/49.2% ✗

Maiti et al.
[48]

Fully Software None

Difficult to characterise,
Programmable PLL/clock

generator required,
High power consumption

37.5% ✗

PUFAtt
[44]

Lightweight
Non-Software

Arbiters after
redundant ALU

components

A means to synchronise
ALU inputs is required

35.9% ✗

DScan PUF
[81]

Lightweight
Non-Software

Scan chains,
Additional control

circuitry

Response generation
method is highly complex,
Programmable PLL/clock

generator required

49.9% ✗

Scan PUF
[78]

Lightweight
Non-Software

Scan chains,
Modifications to
signal generating

circuits

Requires generation of
controlled input signals

47% ✗

DTA-PUF Fully Software None
Single raised clock
domain is required

31.4% �

Maiti et al. [48] propose a fully software processor-based PUF. The principle of operation is
that by altering the clock frequency of a processor by a specific amount and running a sequence
of instructions some large number of times, the failure rate is unique to a given processor at a
given frequency. This is because for a given instruction there is a curve of increasing failure rate
approaching 100% as frequency increases with the start and end points of this curve determined
by low level variances unique to a given processor. So, at a clock reduction of, for example, 26% for
the same instruction set no failures may occur on one chip, 20% failure rate on another, 76% failure
rate on a third, and so on, depending on the position and shape of the failure curves in regards to
increasing frequency for each chip. The failure rate is encoded such that minimal failures constitute
a binary 00, the lower half of the curve 01, the upper half 10, and near or complete failure 11.

This has the advantage of being a fully software-derived design, assuming that a clock phase-

locked loop (PLL) or other programmable clock control mechanism is available. However, it has
several drawbacks. The design as proposed is highly, though not ideally, reliable but the perfor-
mance in terms of inter-chip uniqueness is far from ideal. A given instruction and operand can
begin to fail anywhere within a quite wide range of frequencies, meaning that multiple frequency
values must be used to ensure uniqueness. Due to this, the total available response bits is also
somewhat limited by the granularity of control over the frequency. Characterising this PUF is
challenging as every instruction must be characterised at every frequency within the given range
to gather full CRP data. Further, the generation of every two response bits requires the execution
of some large number of instructions in the order of hundreds or thousands. Last, the source of
entropy is the number of failed instructions at a given point, but this ignores the fact that two
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failed instructions with non-correctable outputs may in fact have differing levels of bitwise error
and different positioning of errors within the output of nominally “failed” instructions.

6.2 Lightweight Non-software Processor-based PUFs

Several processor-derived PUFs have been proposed that attempt to minimise the hardware over-
head if additional circuitry is needed or that are nominally software-based but make use of test
structures that may not be present in the right configuration in practice.

PUFatt, proposed by Kong et al. [44], is comparatively lightweight. It inserts delay arbiters after
redundant (i.e., identical) ALU circuits within a processor design. This minimises the hardware
resources required as only the arbiter components themselves are new. The same instruction is
passed to each ALU and the response bits generated based on the relative speed of execution. The
execution time is a product of the path delay variances within each ALU. This is very similar
conceptually to well studied delay-based PUFs, such as the arbiter PUF [31], in that the entropy
source is a product of cumulative path delay variances. The resultant PUF response is not ideal
but is within acceptable bounds with 35.9% uniqueness on average and average reliability of 88.7%.
An obfuscation scheme is proposed that increases the measured uniqueness to 44.6% at the cost of
requiring additional post-processing.

While this design minimises the extra hardware resource usage, it is still not fully software-
based. Performance in regard to security metrics is passable but not ideal and much lower in certain
metrics than other processor PUF designs such as that proposed by Maiti et al. [48]. In addition,
the reliability of the design is measured only for the raw output and not for the final output of
the proposed obfuscation scheme, which, by the admission of the authors, can produce distinctly
different outputs if even a small number of input bits (from the raw PUF response) are incorrect.
As this design is conceptually similar to many well studied delay PUFs and does not implement
any kind of CRP obfuscation, it may be vulnerable to common ML modelling attacks [27].

Kong and Koushanfar [43] take a similar approach, implementing arbiters after redundant ALU
components. This work is more developed and applies some of the obfuscation techniques now
common to delay PUF architectures, which at least partially mitigates the risk of ML modelling
attacks. As with PUFatt [44], this design is not fully software-based. It performs fairly well with
a uniqueness in the order of 38% and the authors propose a targeted aging algorithm, which can
reportedly increase this to 45%. However, it is pointed out by the authors that this algorithm could
also be used maliciously to reduce the uniqueness of the PUF, and thus rendering it more vulnera-
ble to modelling. Preventing such an attack would require additional aging detection circuitry in
addition to the arbiters needed for PUF operation.

Scan PUF, proposed by Zheng et al. [78], uses the delay variances in scan chains, a common
design-for-test structure, as the entropy source. Such structures are not universally present in com-
modity devices but are very common and as such this design is largely software-based. However,
additional circuitry is required to extract responses from the scan chain structures. This design
performs well in key security metrics with a uniqueness of 47% and reliability above 95% at room
temperature in practical tests.

Whilst the scan chains are already present on the device, it is necessary to generate precise input
signals to generate a PUF response from them. In Scan PUF, this is done by adding a small amount
of signal generation circuitry. This prevents the design from being truly software-based but has
significantly lower hardware resource overheads than many of the other proposed designs. It is
also noted by the authors that the implementation of Scan PUF produces small increases in power
consumption in test modes. No analysis is given of the power overheads of switching between test
and functional mode to access the PUF response.
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Zheng et al. [81] later proposed DScan PUF. This design operates on similar principles to the
earlier Scan PUF [78] but employs a novel control circuit on top of the already present scan chains.
This control circuit facilitates the design of a PUF with more robust characteristics than Scan
PUF. The resultant PUF is ideal in terms of uniqueness and can generate highly reliable responses.
However, as with the Scan PUF, while it is relatively low overhead in terms of hardware resources,
it is not truly software-based as design changes and some hardware resource usage are required
to implement it.

6.3 Non-software Processor-based PUFs

Aarestad et al. proposed Hardware Embedded Delay PUF (HELP) [5], a design that makes use
of an added on-chip test structure called “REBEL” to measure the path delays directly. Several
extraction methodologies are proposed to convert pairs of path delays into a binary PUF response.
The rate of generation of response bits is limited, but the response that can be generated is both
highly unique and reliable under the proposed conditions.

The auxiliary test circuit used in HELP requires a large amount of hardware resource—more
than 100% of the size of the circuit being measured in the experiments reported. Notably, query
time is very long in comparison to what is typical in PUF designs with a rate of less than 3 bits
per second on the test hardware. Furthermore, the methods of key extraction are computationally
intensive and limit the maximum number of bits that can be generated to a practical upper bound of
256 for the most robust generation method. This design excellently performs in regards to security
metrics, but the hardware costs in addition to the computational cost and corresponding power
cost renders it unsuitable for resource-constrained systems.

Aysu and Schaumont proposed PASC [8] to address some of the weaknesses in the work of Maiti
et al. [48]. Specifically they note the requirement for the ability to control the clock frequency over
quite a large range to target the failure points of certain instructions. They propose that it is not
practical to use the native instructions for this reason. To this end, PASC [8] employs a custom
instruction designed to fail at around the same frequency in all devices. The PUF responses are
differentiated by the slope of the failure curve, rather than both slope and positioning on the
frequency spectrum.

This has several advantages. Only a single raised clock domain is required to implement the PUF
and the output is both reasonably unique and highly reliable. Nevertheless, outside of the domain
of FPGAs the implementation of the required custom instruction requires architectural changes to
the processor and is thus non-software. Further, the problem of needing multiple clock domains
only applies if the failure rate is used as the entropy source.

Overall, in this article, we aim at implementing a fully software, processor-based PUF design
that combines the positive aspects of the PUFs discussed above and addresses their limitations.
As has been demonstrated, DTA-PUF extracts entropy from instructions at a single raised clock
domain by proper selection of instruction sequences and by looking at the error rate within the
failed instructions. This allow us to provide a simple and quick challenge-response mechanism
that generates output bits with a considerably small number of input instructions. Such properties
render DTA-PUF extremely suitable for low-power, resource-scarce devices though the average
uniqueness value of our PUF deviates from the ideal value of 50%.

7 CONCLUSIONS

In this article, we presented DTA-PUF, a fully software-derived PUF design that is based on the ex-
isting timing variability of pipelined cores. Our novel method closely intertwines the PUF with the
underlying circuit, exploiting the inherent complexity of timing error occurrence. Our evaluation
results suggest that the proposed PUF shows a good amount of uniqueness and reliability in terms
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of the PUF responses and, at the same time, incurs limited or no processing costs and minimal
power overheads. Moreover, the high bit generation speed of our PUF results in significant power
savings when compared with existing fully software-based processor PUFs. DTA-PUF can be used
as a lightweight mechanism to address emerging challenges in hardware security of devices that
have power and computational resource concerns, such as IoT nodes, especially in regard to device
identification and authentication.
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