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∗ Centre for Secure Information Technologies (CSIT), ECIT, Queen’s University Belfast, UK

† Department of Computer Science, University of Bristol, UK
‡ College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, China

Email: {a.khalid, c.m.rafferty, sbrannigan11, maire.oneill}@qub.ac.uk, james.howe@bristol.ac.uk, liuweiqiang@nuaa.edu.cn

Abstract—Lattice based cryptography (LBC) stands out today
as one of the most promising types of post-quantum cryptogra-
phy, and a strong contender in the ongoing NIST post-quantum
cryptography standardisation process. LBC algorithms are ad-
vantageous due to their efficiency, versatility and the hardness of
their underlying lattice problems. In this work, the practicality of
LBC is explored by surveying one of the critical components, the
error samplers, and highlighting the challenges associated with
their efficient, secure implementation. Side channel attack (SCA)
vulnerabilities and associated countermeasures are considered,
concluding with error sampler recommendations, to aid the
practicality, security and future widespread deployment of LBC.

Index Terms—sampling, post-quantum cryptography, Gaus-
sian, lattices, lattice-based cryptography

I. INTRODUCTION

Current public-key security infrastructure will soon require
a significant update, since its security may be compromised by
a scalable quantum computer in the near future. Shor’s algo-
rithm, running on a quantum computer, can solve the integer
factorization and discrete logarithm problems in polynomial
time [1], on which currently used public key algorithms are
based. This threat has resulted in an active area of research,
known as quantum-resilient or post quantum cryptography
(PQC), providing recommendations to transition to quantum-
resistant public-key cryptography in the near future, from
academia, industry and government agencies, including NSA
and CESG [2], [3]. In 2016, NIST called for quantum-resilient
cryptographic algorithms for standardisation [4].

Of the various flavours of quantum-resilient cryptography
submitted to the NIST PQC competition, lattice-based cryp-
tography (LBC) makes the most populous class (29 out of 71
PQC schemes). LBC stands out primarily because of the algo-
rithmic hardness of the underlying lattice problems, efficient
implementations due to inherent linear algebraic operations
and extended functionality for advanced security services such
as identity-based encryption (IBE) and fully-homomorphic en-
cryption (FHE), in addition to the basic classical cryptographic
primitives (encryption, signatures, key exchange). Google has
demonstrated LBC key exchange in TLS [5].

Implementations of LBC raise several unique challenges.
None of the commonly used underlying LBC building blocks,
e.g., Discrete Gaussian samplers (DGS), fast Number Theo-
retic Transforms (NTTs) and compact cryptographic hashes,

are part of traditional asymmetric cryptography used today.
This survey focuses on the DGS used within LBC proposals.
Secure implementation of DGS is challenging, due to inherent
performance limitations and exploitable side channel vulnera-
bilities. This work surveys the requirements of error samplers
for all LBC submissions to the NIST PQC competition. We
chalk out the use of alternate schemes instead of DGS. Any
DGS side channel vulnerabilities that have led to successful
attacks are surveyed and appropriate countermeasures are
discussed. Recommendations for efficient DGS on software
and hardware platforms conclude the paper.

II. BACKGROUND

A. Lattice-Based Primitives

Lattices are objects in n-dimensional Euclidean space char-
acterized by a regular arrangement of points. A number of
hard mathematical problems are used to construct lattice-based
schemes, such as the Short Integer Solution (SIS) or the
NTRU assumption. The most common problem is Learning
with Errors (LWE), which involves finding a vector s when
given a matrix A and a vector b = As + e where e is a small
(unknown) error vector. The absence of this noise would give
away secret information via Gaussian elimination. Discrete
Gaussian samplers (DGS) are typically employed to generate
this noise as they allow for efficient implementations, with
smaller output sizes (ciphertexts or signatures).

There are several classes of lattices: Schemes based on LWE
are known as standard lattice-based schemes. These schemes
require matrix-vector multiplication using large memories and
quadratic complexity. Ideal or ring lattice-based schemes
alternatively represent the matrix by a single row, and the
remaining rows are generated by cyclic shifts of the first row.
This reduces matrix-vector multiplication to polynomial mul-
tiplication and is memory-computation efficient. To provide a
trade-off between efficiency and security, module lattices are
introduced [6]. The difference between module over standard
lattices is that the associated module-lattice matrix has small
dimensions and the matrix coefficients are no longer simple
integers but polynomials. Polynomial schemes are a gener-
alisation of ring lattice-based schemes. The security of ring
and module lattice-based schemes is based on variants of the
original mathematical problems, e.g. Ring-LWE, Module-SIS.
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III. CLASSIFICATION OF LBC CANDIDATES IN THE NIST
STANDARDISATION PROCESS

Table I presents a comprehensive summary of the lattice-
based schemes submitted to the NIST PQC standardisation
process [4] and their related lattice classes. The table shows
for which key exchange (KEM)/ public key encryption (PKE)
schemes the authors claim chosen ciphertext attack (CCA) or
adaptive chosen ciphertext attack (CCA2) security in addition
to the NIST PQC requirement of chosen plaintext attack
(CPA) security. CPA security implies that the scheme is
mathematically secure against an attacker with limited access
to plaintext/ciphertext pairs; CCA security implies that an
attacker also has access to a decryption oracle. This can
be extended by assuming an adaptive attacker (CCA2). For
most submitted signature schemes, the authors claim EUF-
CMA security, which means that a signature is existentially
unforgeable under chosen-message attacks. Thus, an attacker
with access to a signing oracle is unable to forge a valid
signature of a new message. Strong existential unforgeability
under Chosen Message Attacks (SEUF-CMA) is a stronger
security notion that assumes that an attacker is unable to forge
a different signature of a message that he has already seen.

IV. ERROR SAMPLERS FOR LATTICE-BASED
CRYPTOGRAPHY

The key LBC components include linear algebraic op-
erations and sampling from a discrete Gaussian-distributed
random source. In addition to traditional rejection sampling,
several other techniques have been proposed, including Cumu-
lative Distribution Table (CDT) sampling (inversion sampling),
Knuth-Yao sampling and Box Muller sampling. All schemes
have advantages depending on the target application. However,
tackling side-channel vulnerabilities is critical. Most of the
proposed PKE and KEM LBC-schemes require a DGS with a
small standard deviation (σ < 10, generally), as seen in Table
I. σ controls the dispersion of the samples from the mean and
depends on the modulus used. The three main types of DGS
featuring in the NIST LBC submissions are:

• Knuth-Yao: The Knuth-Yao sampler is a tree-based
algorithm for sampling from non-uniform distributions by
using a minimal number of input uniform bits, close to the
entropy of the probability distribution. The scheme has
a very compact memory footprint, but needs additional
data scrambling to make the generated Gaussian samples
time-independent [7]–[10].

• CDT: The CDT sampler requires a precomputed table
of discrete Gaussian cumulative distribution function
(CDF) values and uses binary search with complexity
of log2(N) comparisons to generate a sample. The
technique offers a reasonable data footprint and inherent
constant time execution [10].

• Box-Muller: The Box-Muller transform produces a pair
of Gaussian random numbers from a pair of uniform
numbers. It generates the magnitude and phase of a
vector of which the two Cartesian coordinates are the

output Gaussian numbers [11], [12]. It requires calcula-
tion of log2, sin, cosine and consequently has platform
limitations and limited precision. For higher precision
and/or constant-time Gaussian samplers, the authors of
NTRUEncrypt and pqNTRUSign schemes recommend
using an alternate sampler [13].

An alternative way to approximate the normal distribution is
via the binomial distribution. The binomial distribution en-
ables easier, efficient sampling in constant time, in comparison
with DGS. This approximation works well for small sigmas,
as the exact distribution shape can be shown to have sufficient
security equivalence under appropriate conditions using the
Renyi divergence technique [14]. For qTESLA, Gaussian
sampling from the Bernoulli distribution, a special case of the
binomial distribution, is used for key generation [15]. DGS
techniques are used to output a variety of distributions, i.e.
discrete Gaussian, rounded continuous Gaussian, or binomial.

Efficient, side-channel resistant implementations of DGS
schemes are non-trivial and to date limited research has been
conducted. As seen in Table I, at least 9 candidates employ
DGS, using a variety of aforementioned methods, with sigmas
ranging from 1.2 to 107. Hardware designs of samplers have
explored constant-time implementations [8], [10], [16]. For
signature schemes, usually requiring large sigmas, hierarchical
CDT sampling has been proposed for compact, efficient sam-
pling in hardware [17]. Box-Muller sampling has been shown
to be efficient on software platforms and has been implemented
in constant time to produce rounded Gaussian samples for the
BLISS LBC signature scheme [12].

A. SCA vulnerabilities and countermeasures for samplers

Physical attacks against lattice-based constructions are
emerging. Physical attack resistance is also a fundamental pa-
rameter for the NIST standardization process. Timing attacks,
introduced by Kocher [18], exploit the time difference required
to perform specific operations, such as the non-constant time to
execute different instructions, different data fetch times due to
cache memory hit/miss, program behaviour due to branching,
and optimisations that skip unnecessary operations.

Discrete Gaussian samplers have been shown to be vulnera-
ble against timing attacks, for example information leaked via
cache memory by a CDT based Gaussian sampler has been
successfully extracted [19]. To unlink the timing information
from sampling, Roy et. al proposed the use of Fisher-Yates
shuffling [20] with Knuth-Yao DGS [8], [9]. Saarinen [21]
suggested shuffling be carried out twice on the set of indepen-
dently generated samples, before summation. Recent research
shows that relying solely on two-stage shuffling may not be
sufficient to protect against SCA attacks [22]. Consequently,
multiple sampling and shuffling stages together with the use of
different convolution parameters are recommended to ensure
adequate protection [22], [23].

The simplest countermeasure against timing attacks is to
ensure the execution time of an implementation is independent
of the secret data. However, for Gaussian samplers, it is often
expensive to ensure constant-time implementations. Several
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algorithms utilise uniform random numbers to return Gaussian
distributed numbers and differ from each other in terms of
implementation speed, memory, and precision. Constant-time
hardware architectures for a wide range of samplers have
been proposed [10], [24]. The binomial sampler is inherently
protected against timing attacks. However, as it only samples
from a binomial distribution instead of an exact Gaussian
distribution it can only be used in encryption and key exchange
schemes, as the security proof in signature schemes requires
the sampler to have high precision.

V. CONCLUSIONS AND RECOMMENDATIONS

Lattice based cryptographic primitives offer both efficiency
and resilience against quantum attacks, highlighting the poten-
tial for SCA-resilient LBC implementations to replace current
public key cryptography used today on existing commodity
and custom hardware. This work surveys the samplers in LBC
constructions, with consideration of SCA attacks that threaten
the security of these implementations. It is recommended that:

• Ensure constant time implementations where possible.
• Box-Muller sampling is a suitable DGS candidate for

software, offering efficient, constant time and scalable
performance, and does not require precomputed tables.

• CDT sampling is a suitable DGS candidate for hardware,
offering efficient, constant time and scalable performance,
using precomputed tables.

• Knuth-Yao sampling is compact DGS candidate for hard-
ware, but is inherently non- constant time. Scrambling
can address this, incurring performance costs.

• Binomial sampling is a suitable sampling candidate for
low sigma applications, and it runs in constant time.

• Multiple threat vectors should be considered together: to
date, most SCA countermeasures for samplers address a
specific threat, without consideration of other threats.

• Performance overheads of countermeasures should be
considered to accurately assess LBC performance.

As more lattice-based designs emerge, further attacks will
most likely surface and this will continue to be an important
area of research.

REFERENCES

[1] P. Shor, “Algorithms for quantum computation: discrete logarithms and
factoring,” Proceedings 35th Annual Symposium on Foundations of
Computer Science, p. , 1994.

[2] National Security Agency, “Commercial national secu-
rity algorithm suite,” August 2015. [Online]. Available:
https://www.iad.gov/iad/programs/iad-initiatives/cnsa-suite.cfm

[3] CESG, “Quantum key distribution: A CESG white paper,”
February 2016. [Online]. Available: https://www.cesg.gov.uk/white-
papers/quantum-key-distribution

[4] D. Moody, “Post-quantum cryptography: NIST’s plan for the
future,” Talk given at PQCrypto ’16 Conference, 23-26 February
2016, Fukuoka, Japan, February 2016. [Online]. Available:
https://pqcrypto2016.jp/data/pqc2016 nist announcement.pdf

[5] M. Braithwaite. (2016) Experimenting with
post-quantum cryptography. [Online]. Available:
https://security.googleblog.com/2016/07/experimenting-with-post-
quantum.html
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