110 IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, VOL. 64, NO. 1, FEBRUARY 2018

Data Compression Device Based on
Modified LZ4 Algorithm

Weiqiang Liu, Senior Member, IEEE, Faqiang Mei, Chenghua Wang, Maire O’Neill, Senior Member, IEEE,
and Earl E. Swartzlander, Jr., Life Fellow, IEEE

Abstract—Data compression is commonly used in NAND flash-
based solid state drives (SSDs) to increase their storage perfor-
mance and lifetime as it can reduce the amount of data written to
and read from NAND flash memory. Software-based data com-
pression reduces SSD performance significantly and, as such,
hardware-based data compression designs are required. This
paper studies the latest lossless data compression algorithm,
i.e., the Lempel-Ziv (LZ)4 algorithm which is one of the fastest
compression algorithms reported to date. A data compression
FPGA prototype based on the 1.Z4 lossless compression algorithm
is studied. The original L.Z4 compression algorithm is modified
for real-time hardware implementation. Two hardware architec-
tures of the modified LLZ4 algorithm (MLZ4) are proposed with
both compressors and decompressors, which are implemented
on an FPGA evaluation kit. The implementation results show
that the proposed compressor architecture can achieve a high
throughput of up to 1.92 Gb/s with a compression ratio of up
to 2.05, which is higher than all previous LZ algorithm designs
implemented on FPGAs. The compression device can be used in
high-end SSDs to further increase their storage performance and
lifetime.

Index Terms—FPGA, lossless compression, Lempel-Ziv (L.Z)
algorithms, LZ4, solid-state drives (SSDs).

I. INTRODUCTION

OLID-STATE drives (SSDs) based on NAND flash mem-

ory have become popular in consumer electronic devices
such as smart phones, tablet, and desktop systems [1], [2].
It is highly desirable to reduce the amount of data in SSDs
and the read/write data transmission time to/from SSDs as
flash memory has a finite number of program-erase (P/E)
cycles thus limited lifetime [3]. For example, older single-
level cell (SLC) NAND-flash memory was able to withstand
150 000 P/E cycles, while multilevel cell (MLC) NAND-flash
memory using 15-19 nm process technologies wears out after
only 3000 P/E cycles [2], [4]. Furthermore, the performance

Manuscript received December 4, 2017; revised February 10, 2018;
accepted February 15, 2018. Date of publication March 2, 2018; date of cur-
rent version March 29, 2018. This work was supported by the Fundamental
Research Funds for the Central Universities China under Grant NS2017024.
(Corresponding author: Weigiang Liu.)

W. Liu, F. Mei, and C. Wang are with the College of Electronic
and Information Engineering, Nanjing University of Aeronautics and
Astronautics, Nanjing 211106, China (e-mail: liuweigiang@nuaa.edu.cn;
meifagiang @nuaa.edu.cn; chwang @nuaa.edu.cn).

M. O’Neill is with the Center for Secure Information Technologies, Queen’s
University Belfast, Belfast BT3 9DT, U.K. (e-mail: m.oneill @ecit.qub.ac.uk).

E. E. Swartzlander is with the Department of Electrical and Computer
Engineering, University of Texas at Austin, Austin, TX 78712 USA (e-mail:
eswartzla@aol.com).

Digital Object Identifier 10.1109/TCE.2018.2810480

=

DRAM
Controller

SSD Controller

l Compression I
Module I
Decompression

Module

1SOH
20e49)U] 3SOH
43]]1013u0) YING
$13]|0.3U0)
sng ysey4
E E o E E

Processor

Fig. 1. Typical SSD architecture with data compression acceleration.

of MLC flash memory is also much slower than that of its
SLC counterpart. Also, more advanced triple-level cell NAND
flash memory has an even lower number of P/E cycles [5].
This problem is expected to worsen with further scaling of
the semiconductor process. Therefore, to increase the lifetime
and also the performance of flash-based SSDs, the amount of
data written to and read from the SSDs should be reduced,
which can be achieved using data compression. Another ben-
efit of using lossless data compression in SSDs is to reduce
the I/O latency.

Data compression for SSDs has been widely adopted.
Data compression can be implemented in three layers: 1) the
application; 2) the file system; or 3) the firmware of the stor-
age device. Most data compression algorithms are adopted in
the application layer and the file system using software imple-
mentation. Software-based data compression can be useful in
improving the lifetime of SSDs. However, the overall perfor-
mance of SSDs is reduced significantly due to the slow com-
pression and decompression speed. A recent study [6] based
on realistic data and systems show that applying data com-
pression in the firmware of the SSDs using a data compression
hardware accelerator is the best approach. A typical SSD archi-
tecture with data compression acceleration is shown in Fig. 1.

Although hardware-based compression is required for NAND
flash memory and SSDs, little research has been conducted
on how to design a high performance hardware compres-
sion accelerator [7]-[13]. In [6], it was found that for high-
end SSDs with transaction rates of up to 3K per second,
compression/decompression rates of above 200 Mb/s (i.e.,
1.6 Gb/s) are required. However, existing designs are lim-
ited in performance with compression speeds in the range of
0.567-1.6 Gb/s [7]-[13], which cannot meet the requirement
of high-end SSDs.

In this paper, the design of a hardware accelerator based on
the latest lossless data compression algorithm, i.e., Lempel-Ziv

1558-4127 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 20,2023 at 10:03:47 UTC from IEEE Xplore. Restrictions apply.



LIU et al.: DATA COMPRESSION DEVICE BASED ON MLZ4

(LZ)4 [14] for data compression in high-end SSDs is studied
and demonstrated on an FPGA device. The original LZ4 algo-
rithm is somewhat difficult to implement in hardware as it
was proposed for software implementation. It is not possible
to store all the text in calculating the hash. Its output delay is
uncertain and the input data is limited by the address width of
the hash table. As a result, the LZ4 algorithm has been mod-
ified for hardware implementation in this paper to solve these
problems. By using the modified LZ4 algorithm (MLZ4), the
hash computation is improved for the compression ratio and
low output latency is achieved. The implementation results
on an FPGA platform show the proposed MLZ4 architecture
and provides the highest throughput performance compared
with previous FPGA implementations of LZ algorithms, which
makes it suitable for high-end SSDs.

This paper is organized as follows. Section II reviews loss-
less data compression algorithms and their hardware imple-
mentations. The original LZ4 algorithm is also reviewed in
this section. Section III presents the modified LZ4 algorithm.
Two hardware architectures of both the MLZ4 compressors
and decompressors are proposed in Section IV. A compari-
son with other FPGA hardware designs of LZ algorithms is
provided in Section V. Section VI concludes this paper.

II. REVIEW
A. Data Compression Algorithms and Implementations

There are two main categories of data compression, namely,
lossy and lossless compression [15]. As lossy compression
allows loss of accuracy to an acceptable level, it is usually used
for multimedia applications where errors can be tolerated [16].
Lossless compression can compress and then recover the
data from compressed data without loss of information; and
it is used for applications where even one single bit differ-
ence between the original and reconstructed data cannot be
tolerated.

The applications of lossless data compression have been
increasing significantly due to both the demand for increased
bandwidth [17], [18] and the need to improve storage
capacity [3]. Lossless data compression has been successfully
deployed in storage systems including tapes, hard disk drives,
SSDs, file servers, and storage area networks.

Lossless data compression can be achieved using two dif-
ferent approaches: 1) statistical model-based compression such
as Huffman coding [19] and 2) dictionary-based compression
including the LZ algorithms [20], [21]. The LZ algorithms
belong to adaptive dictionary-based techniques, which are
the most popular lossless compression algorithms when prior
statistical characteristics of the data are unknown. The LZ
algorithms have been adopted by many compression format
standards such as Zip, GNU zip, and Zlib [22].

LZ algorithms were proposed by Ziv and Lempel in
1977 [20] and 1978 [21] in their two landmark papers. These
papers presented two different approaches. The approach
based on the 1977 paper is referred to as the LZ77 (or
LZ1) family which includes LZ77, LZRW [23], LZSS [24],
LZ-Markov chain algorithm (LZMA) [11], etc. LZ77 algo-
rithms use a sliding window to examine the input sequence.

111

Token Literal Length Literals Offset Match Length

1 Byte 0-n Bytes 0-L Bytes | 2 Bytes 0-n Bytes

Fig. 2. Data format of an LZ4 sequence.

Its principle is to find whether the sequence being compressed
appears in the previously input data. If so, a pointer is used to
point to the repeated strings. The dictionary refers to a portion
of the previously encoded sequence. The approaches based on
the 1978 paper are known as the LZ78 (or LZ2) family which
includes LZ78, LZW [25], etc. LZ78 algorithms create a dic-
tionary of phrases from the input data. When a match with
the phrases that have appeared in the dictionary occurs, the
encoder will output the phrase’s index in the dictionary rather
than the phrase itself.

Collet [14] proposed the LZ4 algorithm in 2011 [13], which
is a variant of LZ77. The compression speed of a LZ4 soft-
ware implementation is shown to be fastest among the LZ
algorithms. However, there is little research conducted on the
hardware implementation of LZ4 as it is much younger than
other LZ algorithms. Hardware designs of lossless data com-
pression algorithms are receiving increase attention due to
the exponential expansion in network communication and
data storage. FPGA implementations of LZ algorithms such as
LZRW3 [12], LZW [8], [10], the LZMA [11], and LZ4 [13]
have been proposed to meet real-time requirements. Thus, it is
necessary to study hardware architectures of LZ4 in order to
explore its performance for consumer electronic applications
such as SSDs.

B. Review of the LZ4 Algorithm

This section reviews the LZ4 algorithm. Its data format and
data flow are introduced. The shortcomings of the original
LZ4 algorithm and data format are also discussed.

LZ4 was initially defined as a form of compressed data for-
mat. Compressed data files are composed of LZ4 sequences
that include a token, literal length, offset, and match length
as shown in Fig. 2. The token is used to indicate the length
of unmatched and matched characters. The literal length indi-
cates the length of uncompressed data and its value is equal to
the value of the length of uncompressed data minus 15. The
uncompressed data is stored as literals in the LZ4 sequence and
it is copied from the original data. When the input data finds
data that appeared before via searching, this data will be com-
pressed. The value of the offset indicates the address of the
current data minus the address of the prior data. Match length
means the length of the matching data.

The operation of the LZ4 algorithm is mainly divided into
the following five steps [14]: 1) hash computation; 2) match-
ing; 3) backward matching; 4) parameter calculation; and
5) data output, which is shown in Fig. 3.

III. MODIFIED LZ4 ALGORITHM

An improved data format is proposed in this section along
with an improved algorithm to solve the defects in the original
LZ4 algorithm.

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 20,2023 at 10:03:47 UTC from IEEE Xplore. Restrictions apply.



112 IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, VOL. 64, NO. 1, FEBRUARY 2018

\ Begin |

—>

l Calculate the hash value |

Input 4 bytes l¢

€

l Read the Ref and save IP |

l Read the Ref 4 bytes |

Ye

‘ Backward matching |

—

Flow chart of original LZ4 algorithm.

’ Calculate the literal and

match length Output the data ‘

l End

Fig. 3.

. Literal . Literal Match
Token | Literals Length Literals Length Offset Leneth
0-135 0-128 0-1 0-2
1 Byte Bytes 0-1 Byte Bytes Byte 2 Bytes Bytes

Fig. 4. Data format of MLZ4.

The original LZ4 algorithm was proposed for software
implementation in general processors. As such, there are some
issues with the LZ4 algorithm for hardware implementation.

1) The hash calculation is only performed for unmatched
characters. Hash calculation is not applied to the back-
ward matching. Thus, part of the matching data’s hash
value will not be calculated.

2) For step 2 of the original LZ4 algorithm, when there is
hash conflict (different data have the same hash value),
more clock cycles are needed to recalculate the hash
value, which reduces the compression speed.

3) The input data is limited by the address width in the
hash table. The maximum number of memory addresses
in the hash table is the maximum size of the input data.
It cannot compress data constantly.

4) Output delay is uncertain. According to the original
LZA4 data format, the length of matched characters and
unmatched characters should be obtained before out-
putting the data. For example, if the unmatched character
length is 40 kb, data can only be outputted after all 40 kb
are searched.

In order to increase the compression speed in hardware, the
LZ4 data format is changed as shown in Fig. 4. Note that the
format of the token and offset is consistent with the original
format. The main differences are as follows.

A. Literal Length

If the value of the first four bits of the token is less than
15, there is no literal length. If the value of the first four bits

of token is 15, the length of unmatched literals is the sum of
all literal lengths.

B. Match Length

If the value of the last four bits of the token is less than 15,
there is no match length. The value of the actual match length
is the value of the last four bits of token plus 4. If the value
of the last four bits of the token is 15, the value of the match
length is represented using 2 bytes after the offset. The actual
value of the match length is the sum of them.

The MLZ4 algorithm (addressing the issues mentioned
above) is detailed as follows.

1) To improve the compression ratio, the hash value of the
data can be calculated during the backward matching
in the modified algorithm to exploit the parallelism of
hardware implementation.

2) To reduce the delay when a hash conflict occurs and to
improve the compression speed, a hash dictionary that
corresponds to the hash table is added. The difference
between the hash table and the hash dictionary is that
the hash table stores the address, while the hash dic-
tionary stores the corresponding data based on the hash
value. During match searching, the data stored in the
hash dictionary can be read and compared when read-
ing the address at the same time. As a result, the number
of clock cycles can be reduced.

3) To allow continuous compression in hardware, a Valid
Bit is added in the hash table. When the data is valid, the
Valid Bit is set to “1.” When the data is invalid in a hash
table, the Valid Bit is reset to “0” and a data cleaning
process is also added. In this way, when the data address
reaches the maximum address and continues to search
for backward matching, no matching error occurs, as
there will be no overlapped address. Thus, continuous
compression can be achieved.

4) To make sure the output delay is predictable, the
LZA4 data format is changed as shown in Fig. 4. When
the unmatched character length is longer than 300 bytes,
the backward match is ignored. For the above mentioned
example, if the length of the unmatched characters
is 40 kb, the data can be output when the match
length reaches 300 bytes according to the new data for-
mat. Thus, the waiting time for matching is reduced
significantly.

A flow chart illustrating the operation of the MLZ4 algo-

rithm is shown in Fig. 5.

IV. FPGA ARCHITECTURE AND IMPLEMENTATION
OF THE MLZ4 ALGORITHM

Compared with software, a hardware implementation offers
parallel processing that can allow multiple compressors to
work at the same time to increase the throughput of com-
pression. The FPGA implementation of the MLZ4 algorithm
is presented in this section with two FPGA hardware architec-
tures, i.e., MLZ4-1 and MLZ4-2, with both compressors (i.e.,
MLZAC-1 and MLZA4C-2) and decompressors (i.e., MLZ4D-1
and MLZ4D-2).

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 20,2023 at 10:03:47 UTC from IEEE Xplore. Restrictions apply.



LIU et al.: DATA COMPRESSION DEVICE BASED ON MLZ4

| Begin ‘
) 4
_>1

Input 4 bytes }:
| Calculate the hash value ‘

| Read the Ref and its 4 bytes ‘

Match length=4 bytes

‘ Backward match ‘

‘ Calculate the match length ‘

— ]

No

Output the data

Finished?

Ye

End

Fig. 5. Flow chart of MLZ4 algorithm.

A. Ist FPGA Architecture of MLZ4 Compressor

The 1st hardware architecture of the LZ4-1 compressor is
shown in Fig. 6. It mainly consists of the input RAM, the
output RAM, word shift register, reading back control module
(i.e., ref. control), search module (including hash engine, word
table, hash table, hash clear, match, and backward match),
literal length calculation module (i.e., literal length), match
length calculation module (i.e., match length), and output
control module (including ports A, B, and C control).

The input and output RAM modules store the data before
and after compression both in a 64k RAM. Data are read from
the input RAM and then turned into 32-bit data through the
word shift register. The 32-bit data is fed to the hash engine to
compute the hash value. The ref. control module controls the
reading pointer to read the data, and then uses them to find
the backward matching data.

The search module performs the hash value calculation,
reads the hash table. It also changes the ref. address, finds
any matching conflicts, judges the match length, calculates
the offset, and judges whether the input data address (denoted
as IP) has reached the end.

Literal and match length calculation modules are used
to calculate the length of the unmatchable characters and
matching data. The ports A and B control modules write
the compressed data to the output RAM according to the
MLZA4 data format. The port C control module is used to con-
trol the compressed data from the output RAM to the PCI-E
interface.

The designs in this paper are all implemented on
an FPGA evaluation kit. The MLZAC-1 runs at a frequency
of 100 MHz and its throughput is 0.8 Gb/s. The hardware

TABLE I
RESOURCES USED FOR BOTH 1ST COMPRESSOR (MLZ4C-1)
AND 1ST DECOMPRESSOR (MLZ4D-1)

Resource MLZA4C-1 MLZ4D-1 Total

Slices 571 365 936

FFs 605 604 1,209

LUTs 1,302 767 2,069

BRAMs 76.5 32.5 109
TABLE 11

TEST RESULTS OF COMPRESSION RATIO USING MLZ4 ALGORITHM

Test Original Compressed Compression
Files Size (Bytes) Size (Bytes) Ratio

paperl 53,161 28,686 1.85

paper2 82,199 46,750 1.76
asyoulik 125,179 75,467 1.66

cp 24,603 11,993 2.05

dickens 10,192,446 6,161,433 1.65

resources used in implementing the compressor are sum-
marized in Table I. Compression results from testing the
proposed designs with benchmark files from the Calgary cor-
pus (paperl and paper2) [26], the Canterbury corpus (asyoulik
and cp) [26], and the Silesia corpus (dickens) [27] are shown
in Table II. It can be seen that the compression ratio achieved
is between 1.65 and 2.05.

B. Ist FPGA Architecture of the MLZ4 Decompressor

The decompressor is simpler than the compressor. The infor-
mation contained in token and literal length show the length
of unmatched characters. The unmatched character can be
output directly and the positions of offset and match length
can be calculated according to the length of unmatched char-
acters. Matched strings can be copied from decompressed
data based on the values of offset and match length. All
data can be decompressed after repeating the above opera-
tions. The decompressor of the MLZ4D-1 is also designed
and implemented on an FPGA chip. Its hardware architecture
is shown in Fig. 7. The decompressor mainly includes three
modules: 1) the input control module; 2) the IP control mod-
ule; and 3) the output control module. The Input RAM is used
to store the data. The IP control module changes IP according
to literal length, offset, and match length. The output control
module is used to control the storage of decompressed data
and output the final data.

The MLZA4D-1 decompressor can run much faster than the
MLZAC-1 compressor as LZ4 is an asymmetric compression
algorithm. In this paper, the MLZAD-1 operates at 120 MHz
and its throughput is 0.96 Gb/s. The hardware resources used
by the MLZ4D-1 design are also summarized in Table I.

C. 2nd FPGA Architecture of the MLZ4 Compressor

The 2nd hardware architecture of the LZ4 compressor is
shown in Fig. 8. The main difference between MLZ4C-1
and MLZAC-2 are the search module and the output mod-
ule. Additionally, MLZA4C-2 includes a new IP Shift block.
The detailed differences are as follows.

1) Search Module: The match block in MLZAC-2 is
divided into word compare, match compare, and IP compare
blocks. Furthermore, the backward match block is divided into

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 20,2023 at 10:03:47 UTC from IEEE Xplore. Restrictions apply.



114

IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, VOL. 64, NO. 1, FEBRUARY 2018

Data_zip
Data[7:0] Data_zip_valid
Dat lid —_—
ata_vali ol IPI . Search COF:\:;T::iton Data_zip_start
Data_start alculate Module —:
Data_end PortC Control dd v Data_np_en‘
L = === === > Output addrr doutb -
i v I literal_time ddral 2 —
[} Word h [} P PortB Control 3 T
! or Has Hash Ref [N literal_length i
Iip Shift Engine Table | 1| Literal —_ 3| Literal Length || dinb =
: : Length token[7:4] »
! Hash [ — ‘—) PortA Control
1 1A RAM
| Clear 1 A > addra o
L > ofser >
I VY matchl[ W >
: | dref R matched match_lengt‘h __Offset dina .
)| Input » —”| Match Length
|| Buffer | _ Ref [ p.¢ | ForwardIP Backward Match 1| Match | token[3:0] -
: | Control | Length token_time'\_w/
Lo e CC e mmm - _-_- 1 >
Fig. 6. Hardware architecture of the MLZ4C-1 compressor.
IP Control
Unzip_end > ‘ Token H Unzip_end l
Full_half ‘LiteraILen th‘ ‘ Offset - N
> g | v LA /
U ) \ Choose Address
) v e ‘ IP Write_en ‘ Control
Data_zip
— |FIFO_lp Full
Data_zip_valid (‘; > [ W \ A A_rh A >
1Y .
Data_zip_start a Data_mp} Input Control _ oi \ 4 Dat
= ip ata
Data_zip_end £ Data_end -
> LMy o Data_valid
H ¢ Data_start
3 ata_sta
B : 1> 33 0
¥ V'V V¥ |& 5 S| Data_end
= addra
» dina
Input RAM g Output
Memory ¢ addrb
doutb
Fig. 7. Hardware architecture of the MLZ4AD-1 decompressor.
.. TABLE III
backward compare and match flag blocks. Therefore, the criti- RESOURCES USED FOR 2ND COMPRESSOR (MLZ4C-2)
cal path of both the match and backward match logic is further AND 2ND DECOMPRESSOR (MLZ4D-2)
reduced by inserting pipeline registers.
2) Output Module: The even and odd output bits are written =~ _Resource MLZ4C-2 MLZ4D-2 Total
. . . Slices 345 155 500
into RAM-A and RAM-B, respectively, by using two RAM FFs 937 377 1314
blocks. Both RAM blocks can output the data at the same LUTs 573 342 915
time. The even bits are in the eight most significant bits of the =~ BRAMs 69 20 89
DSPs 4 0 4

output data, i.e., dzip[15:8], and the odd bits are in the eight
least significant bits, i.e., dzip[7:0], which is in the revised
format as shown in Fig. 4.

The MLZA4C-2 design runs at a frequency of 240 MHz and
its throughput is 1.92 Gb/s. The hardware resources used in
implementing the compressor are summarized in Table III.
Test results show that the compression ratios achieved by the
MLZAC-2 design are the same as that listed in Table II.

D. 2nd FPGA Architecture of the MLZ4 Decompressor

The MLZAD-2 is similar to MLZ4D-1, as shown in Fig. 9.
However, the input module that includes IP calculation,
input control, and input RAM blocks is now replaced with

an FIFO. The IP control block in MLZ4D-1 is changed to
a read control block in MLZ4D-2, where the combinational
logic has been further divided and pipeline registers have been
added to increase the performance.

The MLZAD-2 operates at 260 MHz and its throughput
is up to 2080 Mb/s. The hardware resources used by the
decompressor are also summarized in Table III.

E. Comparison Between MLZ4-1 and MLZ4-2

Due to the optimized pipelined architecture, the 2nd design
is much faster than the 1st design. The throughput of

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 20,2023 at 10:03:47 UTC from IEEE Xplore. Restrictions apply.



LIU et al.: DATA COMPRESSION DEVICE BASED ON MLZ4

115

Search PortC
________________________________________ / Module Control
H | Addr
! dip_compare Backward ! literal ti addre
| = > ! eral_time »| PortA Control
: Word data32_compare » [ ech v ‘ Compare : Literal literal_length — »| Output
1| Shf | 4ata32_hash  [word |RD32 ord | - A 1| Length [token[7:4] [ titeral |77 control
1 | - B Compare I, match_end | Offset
! data32 Hash s A dina
: y| nas LA Match h g Match N Match Length » | RAMA
A Engine v Compare Flag
H Hash [T | A H
| ! ™| Table Compare [match_ip |
' » ip_hash[23:0] e el D" ; d B» PortB Control | dinb
I 1 vy i
I ip_comapre[23:0] ™ > ol 1 token([3:0] addrb
| contro 1| Match > Literal —>
! vy Ref_ture dref : Length i oken_time R Len;th e
N dip[7:0] o nput ' > s TR "
| ip[23:0] : Buffer | zip[15: zip_vali
| e | Data_zi
Data[7:0] == e e - - o 1] 2P
Data_valid P Data_zip_valid
2 —>
Data start Calculate Forma.t Data_zip_start
= > Conversion ————p
Data_end Data_zip_end
Fig. 8. Hardware architecture of the MLZ4AC-2 compressor.
Read Control
’ Token H Unzip_end l
counter ‘ LiteralLength [ ‘ Offset F—’ ‘ﬁ
\ 4 A
— | MatchLength Copy_en > Output
. Choose Address
v I I Read_en ‘ ‘ Write_en } > Control
Full
N N y, - N A\ :
Data_zi
__p» FIFO . \ 4 Dat
Data_zip_valid P | ata
{ L—tp o _,| Data_valid
=) o |
<
3| Data_start
> AT g. é‘ —
= S ™| Data_end
1 addra
- = dina
= Output
Memory < addrb
doutb

Fig. 9. Hardware architecture of the MLZ4D-2 decompressor.

MLZAC-2 and MLZ4D-2 are 2.4 and 2.16 times that of
MLZAC-1 and MLZA4D-1, respectively. At the same time,
the hardware required is also reduced significantly. MLZ4C-2
only uses 60% of the slices and 90% of the BRAMs used
in MLZ4C-1. However, MLZA4C-2 uses four additional DSPs.
MLZAD-2 uses much fewer slices compared with MLZ4D-1,
where more than half of slices are saved. The number of
BRAMs used is also reduced by over 38%. The compari-
son results show that the second architecture is a much better
design. Both MLZ4-1 and MLZ4-2 are further compared with
previous work in the following section.

V. COMPARISON WITH OTHER FPGA IMPLEMENTATIONS
OF LZ ALGORITHMS

In this section, the proposed designs are compared with
other LZ algorithm FPGA implementations. The designs

compared include X-MatchPROv4 [7] using the XMatchPRO
algorithm, the conventional LZW [8], the ELDC-3 core [9] that
implements four image compression algorithms, an improved
LZW VLSI processor [10] which implements the new LZW
algorithm, LZMA [11], the LZWR3 core [12] that implements
the LZRW3 algorithm and an LZ4 FPGA device [13].

The comparison is summarized in Table IV. The MLZA4C-1
is a baseline design. Its performance is not so attractive com-
pared with the previous best design. However, the revised
and pipelined design, i.e., MLZAC-2, has improved the com-
pression performance significantly. From the table, it is clear
that the proposed MLZA4C-2 offers the highest performance.
Although it consumes slightly more slices, MLZ4C-2 increases
the compression throughput by 20% compared with the best
previous design in [13] which is also an LZ4 FPGA design, as
shown in Fig. 10. The main difference between MLZ4C-2 and
the design in [13] is that a word table added in MLZ4C-2 is

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 20,2023 at 10:03:47 UTC from IEEE Xplore. Restrictions apply.



116 IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, VOL. 64, NO. 1, FEBRUARY 2018

TABLE IV
COMPARISON OF LZ COMPRESSION AND DECOMPRESSION IMPLEMENTATIONS

. . . FPGA . Clock Speed Troughput
Compression Device Algorithms Technology Complexity (MH7) (Gbps)
X-MatchProv4 [7] X-MatchPRO 180nm 5367 LUTs 50 (Con?lﬁ‘gsion)
332 Slices 0.700
LZW [8] LZW 120nm/150nm s 50 «f"f;‘giel“zlgg)
474 LUTs (Decompression)
. 0.400~0.528
ELDC-3 Core [9] CGF, GZIP, ELIC, PNG 90nm 5900 Slices 75 (Compression)
Improved LZW Processor [10] New LZW 90nm 27322 }(Sbslgzel\jls 124 (Corr11[')5r§s75ion)
LZMA [11] LZMA 40nm NA 125 (Con(l)l;érgjsion)
227 Slices 1.300
LZRW3 Core [12] LZRW3 28nm 789 FFs 210 (Com. ression)
4~36 BRAMs P
266 Slices 1.600
LZ4[13] LZ4 28nm 17 BRAMs 200 (Com. ression)
3 DSPs P
571 Slices 100 0.800
MLZ4C-1 Modificd LZ4 28nm 76.5 BRAMs (Compression) (Compression)
MLZ4D-1 365 Slices 120 0.960
32.5 BRAMs (Decompression) (Decompression)
345 Slices
MLZA4C-2 69 BRAMs C 240 . C 1.920 .
Modified LZ4 28nm 4 DSPs (Compression) (Compression)
155 Slices 260 2.080
MLZ4D-2 20 BRAMs (Decompression) (Decompression)
| é decompression speeds. The implementation on an FPGA chip
16 shows that the proposed designs can achieve compression and
1.4 decompression throughputs of up to 1.92 Gb/s and 2.08 Gb/s,
a12 which is 20% and 47% faster than the previous best com-
<) 0 é pressor and decompressor designs, respectively. The proposed
E. 0.6 MLZ4 and its hardware architectures can therefore be used
2 04 to increase the storage performance and lifetime of high-end
£ 02 SSDs.
0
x N < *
QC’?) Q@A /\ﬁ\v \,‘\/$ (\P‘C @ \j\§ N4 (\P‘QQ'
Y &@‘ v & W@ o REFERENCES
O
+ \6& [1] J. Luo, L. Fan, Z. Chen, and Z. Li, “A solid state drive architecture with

Fig. 10. Performance comparison with state-of-the-art LZ compressors.

used to find both the matched address and the matched data at
the same time, which reduces the delay; the output module
uses two RAM blocks; all combinational modules are further
divided and registers are inserted to pipeline the design.

MLZAC-2 also outperforms (over 47% faster) the leading
commercial compression device, i.e., LZRW3 [12]. MLZ4D-
2 is also the fastest decompressor compared with other state-
of-the-art designs. This confirms that the proposed MLZ4-
2 design is the fastest compression device, and hence, is
suitable for high-end SSDs.

VI. CONCLUSION

This paper presents a modified LZ4 algorithm and its
FPGA implementations. Several aspects of the original
LZA4 algorithm are modified for efficient hardware imple-
mentation. These changes improve both the compression and

memory card modules,” IEEE Trans. Consum. Electron., vol. 62, no. 1,
pp. 17-22, Feb. 2016.

[2] Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, and O. Mutlu, “Error char-
acterization, mitigation, and recovery in flash-memory-based solid-state
drives,” Proc. IEEE, vol. 105, no. 9, pp. 1666-1704, Sep. 2017.

[3] Y. Park and J.-S. Kim, “zFTL: Power-efficient data compression sup-
port for NAND flash-based consumer electronics devices,” IEEE Trans.
Consum. Electron., vol. 57, no. 3, pp. 1148-1156, Aug. 2011.

[4] J. H. Yoon and G. A. Tressler, “Advanced flash technology status, scal-
ing trends & implications to enterprise SSD technology enablement,” in
Proc. Flash Memory Summit, Santa Clara, CA, USA, 2012, pp. 1-16.

[5] S. Lee, J. Park, K. Fleming, Arvind, and J. Kim, “Improving per-
formance and lifetime of solid-state drives using hardware-accelerated
compression,” IEEE Trans. Consum. Electron., vol. 57, no. 4,
pp. 1732-1739, Nov. 2011.

[6] A. Zuck, S. Toledo, D. Sotnikow, and D. Harnik, “Compression and

SSDs: Where and how?” in Proc. 2nd Workshop Interactions NVM/Flash

Oper. Syst. Workload (INFLOW), 2014, pp. 1-10.

Enhanced Lossless Data Compression (ELDC-3) IP-Core, GEMAC

mbH, Chemnitz, Germany, 2007.

[8] S. Naqvi, R. Naqvi, R. Riaz, and F. Siddiqui, “Optimized RTL design
and implementation of LZW algorithm for high bandwidth applications,”
Elect. Rev., vol. 87, no. 4, pp. 279-285, 2011.

[9]1 W. Cui, “New LZW data compression algorithm and its FPGA imple-
mentation,” in Proc. Picture Coding Symp., 2007, pp. 1145-1148.

[10] J. L. Nunez and S. Jones, “Gbit/s lossless data compression hardware,’

IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 11, no. 3,
pp- 499-510, Jun. 2003.

[7

—

>

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 20,2023 at 10:03:47 UTC from IEEE Xplore. Restrictions apply.



LIU et al.: DATA COMPRESSION DEVICE BASED ON MLZ4

[11] B. Li, L. Zhang, Z. Shang, and Q. Dong, “Implementation of
LZMA compression algorithm on FPGA,” Electron. Lett., vol. 50,
no. 21, pp. 1522-1524, Oct. 2014.

[12] LZRW3 Data Compression Core for Xilinx FPGA, Helion Technol.,

Cambridge, U.K., Oct. 2008.

M. Bartik, S. Ubik, and P. Kubalik, “LZ4 compression algorithm on

FPGA,” in Proc. IEEE Int. Conf. Electron. Circuits Syst., Cairo, Egypt,

2015, pp. 179-182.

Y. Collet. (2011). Real Time Data Compression: LZ4 Explained.

[Online].  Available: http://fastcompression.blogspot.ru/2011/05/1z4-

explained.html

M. Nelson and J.-L. Gailly, The Data Compression Book, 2nd ed.

New York, NY, USA: M&T Books, 1995.

G. K. Wallace, “The JPEG still picture compression standard,” I[EEE

Trans. Consum. Electron., vol. 38, no. 1, pp. 18-34, Feb. 1992.

Y. M. Siu, C. K. Chan, and K. L. Ho, “Teletext data change detection and

noiseless data compression,” IEEE Trans. Consum. Electron., vol. 41,

no. 4, pp. 1061-1068, Nov. 1995.

R. Mehboob, S. A. Khan, Z. Ahmed, H. Jamal, and M. Shahbaz,

“Multigig lossless data compression device,” I[EEE Trans. Consum.

Electron., vol. 56, no. 3, pp. 1927-1932, Aug. 2010.

D. A. Huffman, “A method for the construction of minimum-redundancy

codes,” Proc. IRE, vol. 40, no. 9, pp. 1098-1101, Sep. 1952.

J. Ziv and A. Lempel, “A universal algorithm for sequential data com-

pression,” [EEE Trans. Inf. Theory, vol. 23, no. 3, pp. 337-343,

May 1977.

J. Ziv and A. Lempel, “Compression of individual sequences

via variable-rate coding,” IEEE Trans. Inf. Theory, vol. 24, no. 5,

pp- 530-536, Sep. 1978.

D. Harnik, E. Khaitzin, D. Sotnikov, and S. Tharlev, “A fast implemen-

tation of deflate,” in Proc. Data Compression Conf., 2014, pp. 223-232.

R. N. Williams, “An extremely fast Ziv—Lempel data compression

algorithm,” in Proc. Data Compression Conf., 1991, pp. 362-371.

J. A. Storer and T. G. Syzmanski, “Data compression via textual

substitution,” J. ACM, vol. 29, no. 4, pp. 928-951, 1982.

T. A. Welch, “A technique for high-performance data compression,”

Computer, vol. 17, no. 6, pp. 8-19, Jun. 1984.

[26] D. Salomon, Data Compression: The

4th ed. London, U.K.: Springer, 2007.

S. Deorowicz, “Universal lossless data compression algorithms,” Ph.D.

dissertation, Faculty Autom. Control, Electron. Comput. Sci., Silesian

Univ. Technol., Gliwice, Poland, 2003.

[13]

[14]

[15]
[16]
[17]

(18]

[19]
[20]

[21]

[22]
[23]
[24]
[25]

Complete  Reference,

[27]

Weigiang Liu (M’12-SM’15) received the
B.Sc. degree in information engineering from
the Nanjing University of Aeronautics and
Astronautics (NUAA), Nanjing, China, in 2006 and
the Ph.D. degree in electronic engineering from the
Queen’s University Belfast (QUB), Belfast, UK.,
in 2012, respectively.

In 2013, he joined the College of Electronic
and Information Engineering, NUAA, where
he is currently an Associate Professor. He was
a Research Fellow with the Institute of Electronics,
Communications and Information Technology, QUB from 2012 to 2013.
He has published one research book by Artech House and over 50 leading
journal and conference papers. His current research interests include very
large scale integration design for digital signal processing and cryptography
and emerging technologies in computing systems.

Dr. Liu’s paper was a finalist in the Best Paper Contest of IEEE
International Symposium on Circuits and Systems (ISCAS) 2011 and he is
the co-author of a Best Paper Candidate of ACM GLSVLSI 2015. He serves
as an Associate Editor of the IEEE TRANSACTIONS ON COMPUTERS (TC),
the Leader of The Multimedia Team at TC Editorial Board, and the Guest
Editor of two special issues of the IEEE TRANSACTIONS ON EMERGING
Toprics IN COMPUTING. He has been a Technical Program Committee
Member for several international conferences, including IEEE Symposium
on Computer Arithmetic, the Annual IEEE International Conference on
Application-specific Systems, Architectures and Processors, ISCAS, and
International Conference on Neural Information Processing. He is a member
of the IEEE CASCOM Technical Committee.

Faqiang Mei received the B.Sc. degree in infor-
mation engineering from the Nanjing University of
Aeronautics and Astronautics (NUAA), Nanjing,
China, in 2016, where he is currently pursuing the
master’s degree in circuit and systems with the
College of Electronic and Information Engineering.

His  current research  interest includes
FPGA design for lossless data compression
algorithms and cryptographic hardware.

117

Chenghua Wang received the B.Sc. and M.Sc.
degrees from Southeast University, Nanjing, China,
in 1984 and 1987, respectively.

In 1987, he joined the College of Electronic
and Information Engineering, Nanjing University of
Aeronautics and Astronautics, Nanjing, where he
became a Full Professor in 2001. He has published
six books and over 100 technical papers in journals
and conference proceedings. His current research
interests include testing of integrated circuits and cir-
cuits and systems for communications.

Mr. Wang was a recipient of over ten teaching and research awards at the
provincial and ministerial level.

Maire O’Neill (M’03-SM’11) received the M.Eng.
degree (with Distinction) and the Ph.D. degree in
electrical and electronic engineering from Queen’s
University Belfast (QUB), Belfast, U.K., in 1999 and
2002, respectively.

She is currently the Research Director of
the Centre for Secure Information Technologies,
QUB. She has authored two research books and has
over 125 international peer-reviewed conference and
journal publications.

Dr. O’Neill was a recipient of the Prestigious
U.K. Engineering and Physical Sciences Research Council Leadership
Fellowship from 2008 to 2015, and numerous awards for her research to date,
which include the 2014 U.K. Royal Academy of Engineering Silver Medal,
and the Women’s Engineering Society Prize at the 2006 IET Young Woman
Engineer of the Year Awards. She was a former holder of the U.K. Royal
Academy of Engineering Research Fellowship from 2003 to 2008 and she was
named British Female Inventor of the Year in 2007. She is an Associate Editor
of the IEEE TRANSACTIONS ON COMPUTERS and the IEEE TRANSACTIONS
ON EMERGING ToPICS IN COMPUTING and has acted as a Guest Editor for
a number of journals, including the IET Information Security in 2005 launch
issue and a special issue on cryptography in the coming decade of the ACM
Transaction on Embedded Computing in 2015. She has been a Technical
Program Committee Member for many international conferences, includ-
ing Design Automation Conference, Cryptographic Hardware and Embedded
Systems, Design, Automation and Test in Europe, IEEE SoC (System-on-
Chip) Conference, ISCAS, IET Irish Signals and Systems Conference and
Workshop on RFID Security and Privacy. She is an IEEE Circuits and Systems
for Communications Technical Committee Member and was a Treasurer of the
Executive Committee of the IEEE United Kingdom and Ireland Section from
2008 to 2009. She is a member of the Royal Irish Academy and a fellow of
the Irish Academy of Engineering.

Earl E. Swartzlander, Jr. (SM’79-F’88-LF’11)

received the B.S. degree from Purdue University,

West Lafayette, IN, USA, in 1967, the M.S. degree

from the University of Colorado, Boulder, CO, USA,

in 1969, and the Ph.D. degree from the University

of Southern California, Los Angeles, CA, USA, in

e 1972, all in electrical engineering.

He is a Professor of electrical and computer engi-

neering with the University of Texas at Austin,

&‘ Austin, TX, USA. In this position, he and his stu-

! dents conduct research in computer engineering with

emphasis on application-specific processor design, including high-speed com-

puter arithmetic, embedded processor architecture, very large scale integration

technology, and nanotechnology. In 2016, he supervised 46 Ph.D. students. He

has authored two books, authored or co-authored 86 refereed journal papers,
41 book chapters, and 310 conference papers, and edited 11 books.

Dr. Swartzlander was a recipient of the IEEE Third Millennium Medal, the
Distinguished Engineering Alumnus Award from the University of Colorado,
the Outstanding Electrical Engineer and Distinguished Engineering Alumnus
Awards from Purdue University, and the IEEE Computer Society Golden
Core Award. He was the Editor-in-Chief of the IEEE TRANSACTIONS ON
COMPUTERS from 1990 to 1994 and was the Founding Editor-in-Chief of
the Journal of VLSI Signal Processing. In addition, he has served as an
Associate Editor for the IEEE TRANSACTIONS ON COMPUTERS, the IEEE
TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, and the IEEE
JOURNAL OF SOLID-STATE CIRCUITS. He has been a member of the Board of
Governors of the IEEE Computer Society from 1987 to 1991, the IEEE Signal
Processing Society from 1992 to 1994, and the IEEE Solid-State Circuits
Council/Society from 1986 to 1991. He has been a member of the IEEE
History Committee from 1996 to 2004, the IEEE Fellows Committee from
2000 to 2003, the IEEE James H. Mulligan, Jr., Education Medal Committee
from 2007 to 2011, the IEEE Awards Planning and Policy Committee from
2011 to 2013, the IEEE Awards Board Awards Review Committee from
2014 to 2016, the IEEE Awards Board from 2015 to 2016, and the IEEE
Awards Policy and Portfolio Review Committee in 2017. He has chaired
a number of conferences.

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 20,2023 at 10:03:47 UTC from IEEE Xplore. Restrictions apply.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZapfChancery-MediumItalic
    /ZapfDingBats
    /ZapfDingbatsITCbyBT-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


