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Abstract—Data compression is commonly used in NAND flash-
based solid state drives (SSDs) to increase their storage perfor-
mance and lifetime as it can reduce the amount of data written to
and read from NAND flash memory. Software-based data com-
pression reduces SSD performance significantly and, as such,
hardware-based data compression designs are required. This
paper studies the latest lossless data compression algorithm,
i.e., the Lempel-Ziv (LZ)4 algorithm which is one of the fastest
compression algorithms reported to date. A data compression
FPGA prototype based on the 1.Z4 lossless compression algorithm
is studied. The original L.Z4 compression algorithm is modified
for real-time hardware implementation. Two hardware architec-
tures of the modified LLZ4 algorithm (MLZ4) are proposed with
both compressors and decompressors, which are implemented
on an FPGA evaluation kit. The implementation results show
that the proposed compressor architecture can achieve a high
throughput of up to 1.92 Gb/s with a compression ratio of up
to 2.05, which is higher than all previous LZ algorithm designs
implemented on FPGAs. The compression device can be used in
high-end SSDs to further increase their storage performance and
lifetime.

Index Terms—FPGA, lossless compression, Lempel-Ziv (L.Z)
algorithms, LZ4, solid-state drives (SSDs).

I. INTRODUCTION

OLID-STATE drives (SSDs) based on NAND flash mem-

ory have become popular in consumer electronic devices
such as smart phones, tablet, and desktop systems [1], [2].
It is highly desirable to reduce the amount of data in SSDs
and the read/write data transmission time to/from SSDs as
flash memory has a finite number of program-erase (P/E)
cycles thus limited lifetime [3]. For example, older single-
level cell (SLC) NAND-flash memory was able to withstand
150 000 P/E cycles, while multilevel cell (MLC) NAND-flash
memory using 15-19 nm process technologies wears out after
only 3000 P/E cycles [2], [4]. Furthermore, the performance
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Fig. 1. Typical SSD architecture with data compression acceleration.

of MLC flash memory is also much slower than that of its
SLC counterpart. Also, more advanced triple-level cell NAND
flash memory has an even lower number of P/E cycles [5].
This problem is expected to worsen with further scaling of
the semiconductor process. Therefore, to increase the lifetime
and also the performance of flash-based SSDs, the amount of
data written to and read from the SSDs should be reduced,
which can be achieved using data compression. Another ben-
efit of using lossless data compression in SSDs is to reduce
the I/O latency.

Data compression for SSDs has been widely adopted.
Data compression can be implemented in three layers: 1) the
application; 2) the file system; or 3) the firmware of the stor-
age device. Most data compression algorithms are adopted in
the application layer and the file system using software imple-
mentation. Software-based data compression can be useful in
improving the lifetime of SSDs. However, the overall perfor-
mance of SSDs is reduced significantly due to the slow com-
pression and decompression speed. A recent study [6] based
on realistic data and systems show that applying data com-
pression in the firmware of the SSDs using a data compression
hardware accelerator is the best approach. A typical SSD archi-
tecture with data compression acceleration is shown in Fig. 1.

Although hardware-based compression is required for NAND
flash memory and SSDs, little research has been conducted
on how to design a high performance hardware compres-
sion accelerator [7]-[13]. In [6], it was found that for high-
end SSDs with transaction rates of up to 3K per second,
compression/decompression rates of above 200 Mb/s (i.e.,
1.6 Gb/s) are required. However, existing designs are lim-
ited in performance with compression speeds in the range of
0.567-1.6 Gb/s [7]-[13], which cannot meet the requirement
of high-end SSDs.

In this paper, the design of a hardware accelerator based on
the latest lossless data compression algorithm, i.e., Lempel-Ziv
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(LZ)4 [14] for data compression in high-end SSDs is studied
and demonstrated on an FPGA device. The original LZ4 algo-
rithm is somewhat difficult to implement in hardware as it
was proposed for software implementation. It is not possible
to store all the text in calculating the hash. Its output delay is
uncertain and the input data is limited by the address width of
the hash table. As a result, the LZ4 algorithm has been mod-
ified for hardware implementation in this paper to solve these
problems. By using the modified LZ4 algorithm (MLZ4), the
hash computation is improved for the compression ratio and
low output latency is achieved. The implementation results
on an FPGA platform show the proposed MLZ4 architecture
and provides the highest throughput performance compared
with previous FPGA implementations of LZ algorithms, which
makes it suitable for high-end SSDs.

This paper is organized as follows. Section II reviews loss-
less data compression algorithms and their hardware imple-
mentations. The original LZ4 algorithm is also reviewed in
this section. Section III presents the modified LZ4 algorithm.
Two hardware architectures of both the MLZ4 compressors
and decompressors are proposed in Section IV. A compari-
son with other FPGA hardware designs of LZ algorithms is
provided in Section V. Section VI concludes this paper.

II. REVIEW
A. Data Compression Algorithms and Implementations

There are two main categories of data compression, namely,
lossy and lossless compression [15]. As lossy compression
allows loss of accuracy to an acceptable level, it is usually used
for multimedia applications where errors can be tolerated [16].
Lossless compression can compress and then recover the
data from compressed data without loss of information; and
it is used for applications where even one single bit differ-
ence between the original and reconstructed data cannot be
tolerated.

The applications of lossless data compression have been
increasing significantly due to both the demand for increased
bandwidth [17], [18] and the need to improve storage
capacity [3]. Lossless data compression has been successfully
deployed in storage systems including tapes, hard disk drives,
SSDs, file servers, and storage area networks.

Lossless data compression can be achieved using two dif-
ferent approaches: 1) statistical model-based compression such
as Huffman coding [19] and 2) dictionary-based compression
including the LZ algorithms [20], [21]. The LZ algorithms
belong to adaptive dictionary-based techniques, which are
the most popular lossless compression algorithms when prior
statistical characteristics of the data are unknown. The LZ
algorithms have been adopted by many compression format
standards such as Zip, GNU zip, and Zlib [22].

LZ algorithms were proposed by Ziv and Lempel in
1977 [20] and 1978 [21] in their two landmark papers. These
papers presented two different approaches. The approach
based on the 1977 paper is referred to as the LZ77 (or
LZ1) family which includes LZ77, LZRW [23], LZSS [24],
LZ-Markov chain algorithm (LZMA) [11], etc. LZ77 algo-
rithms use a sliding window to examine the input sequence.

111

Token Literal Length Literals Offset Match Length

1 Byte 0-n Bytes 0-L Bytes | 2 Bytes 0-n Bytes

Fig. 2. Data format of an LZ4 sequence.

Its principle is to find whether the sequence being compressed
appears in the previously input data. If so, a pointer is used to
point to the repeated strings. The dictionary refers to a portion
of the previously encoded sequence. The approaches based on
the 1978 paper are known as the LZ78 (or LZ2) family which
includes LZ78, LZW [25], etc. LZ78 algorithms create a dic-
tionary of phrases from the input data. When a match with
the phrases that have appeared in the dictionary occurs, the
encoder will output the phrase’s index in the dictionary rather
than the phrase itself.

Collet [14] proposed the LZ4 algorithm in 2011 [13], which
is a variant of LZ77. The compression speed of a LZ4 soft-
ware implementation is shown to be fastest among the LZ
algorithms. However, there is little research conducted on the
hardware implementation of LZ4 as it is much younger than
other LZ algorithms. Hardware designs of lossless data com-
pression algorithms are receiving increase attention due to
the exponential expansion in network communication and
data storage. FPGA implementations of LZ algorithms such as
LZRW3 [12], LZW [8], [10], the LZMA [11], and LZ4 [13]
have been proposed to meet real-time requirements. Thus, it is
necessary to study hardware architectures of LZ4 in order to
explore its performance for consumer electronic applications
such as SSDs.

B. Review of the LZ4 Algorithm

This section reviews the LZ4 algorithm. Its data format and
data flow are introduced. The shortcomings of the original
LZ4 algorithm and data format are also discussed.

LZ4 was initially defined as a form of compressed data for-
mat. Compressed data files are composed of LZ4 sequences
that include a token, literal length, offset, and match length
as shown in Fig. 2. The token is used to indicate the length
of unmatched and matched characters. The literal length indi-
cates the length of uncompressed data and its value is equal to
the value of the length of uncompressed data minus 15. The
uncompressed data is stored as literals in the LZ4 sequence and
it is copied from the original data. When the input data finds
data that appeared before via searching, this data will be com-
pressed. The value of the offset indicates the address of the
current data minus the address of the prior data. Match length
means the length of the matching data.

The operation of the LZ4 algorithm is mainly divided into
the following five steps [14]: 1) hash computation; 2) match-
ing; 3) backward matching; 4) parameter calculation; and
5) data output, which is shown in Fig. 3.

III. MODIFIED LZ4 ALGORITHM

An improved data format is proposed in this section along
with an improved algorithm to solve the defects in the original
LZ4 algorithm.
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Fig. 4. Data format of MLZ4.

The original LZ4 algorithm was proposed for software
implementation in general processors. As such, there are some
issues with the LZ4 algorithm for hardware implementation.

1) The hash calculation is only performed for unmatched
characters. Hash calculation is not applied to the back-
ward matching. Thus, part of the matching data’s hash
value will not be calculated.

2) For step 2 of the original LZ4 algorithm, when there is
hash conflict (different data have the same hash value),
more clock cycles are needed to recalculate the hash
value, which reduces the compression speed.

3) The input data is limited by the address width in the
hash table. The maximum number of memory addresses
in the hash table is the maximum size of the input data.
It cannot compress data constantly.

4) Output delay is uncertain. According to the original
LZA4 data format, the length of matched characters and
unmatched characters should be obtained before out-
putting the data. For example, if the unmatched character
length is 40 kb, data can only be outputted after all 40 kb
are searched.

In order to increase the compression speed in hardware, the
LZ4 data format is changed as shown in Fig. 4. Note that the
format of the token and offset is consistent with the original
format. The main differences are as follows.

A. Literal Length

If the value of the first four bits of the token is less than
15, there is no literal length. If the value of the first four bits

of token is 15, the length of unmatched literals is the sum of
all literal lengths.

B. Match Length

If the value of the last four bits of the token is less than 15,
there is no match length. The value of the actual match length
is the value of the last four bits of token plus 4. If the value
of the last four bits of the token is 15, the value of the match
length is represented using 2 bytes after the offset. The actual
value of the match length is the sum of them.

The MLZ4 algorithm (addressing the issues mentioned
above) is detailed as follows.

1) To improve the compression ratio, the hash value of the
data can be calculated during the backward matching
in the modified algorithm to exploit the parallelism of
hardware implementation.

2) To reduce the delay when a hash conflict occurs and to
improve the compression speed, a hash dictionary that
corresponds to the hash table is added. The difference
between the hash table and the hash dictionary is that
the hash table stores the address, while the hash dic-
tionary stores the corresponding data based on the hash
value. During match searching, the data stored in the
hash dictionary can be read and compared when read-
ing the address at the same time. As a result, the number
of clock cycles can be reduced.

3) To allow continuous compression in hardware, a Valid
Bit is added in the hash table. When the data is valid, the
Valid Bit is set to “1.” When the data is invalid in a hash
table, the Valid Bit is reset to “0” and a data cleaning
process is also added. In this way, when the data address
reaches the maximum address and continues to search
for backward matching, no matching error occurs, as
there will be no overlapped address. Thus, continuous
compression can be achieved.

4) To make sure the output delay is predictable, the
LZA4 data format is changed as shown in Fig. 4. When
the unmatched character length is longer than 300 bytes,
the backward match is ignored. For the above mentioned
example, if the length of the unmatched characters
is 40 kb, the data can be output when the match
length reaches 300 bytes according to the new data for-
mat. Thus, the waiting time for matching is reduced
significantly.

A flow chart illustrating the operation of the MLZ4 algo-

rithm is shown in Fig. 5.

IV. FPGA ARCHITECTURE AND IMPLEMENTATION
OF THE MLZ4 ALGORITHM

Compared with software, a hardware implementation offers
parallel processing that can allow multiple compressors to
work at the same time to increase the throughput of com-
pression. The FPGA implementation of the MLZ4 algorithm
is presented in this section with two FPGA hardware architec-
tures, i.e., MLZ4-1 and MLZ4-2, with both compressors (i.e.,
MLZAC-1 and MLZA4C-2) and decompressors (i.e., MLZ4D-1
and MLZ4D-2).
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Fig. 5. Flow chart of MLZ4 algorithm.

A. Ist FPGA Architecture of MLZ4 Compressor

The 1st hardware architecture of the LZ4-1 compressor is
shown in Fig. 6. It mainly consists of the input RAM, the
output RAM, word shift register, reading back control module
(i.e., ref. control), search module (including hash engine, word
table, hash table, hash clear, match, and backward match),
literal length calculation module (i.e., literal length), match
length calculation module (i.e., match length), and output
control module (including ports A, B, and C control).

The input and output RAM modules store the data before
and after compression both in a 64k RAM. Data are read from
the input RAM and then turned into 32-bit data through the
word shift register. The 32-bit data is fed to the hash engine to
compute the hash value. The ref. control module controls the
reading pointer to read the data, and then uses them to find
the backward matching data.

The search module performs the hash value calculation,
reads the hash table. It also changes the ref. address, finds
any matching conflicts, judges the match length, calculates
the offset, and judges whether the input data address (denoted
as IP) has reached the end.

Literal and match length calculation modules are used
to calculate the length of the unmatchable characters and
matching data. The ports A and B control modules write
the compressed data to the output RAM according to the
MLZA4 data format. The port C control module is used to con-
trol the compressed data from the output RAM to the PCI-E
interface.

The designs in this paper are all implemented on
an FPGA evaluation kit. The MLZAC-1 runs at a frequency
of 100 MHz and its throughput is 0.8 Gb/s. The hardware

TABLE I
RESOURCES USED FOR BOTH 1ST COMPRESSOR (MLZ4C-1)
AND 1ST DECOMPRESSOR (MLZ4D-1)

Resource MLZA4C-1 MLZ4D-1 Total

Slices 571 365 936

FFs 605 604 1,209

LUTs 1,302 767 2,069

BRAMs 76.5 32.5 109
TABLE 11

TEST RESULTS OF COMPRESSION RATIO USING MLZ4 ALGORITHM

Test Original Compressed Compression
Files Size (Bytes) Size (Bytes) Ratio

paperl 53,161 28,686 1.85

paper2 82,199 46,750 1.76
asyoulik 125,179 75,467 1.66

cp 24,603 11,993 2.05

dickens 10,192,446 6,161,433 1.65

resources used in implementing the compressor are sum-
marized in Table I. Compression results from testing the
proposed designs with benchmark files from the Calgary cor-
pus (paperl and paper2) [26], the Canterbury corpus (asyoulik
and cp) [26], and the Silesia corpus (dickens) [27] are shown
in Table II. It can be seen that the compression ratio achieved
is between 1.65 and 2.05.

B. Ist FPGA Architecture of the MLZ4 Decompressor

The decompressor is simpler than the compressor. The infor-
mation contained in token and literal length show the length
of unmatched characters. The unmatched character can be
output directly and the positions of offset and match length
can be calculated according to the length of unmatched char-
acters. Matched strings can be copied from decompressed
data based on the values of offset and match length. All
data can be decompressed after repeating the above opera-
tions. The decompressor of the MLZ4D-1 is also designed
and implemented on an FPGA chip. Its hardware architecture
is shown in Fig. 7. The decompressor mainly includes three
modules: 1) the input control module; 2) the IP control mod-
ule; and 3) the output control module. The Input RAM is used
to store the data. The IP control module changes IP according
to literal length, offset, and match length. The output control
module is used to control the storage of decompressed data
and output the final data.

The MLZA4D-1 decompressor can run much faster than the
MLZAC-1 compressor as LZ4 is an asymmetric compression
algorithm. In this paper, the MLZAD-1 operates at 120 MHz
and its throughput is 0.96 Gb/s. The hardware resources used
by the MLZ4D-1 design are also summarized in Table I.

C. 2nd FPGA Architecture of the MLZ4 Compressor

The 2nd hardware architecture of the LZ4 compressor is
shown in Fig. 8. The main difference between MLZ4C-1
and MLZAC-2 are the search module and the output mod-
ule. Additionally, MLZA4C-2 includes a new IP Shift block.
The detailed differences are as follows.

1) Search Module: The match block in MLZAC-2 is
divided into word compare, match compare, and IP compare
blocks. Furthermore, the backward match block is divided into
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.. TABLE III
backward compare and match flag blocks. Therefore, the criti- RESOURCES USED FOR 2ND COMPRESSOR (MLZ4C-2)
cal path of both the match and backward match logic is further AND 2ND DECOMPRESSOR (MLZ4D-2)
reduced by inserting pipeline registers.
2) Output Module: The even and odd output bits are written =~ _Resource MLZ4C-2 MLZ4D-2 Total
. . . Slices 345 155 500
into RAM-A and RAM-B, respectively, by using two RAM FFs 937 377 1314
blocks. Both RAM blocks can output the data at the same LUTs 573 342 915
time. The even bits are in the eight most significant bits of the =~ BRAMs 69 20 89
DSPs 4 0 4

output data, i.e., dzip[15:8], and the odd bits are in the eight
least significant bits, i.e., dzip[7:0], which is in the revised
format as shown in Fig. 4.

The MLZA4C-2 design runs at a frequency of 240 MHz and
its throughput is 1.92 Gb/s. The hardware resources used in
implementing the compressor are summarized in Table III.
Test results show that the compression ratios achieved by the
MLZAC-2 design are the same as that listed in Table II.

D. 2nd FPGA Architecture of the MLZ4 Decompressor

The MLZAD-2 is similar to MLZ4D-1, as shown in Fig. 9.
However, the input module that includes IP calculation,
input control, and input RAM blocks is now replaced with

an FIFO. The IP control block in MLZ4D-1 is changed to
a read control block in MLZ4D-2, where the combinational
logic has been further divided and pipeline registers have been
added to increase the performance.

The MLZAD-2 operates at 260 MHz and its throughput
is up to 2080 Mb/s. The hardware resources used by the
decompressor are also summarized in Table III.

E. Comparison Between MLZ4-1 and MLZ4-2

Due to the optimized pipelined architecture, the 2nd design
is much faster than the 1st design. The throughput of
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MLZAC-2 and MLZ4D-2 are 2.4 and 2.16 times that of
MLZAC-1 and MLZA4D-1, respectively. At the same time,
the hardware required is also reduced significantly. MLZ4C-2
only uses 60% of the slices and 90% of the BRAMs used
in MLZ4C-1. However, MLZA4C-2 uses four additional DSPs.
MLZAD-2 uses much fewer slices compared with MLZ4D-1,
where more than half of slices are saved. The number of
BRAMs used is also reduced by over 38%. The compari-
son results show that the second architecture is a much better
design. Both MLZ4-1 and MLZ4-2 are further compared with
previous work in the following section.

V. COMPARISON WITH OTHER FPGA IMPLEMENTATIONS
OF LZ ALGORITHMS

In this section, the proposed designs are compared with
other LZ algorithm FPGA implementations. The designs

compared include X-MatchPROv4 [7] using the XMatchPRO
algorithm, the conventional LZW [8], the ELDC-3 core [9] that
implements four image compression algorithms, an improved
LZW VLSI processor [10] which implements the new LZW
algorithm, LZMA [11], the LZWR3 core [12] that implements
the LZRW3 algorithm and an LZ4 FPGA device [13].

The comparison is summarized in Table IV. The MLZA4C-1
is a baseline design. Its performance is not so attractive com-
pared with the previous best design. However, the revised
and pipelined design, i.e., MLZAC-2, has improved the com-
pression performance significantly. From the table, it is clear
that the proposed MLZA4C-2 offers the highest performance.
Although it consumes slightly more slices, MLZ4C-2 increases
the compression throughput by 20% compared with the best
previous design in [13] which is also an LZ4 FPGA design, as
shown in Fig. 10. The main difference between MLZ4C-2 and
the design in [13] is that a word table added in MLZ4C-2 is

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 20,2023 at 10:03:47 UTC from IEEE Xplore. Restrictions apply.



116 IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, VOL. 64, NO. 1, FEBRUARY 2018

TABLE IV
COMPARISON OF LZ COMPRESSION AND DECOMPRESSION IMPLEMENTATIONS

. . . FPGA . Clock Speed Troughput
Compression Device Algorithms Technology Complexity (MH7) (Gbps)
X-MatchProv4 [7] X-MatchPRO 180nm 5367 LUTs 50 (Con?lﬁ‘gsion)
332 Slices 0.700
LZW [8] LZW 120nm/150nm s 50 «f"f;‘giel“zlgg)
474 LUTs (Decompression)
. 0.400~0.528
ELDC-3 Core [9] CGF, GZIP, ELIC, PNG 90nm 5900 Slices 75 (Compression)
Improved LZW Processor [10] New LZW 90nm 27322 }(Sbslgzel\jls 124 (Corr11[')5r§s75ion)
LZMA [11] LZMA 40nm NA 125 (Con(l)l;érgjsion)
227 Slices 1.300
LZRW3 Core [12] LZRW3 28nm 789 FFs 210 (Com. ression)
4~36 BRAMs P
266 Slices 1.600
LZ4[13] LZ4 28nm 17 BRAMs 200 (Com. ression)
3 DSPs P
571 Slices 100 0.800
MLZ4C-1 Modificd LZ4 28nm 76.5 BRAMs (Compression) (Compression)
MLZ4D-1 365 Slices 120 0.960
32.5 BRAMs (Decompression) (Decompression)
345 Slices
MLZA4C-2 69 BRAMs C 240 . C 1.920 .
Modified LZ4 28nm 4 DSPs (Compression) (Compression)
155 Slices 260 2.080
MLZ4D-2 20 BRAMs (Decompression) (Decompression)
| é decompression speeds. The implementation on an FPGA chip
16 shows that the proposed designs can achieve compression and
1.4 decompression throughputs of up to 1.92 Gb/s and 2.08 Gb/s,
a12 which is 20% and 47% faster than the previous best com-
<) 0 é pressor and decompressor designs, respectively. The proposed
E. 0.6 MLZ4 and its hardware architectures can therefore be used
2 04 to increase the storage performance and lifetime of high-end
£ 02 SSDs.
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