
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2020, No. 2, pp. 73–98. DOI:10.13154/tches.v2020.i2.73-98

FENL: an ISE to mitigate analogue
micro-architectural leakage

Si Gao, Ben Marshall, Dan Page and Thinh Pham

Department of Computer Science, University of Bristol,
Merchant Venturers Building, Woodland Road,

Bristol, BS8 1UB, United Kingdom.
{si.gao,ben.marshall,daniel.page,th.pham}@bristol.ac.uk

Abstract. Ge et al. [GYH18] propose the augmented ISA (or aISA), a central tenet
of which is the selective exposure of micro-architectural resources via a less opaque
abstraction than normal. The aISA proposal is motivated by the need for control
over such resources, for example to implement robust countermeasures against micro-
architectural attacks. In this paper, we apply an aISA-style approach to challenges
stemming from analogue micro-architectural leakage; examples include power-based
Hamming weight and distance leakage from relatively fine-grained resources (e.g.,
pipeline registers), which are not exposed in, and so cannot be reliably controlled
via, a normal ISA. Specifically, we design, implement, and evaluate an ISE named
FENL: the ISE acts as a fence for leakage, preventing interaction between, and hence
leakage from, instructions before and after it in program order. We demonstrate that
the implementation and use of FENL has relatively low overhead, and represents an
effective tool for systematically localising and reducing leakage.
Keywords: Information leakage, side-channel attack, ISA, ISE, micro-architecture

1 Introduction
Micro-architecture as a design principle. In the context of (micro-)processor design, an
Instruction Set Architecture (ISA) is conventionally viewed as an abstraction [HP17, Page
12]. By defining 1) a set of accessible resources, or state, and 2) a set of instructions,
including their format and semantics (e.g., how they manipulate said resources), it repre-
sents an abstract interface to a concrete, hardware implementation; the former constitutes
the architecture (i.e., what is “visible” to or accessible by the programmer), whereas
the latter constitutes the micro-architecture (i.e., what is “invisible” to or inaccessible
by the programmer). The same concept can be couched as an interface, or contract:
provided that a micro-architecture adheres to a contract specified by the associated ISA,
any software written against it will execute as intended. This description is attractive,
because it highlights the fact that an ISA is responsible for allowing behavioural diversity
while ensuring functional compatibility, or, put another way, maximising flexibility wrt.
implementation while retaining transparency wrt. usage: by separating behavioural and
functional semantics of instruction execution, different micro-architectures can realise the
same ISA, but, in doing so, employ features that differ in their design and/or implementa-
tion. Adopting a positive perspective, Dunham and Beard [DB18] stress the value of this
fact in their analysis of early RISC designs (e.g., MIPS [HJBG81]). In essence, they argue
that a clean(er) separation is an advantage because it facilitates, e.g., more aggressive
optimisation of instruction execution to satisfy a given quality metric, market, or use-case.

From a negative perspective, however, the exact same pursuit of optimised instruction
execution is arguably an enabler of micro-architectural attack techniques (see, e.g., [Sze16,

Licensed under Creative Commons License CC-BY 4.0.
Received: 2019-10-15 Accepted: 2019-12-15 Published: 2020-03-02

https://doi.org/10.13154/tches.v2020.i2.73-98
mailto:{si.gao,ben.marshall,daniel.page,th.pham}@bristol.ac.uk
http://creativecommons.org/licenses/by/4.0/

74 FENL: an ISE to mitigate analogue micro-architectural leakage

Section 4] and [GYCH18, Section 4]). Considering a given micro-architectural resource,
such attacks stem from two main underlying issues: either 1) the resource exhibits
observable data-dependent behaviour, which may then be correlated with some target
value, and/or 2) the resource is shared at a micro-architectural level, which may allow
interaction between otherwise isolated instruction streams. Micro-architectural attacks
represent a significant threat, and, as such, a range of associated countermeasure techniques
have been explored (see, e.g., [Sze16, Section 5] and [GYCH18, Section 5]). Although
such techniques are increasingly well understood, challenges remain wrt. their design,
implementation, and deployment. For instance, resources in the micro-architecture are
deeply ingrained, so not easily avoided (e.g., the penalty for disabling the resource is
significant) or altered (e.g., any countermeasure may be extremely invasive), and are
transparent to executing instructions as a result of abstraction by the ISA. This implies a)
a lack of control over said resource [GYLH17], which makes it hard to eliminate insecure
behaviour, and b) the security properties of instructions may differ when executed on two
functionally equivalent micro-architectures (i.e., an implemented countermeasure may not
“port” across micro-architectures).

Some proposals have attempted to address such challenges by fundamentally re-
evaluating what an ISA is, and so the roles and structure of both ISA and associated
micro-architecture(s). Examples include proposals for ISAs that prevent certain forms of
attack by-design (e.g., [YHHF19, ZSM19]), and proposals for ISAs that selectively expose
resources in the associated micro-architecture (e.g., [Hei18, GYH18, LPAF+18]). The
proposal of Ge et al. [GYH18] for a “new security-oriented hardware/software contract”
they dub the augmented ISA (or aISA), is an exemplar of the latter approach. Their
argument, in essence, is that normal ISAs are failing to provide an appropriate abstraction
because they abstract details that would otherwise allow provision of time protection (i.e.,
the prevention of unauthorised temporal interaction). Based on the high-level principle that
it should be possible to 1) partition, and/or 2) reset resources in the micro-architecture, the
aISA demands lower-level properties that render the ISA less opaque, but, as a trade-off,
able to provide time protection and hence prevent associated micro-architectural attacks.

An aISA-style approach to analogue micro-architectural leakage. One can imagine a
general classification including two forms of information leakage: 1) discrete (or digital)
leakage stemming from logical, or functional characteristics of a given micro-architecture
(e.g., relating to cache-hit or miss activity), and 2) analogue leakage stemming from physical,
or behavioural characteristics (e.g., relating to transistors realising said cache); instruction
execution latency would be an example of the former, with power consumption [KJJ99,
MOP07] an example of the latter. Shifting focus specifically to micro-architecture side-
channel attacks then, most instances harness discrete forms of leakage. Despite this,
however, it should be clear that instances based on analogue leakage are also plausible.
Among an increasing range of such instances, Zoni et al. [ZBPF18] exemplify this fact by
systematically evaluating analogue leakage from the micro-architecture of an OpenRISC-
based SoC. A central example is Hamming weight and/or distance based leakage related
to pipeline registers and forwarding paths, which can be observed via, for example, power-
based measurement (or simulation).

Given the focus on discrete forms of leakage by, for example, aISA, an open question
would be whether and how a similar approach can be usefully applied in the context of
analogue leakage. We attempt to answer this question, introducing a micro-architecture
aware Instruction Set Extension (ISE) that acts as a fence for analogue leakage; we use
the name FENL to refer to the ISE. Whereas a conventional (memory) fence instruction
relates to the memory ordering model, for example, FENL relates to the leakage model.
We position FENL as a means of supporting (at least) three core use-cases or principles:
1. It acts as a mechanism for localisation of leakage: using the fence instruction, one can

Si Gao, Ben Marshall, Dan Page and Thinh Pham 75

localise leakage to the micro-architectural resource causing it. In concept, this can be
viewed as aligning with principles described by the term design-for-test: it represents a
designed-in mechanism to enable leakage testing (or evaluation), rather than assume
that doing so is plausible post hoc.

2. It acts as a mechanism for reduction of leakage: using the fence instruction, one can
reduce the leakage previously identified. In the interests of clarity, we stress two points.
First, FENL is not a panacea, nor even a countermeasure in and of itself. It is best
understood as a facilitator for more effective implementation (or fine-tuning) of other
countermeasures (e.g., masking). Second, even given the above we deliberately use the
term reduce rather than remove: the degree to which leakage is reduced is inherently
limited by the FENL concept, and any implementation of it.

3. It offers the potential for a close(r) connection between theory and practice: it provides
a form of anchor (or guarantee) wrt. leakage, with which provably secure (e.g., masking,
per [BBD+15]) constructions can be be implemented more robustly.

Abstractly, we claim FENL is general-purpose in the sense it is agnostic to any specific
base ISA, micro-architecture, or workload executed on an associated implementation (i.e.,
processor core). Concretely, however, an implementation of FENL is necessarily specific in
terms of form and function. As a result, we limit the paper and temper any claims to a
specific remit: we specifically consider 1) micro-controller class processor cores only, which
limits the degree of of micro-architectural complexity vs. the wider design space, and 2)
leakage stemming from the power consumption of such cores, dismissing various similar
(e.g., EM) and dissimilar (e.g., fault injection) attack vectors out of scope.

Organisation. Section 2 presents some motivation for and (abstract) design of FENL.
Section 3 then presents 1) a (concrete) FENL design based on use of RISC-V as the
base ISA, and 2) an implementation of said design in two different RISC-V compliant
micro-architectures. Both the concept and implementations of it are then evaluated in
Section 4, via a suite of experiments designed to explore their efficacy. Finally, Section 5
presents some conclusions and potential directions for future work.

2 Design
2.1 Related work
Metrics. In order to detect and/or quantify micro-architectural leakage, a range of metrics
and methodologies exist: Side-channel Vulnerability Factor (SVF) [DMWS12, DMWS13],
Signal Available to Attacker (SAVAT) [CZP14], and the Welch’s t-test [Wel47] based Test
Vector Leakage Assessment (TVLA) [GJJR11], can, for example, be used to assess if (or
when) leakage occurs. A central advantage of such approaches is their non-specific nature,
which helps them shift leakage detection away from priori-driven1 principles. However,
although leakage detection can be couched as a pass-or-fail process in academic or test
laboratories, the situation is more complex for vendors. They are tasked with understanding
any leakage detected, then harnessing said understanding to formulate and implement
appropriate countermeasures; doing so likely represents an iterative, ongoing process in
contrast. So, specifically, the lack of explainability, stemming from the non-specific nature
of approaches such as TVLA, represents a challenge: there is no easy way to localise (e.g.,
to a given resource) or reduce leakage, so address challenges relating to where and why.

In our experience, this challenge is typically addressed using a somewhat ad hoc “guess-
and-determine” strategy which can be demanding wrt. the effort, time, and expertise

1Examples include the “test all known attacks” approach, which may fail for reasons such as an invalid
leakage model rather than an absence of leakage; such an approach is, in fact, the de facto standard for
cases such as Common Criteria (CC) and EMVCo evaluation.

76 FENL: an ISE to mitigate analogue micro-architectural leakage

required, while also fragile wrt. the outcome. FENL is (partly) motivated by a need to
address such problems, and thus support a more systematic strategy.

Analysis. Experimental analysis of (embedded) processor cores in the context of energy
and power efficiency has a lengthy history: a much cited study of Tiwari et al. [TMW94]
is now, for example, 25 years old. Given the threat of analogue micro-architectural
leakage, similar approaches have often been re-purposed to provide insight of a security-
oriented nature. Examples (see, e.g., [SR15, CGMA+15, CGD18, BP18, ZBPF18, DAK19])
cover a spectrum of processor cores, underlying fabrics (e.g., ASIC, FPGA), and micro-
architectural complexity (from non-pipelined through to deep, even super-scalar pipelines).
The majority of such examples attempt black-box characterisation of leakage from a given
core, for example in terms of source (e.g., architectural, general-purpose registers, or
micro-architectural pipeline registers) and/or type (e.g., Hamming weight or distance). Le
Corre et al. [CGD18] offer an example of a different type, in identifying a more explicit,
attack-oriented problem. By using a HDL-based leakage simulator for Cortex-M3 called
MAPS, they demonstrate that analogue micro-architectural leakage (specifically, Hamming
distance leakage from a pipeline register) can render masked implementations insecure.

FENL is (partly) motivated by delivery of more explicit, grey- or even white-box
analysis, which can offer easier to use and more precise characterisation.

Countermeasures. Seuschek et al. [SSG17] suggest use of leakage aware code genera-
tion [SSG17, Section 6]. This involves careful 1) scheduling (i.e., ordering) of instructions,
and 2) register allocation informed by a leakage characterisation [SSG17, Section 4] which
captures vulnerable instruction sequences. Bayrak et al. [BRN+15] consider what we view
as the closest related work2 to FENL: they described a compiler-driven approach, which
operates by 1) identifying [BRN+15, Section 4] vulnerable instructions, then 2) apply-
ing [BRN+15, Section 5] a program transformation to mitigate leakage from vulnerable
instructions. One of the transformations considered is that of random pre-charge. For
an 8-bit AVR processor code, the compiler might, for example, translate lds Rd, ADDR
into lds Rr, RND ; mov Rd, Rr ; lds Rd, ADDR, st. general-purpose register Rd is
randomised before use as the destination of a vulnerable load from memory.

The advantage of both approaches is their non-invasive nature: they can be realised in
software alone. However, by operating at an architectural vs. a micro-architectural level,
this also means less control over and so less robust mitigation wrt. leakage from resources
of the latter class. This forms a central differentiator from and so motivation for FENL.

2.2 An overview of FENL
2.2.1 Concept

The concept3 of a fence (or barrier) instruction is common in modern ISAs. When defined
wrt. a class of instructions, instances typically guarantee all instructions in said class
before the fence (in program order) complete execution before any instructions after it.
For the class of memory access instructions, fences are commonly provided to enforce
a specific memory ordering model: they allow control of out-of-order memory access,
e.g., to ensure serialisation. Examples of this type are supported by flavours of x86 (e.g.,
via mfence [X8618, Page 4-22], sfence [X8618, Page 4-597], and lfence [X8618, Page
3-541]), ARM (e.g., via dmb [ARM18, Section A6.7.21]), SPARC (e.g., via membar [WG03,

2We note that the Rosita tool of Shelton et al. [SSB+19], which appeared post-submission, makes use
of a similar mechanism.

3We note that the terms fence and barrier are overloaded, in the sense they are used for a different
purpose elsewhere in the field of hardware security; see, e.g., [KGS+19].

Si Gao, Ben Marshall, Dan Page and Thinh Pham 77

Section 8.4.3]), MIPS (e.g., via sync [MIP16, Pages 407–411]), and RISC-V (e.g., via
fence [RV:19a, Section 2.7]).

By analogy, the central concept in FENL is that of a fence for leakage: it guarantees
that instructions after the fence cannot logically interact4 with those before it, and thus
will not yield associated leakage. To realise this concept, FENL applies Property 1 of the
aISA [GYH18, Section 5], which states that “any shared micro-architectural feature can
either be partitioned between security domains, or reset when required”. We carefully use
the term flush rather than reset, because the latter has a particular interpretation in the
context of digital logic; by selectively flushing resources as the fence is executed, their
previous state (dictated by instructions before the fence) cannot influence their future
state or transitions (dictated by instructions after the fence). Note that the remit of FENL
is strictly limited to micro-architectural resources, and leakage from them: architectural
resources, such as the general-purpose register file and memory, are outside that remit.

One may alternatively use the analogy of security-oriented pre-charge logic styles [MM17]:
computing an output using such a cell proceeds in two phases, namely 1) pre-charge using
fixed inputs, then 2) evaluation using real inputs, designed to reduce leakage during
the evaluation phase. Substituting instruction for cell, resource for input, and flush for
pre-charge, FENL can be viewed as (selectively) applying an analogous approach.

2.2.2 Realisation

Consider a set R of micro-architectural resources (or logical collections thereof), and let
σ(Ri) denote the stage5 of execution some i-th resource Ri exists or is applied in. The
FENL design can be described as comprised of two components:
1. A w-bit configuration register FENL.CR, each i-th bit in which controls (or maps to) Ri,

plus a suite of access instructions that allow FENL.CR to be written to and read from:
examples could include (but are not limited to) transfer from and to the general-purpose
register file per

fenl.crwr rs 7→ FENL.CR← GPR[rs]
fenl.crrd rd 7→ GPR[rd]← FENL.CR

2. A fence instruction fenl.fence. From an architectural perspective, the semantics
of said instruction mirror those of a NOP: it has no architectural impact. From
a micro-architectural perspective, however, the semantics act to flush resources as
it progresses through stages of execution: when an instance of fenl.fence reaches
execution stage j, each i-th resource which exists or is applied in said j-th stage (i.e.,
each i ∈ {i′ | 0 ≤ i′ < w, σ(Ri′) = j}) is flushed iff. FENL.CRi = 1.

Beyond this intentionally high-level description, various low-level details demand further
discussion. Such details inform our implementation(s), as outlined in Section 3, in line
with the paper remit.

Parameterisation. The parameter w limits the number of resources that can be controlled
via FENL.CR. Cases where w < |R| are problematic, because any Ri for i ≥ w cannot be
controlled. Depending on micro-architecture complexity, such cases seem plausible when w
matches the word size of the base ISA, e.g., where w ∈ {32, 64}. To resolve this problem
one can imagine options including 1) selection of a larger w, which implies the need for
a richer set of access instructions to set and clear out-of-range bits, or 2) consideration
of some R′ ⊂ R, which implies some resources cannot be controlled, 3) a more coarse

4Using the terminology of secure information flow, this guarantee prevents unintentional transfer of
information between said instructions (e.g., via values used as input, or produced as output).

5A precise definition is inherently dependent on the micro-architecture, but it is reasonable to consider
either cycle (for a non-pipelined case) or pipeline stage (for a pipelined case) as representative.

78 FENL: an ISE to mitigate analogue micro-architectural leakage

mapping of bits from FENL.CR onto resources in R, e.g., by formation of logical resource
groups.

Immediate variants. An immediate version(s) of the fence instruction is an obvious
extension of the description as is. The goal would be to directly, albeit statically, specify
the set of resources to flush as an immediate within the encoding. Doing so would reduce
the overhead related to repeated (re-)configuration of FENL.CR. The only complication of
such an approach is that the immediate will likely permit specification of less than w bits;
this implies a need to consider a restriction to some R′ ⊂ R per the above.

Hazards and latency. In a conventional sense, structural, data, and control hazards [HP17,
Section C.2] capture situations where pipelined execution of an instruction stream would
be incorrect (vs. non-pipelined, which would not). We define a leakage hazard in an
analogous manner: it captures any situation where pipelined execution of an instruction
stream would cause leakage (vs. non-pipelined, which would not).

Such a situation may occur wrt. pipelined execution of a fence instruction; pipeline
forwarding paths may allow interaction between instructions before and after a fence, for
example, violating the guarantees it should provide. To resolve a leakage hazard of this
type, forwarding paths can be nullified by stalling earlier stages of the pipeline until all
instructions after the fence complete execution. As a result, however, the execution latency
of a fence instruction may (depending on the micro-architecture) be larger than ideal.

Invasiveness. In terms of implementation, FENL is invasive because of the requirement
to act on micro-architectural resources at a fine-grained level (meaning it cannot be realised
by using a “drop-in” IP module, for example); in terms of design, FENL is invasive because
it exposes features in the micro-architecture.

Both facts are inherent in any aISA-style approach, but the latter demands some
discussion. First, one might argue that the exposure of the micro-architecture renders
software using FENL non-portable. This is true, but, because portability wrt. leakage is at
least non-trivial anyway, the “portability overhead” is in fact less than one might assume.
Second, there is some room for interpretation about how invasive FENL is. For example,
one can imagine scenarios6 where the mapping implied by FENL.CR is proprietary and
hence unknown. Clearly there are advantages for it be public, but, equally, the knowledge
that FENL.CRi controls some unknown resource vs. a specific resource can still be leveraged.

Privilege. As with components in the base ISA, the semantics of components in FENL
must be accompanied by a specification of the mode(s) in which access is (dis)allowed. It
seems clear that user mode access would be preferable. However, this is only viable if
FENL.CR is restored and preserved across context switches. Not doing so implies processes
are not isolated (or protected) from each other: one process could influence the semantics
of a fence instruction executed by, and so associated leakage of, another, for example. This
requirement forms a motivation for including access instructions to both write to and read
from FENL.CR (vs. the former alone).

Flush semantics. In order to implement FENL, the semantics of flushing need specifica-
tion in concrete terms. Doing so demands considering features such as:
Value: it is possible to flush a given resource via 1) zeroisation, 2) randomisation using a
PRNG, 3) randomisation using a TRNG, or 4) some hybrid of the latter two choices.

Source: given |R| > 1 resources, it is possible, for example, to flush Ri and Rj for i 6= j
using the same (i.e., shared) or different (i.e., unique) source.
6Plausible examples include requirements for IP protection.

Si Gao, Ben Marshall, Dan Page and Thinh Pham 79

012345678910111213141516171819202122232425262728293031

000000000011 00001 000 00000 00010 11

Figure 1: Encoding of a RISC-V fenl.fence instruction.

In brief, the (relative) area and latency overhead of these options seems to be clear. It
is less clear, however, how they trade-off wrt. their security properties. Imagine Ri is a
pipeline register, for example. Intuitively, and overhead aside, randomisation of Ri seems
more attractive; this would avoid the leakage of Hamming weight implied by zeroisation.
It does, but a counterargument would be that said Hamming weight would likely already
have been leaked before the flush. As a result, zeroisation of Ri may amplify existing
leakage (e.g., offer a second point of interest within a higher-order attack), but, equally,
may be reasonable given the much reduced overhead.

3 Implementation
RISC-V (see, e.g., [AP14, Wat16]) is an open ISA specification. It adopts strongly RISC-
oriented design principles (so is similar to MIPS) and can be implemented, modified, or
extended by anyone with neither licence nor royalty requirements (so is dissimilar to MIPS,
ARM, and x86). A central tenet of the ISA is modularity: a general-purpose base ISA (e.g.,
RV32I [RV:19a, Section 2]) can be augmented with some set of special-purpose, standard
or non-standard (i.e., custom) extensions. As a result of these features, coupled with the
surrounding community and availability of supporting infrastructure such as compilation
tool-chains, a range of (typically open-source) RISC-V implementations exist.

In this section, we describe 1) our experimental hardware platform, and then 2) how said
implementation is realised both in the RISC-V ISA, and two different RISC-V compliant
micro-architectures that constitute two different processor cores.

3.1 Experimental platform
Our implementation and evaluation of FENL-enabled cores is supported by a standard
experimental platform, which, in the interests of reproducibility, we outline briefly here.

The central component is a SASEBO-GIII [HKSS12] side-channel analysis platform,
which houses two FPGAs: a Xilinx Kintex-7 (model xc7k160tfbg676) target FPGA,
and a Xilinx Spartan-6 (model xc6slx45) support FPGA. We use the former exclusively,
synthesising stand-alone designs for it using Xilinx Vivado 2019.1; default synthesis settings
are used, with no effort invested in synthesis or post-implementation optimisation. The
FPGA uses a 200 MHz external clock input, which is adjusted into a 25 MHz internal clock
signal for use by the core itself.

A standard pipeline of components is attached to the SASEBO-GIII, allowing acquisition
of power consumption traces. These components include a MiniCircuits BLK+89 D/C
blocker, a MiniCircuits SLP-30+ 32 MHz low-pass filter, an Agilent 8447D amplifier (with
a 100 kHz to 1.3 GHz range, and 25 dB gain), and a PicoScope 5000 series oscilloscope; the
latter is configured to use a 250 MHz sample frequency, and 12-bit sampling resolution.
Coordination of the acquisition process is managed by a workstation connected to each
component: it is tasked with 1) configuration of the FPGA with a synthesised bit-stream,
2) upload of software, as generated by a RISC-V capable instance of the GNU tool-chain7

including GCC 8.2.0, to the core via a simple boot-loader, 3) communication of input
and output to and from the core via a UART-based connection, and 4) configuration and
download of traces from the oscilloscope.

7See, e.g., https://github.com/riscv/riscv-gnu-toolchain

https://github.com/riscv/riscv-gnu-toolchain

80 FENL: an ISE to mitigate analogue micro-architectural leakage

Table 1: A table, for each core, capturing R, the set of micro-architectural resources
controlled by FENL.CR.

i Ri σ(Ri) Description
0 mem_wdata Operand Read Memory write data register
1 reg_op1 Operand Read Register read data 1 (RS1)
2 reg_op2 Operand Read Register read data 2 (RS2)
3 reg_out Operand Read Register write data
4 alu_out_q Operand Read ALU output register
5 uncore_0 Operand Read Un-core resource 0
6 uncore_1 Operand Read Un-core resource 1

(a) Core 1: PicoRV32.

i Ri σ(Ri) Description
0 s2_opr_a Decode Decode ⇒ Execute pipeline register A
1 s2_opr_b Decode Decode ⇒ Execute pipeline register B
2 s2_opr_c Decode Decode ⇒ Execute pipeline register C
3 s3_opr_a Execute Execute ⇒ Write memory result pipeline register A
4 s3_opr_b Execute Execute ⇒ Write memory result pipeline register B
5 fu_mult Execute Multiply-accumulate intermediate state registers
6 fu_aessub Execute AES SubBytes intermediate state registers
7 fu_aesmix Execute AES MixColumns intermediate state registers
8 s4_opr_a Memory Memory ⇒ Write-back result pipeline register A
9 s4_opr_b Memory Memory ⇒ Write-back result pipeline register B
10 uncore_0 Memory Un-core resource 0
11 uncore_1 Memory Un-core resource 1
12 uncore_2 Memory Un-core resource 2

(b) Core 2: SCARV.

3.2 Implementing FENL in the ISA
We focus wlog. on the 32-bit RV32I [RV:19a, Section 2] base ISA, extending it with a
FENL-compliant ISE by implementing the two required components as follows:
1. We realise FENL.CR using a Control and Status Register (CSR) [RV:19b, Chapter 2].

More specifically, we use the user-mode, read/write CSR 800(16) [RV:19b, Table 2.1]
which is reserved for non-standard extensions. Per [RV:19a, Section 9.1], the associated
access (pseudo-)instructions are then realised as follows:

fenl.crwr rs 7→ csrw 0x800, rs
fenl.crrd rd 7→ csrr rd, 0x800

2. We realise the fence instruction using the custom-0 encoding space [RV:19a, Table 25.1],
which is reserved for non-standard extensions. Specifically, such instructions are encoded
per Figure 1.

3.3 Implementing FENL in the micro-architecture(s)
To stress the generality of FENL as a concept, we opt to implement it in two micro-
architectures constituting two different baseline processor cores. Both cores imple-
ment RV32IMC, i.e., the RV32I base ISA plus the M(ultiply) [RV:19a, Chapter 7] and

Si Gao, Ben Marshall, Dan Page and Thinh Pham 81

(a) Core 1: PicoRV32.

(b) Core 2: SCARV.

Figure 2: A block diagram of each core: architectural resources are highlighted in blue,
micro-architectural resources are highlighted in yellow, and data-paths that may carry
security critical data (from a side-channel perspective) are highlighted in red.

Figure 3: A block diagram of the SoC, allowing a uniform interface to either the PicoRV32
or SCARV core.

82 FENL: an ISE to mitigate analogue micro-architectural leakage

Table 2: A table, for each core, capturing some implementation results (including overhead
vs. the baseline); timing slack is quoted wrt. a 25 MHz clock.

Baseline Baseline + FENL Baseline + FENL
with zeroisation with randomisation

Slice LUTs 1977 2002 (+1.3%) 2005 (+1.4%)
Slice FFs 1098 1100 (+0.1%) 1139 (+3.7%)
Timing Slack 25.45 ns 24.33 ns 25.06 ns

(a) Core 1: PicoRV32.

Baseline Baseline + FENL Baseline + FENL
with zeroisation with randomisation

Slice LUTs 5952 6014 (+1.0%) 6173 (+3.1%)
Slice FFs 2147 2163 (+0.7%) 2193 (+2.1%)
Timing Slack 23.44 ns 23.05 ns 24.38 ns

(b) Core 2: SCARV.

C(ompressed) [RV:19a, Chapter 7] standard extensions, plus selected components of the
non-standard XCrypto [MPP19] extension to support implementation of cryptographic
kernels. Note that neither core supports either a data or instruction cache, and so use of
FENL to control the memory hierarchy is considered out of scope in this paper.

3.3.1 Baseline core 1: PicoRV32

The PicoRV328 core implements a non-pipelined, multi-cycle micro-architecture, a block
diagram of which is shown in Figure 2a. This means each stage of execution (namely fetch,
decode/operand read, execute, and write-back) occurs in sequence for each instruction.

Note there is one memory interface, shared between (instruction) fetch and (data)
memory access stages. The core implements various performance counters, but no elements
of the RISC-V Privileged Resource Architecture (PRA) [RV:19b, Chapter 3]. An RNG
to support the XCrypto randomness class [MPP19, Section 2.5.2], e.g., xc.rngsamp, is
external to the core, as realised using the so-called Pico Co-Processor Interface (PCPI).

3.3.2 Baseline core 2: SCARV

The SCARV9 core implements a pipelined micro-architecture, a block diagram of which is
shown in Figure 2b. A standard 5-stage, in-order pipeline is used, which means that each
stage of execution (namely fetch, decode, execute, memory access, and write-back) occurs
in parallel for multiple different in-flight instructions.

Note there are two memory interfaces, one for (instruction) fetch and one for (data)
memory access stages. The core implements various performance counters, and elements
of the RISC-V Privileged Resource Architecture (PRA) [RV:19b, Chapter 3] related
to exception and interrupt handling. An RNG to support the XCrypto randomness
class [MPP19, Section 2.5.2], e.g., xc.rngsamp, is internal to the core. Support for other
XCrypto classes motivates use of a general-purpose register file with three read and two
write ports, although this fact is not specifically salient from here on.

8https://github.com/cliffordwolf/picorv32
9https://github.com/scarv/scarv

https://github.com/cliffordwolf/picorv32
https://github.com/scarv/scarv

Si Gao, Ben Marshall, Dan Page and Thinh Pham 83

3.3.3 Implementing FENL

Each block diagram in Figure 2 includes annotation of architectural resources (highlighted
in blue) and micro-architectural resources (highlighted in yellow); the later describes R,
the mapping of which wrt. FENL.CR is captured in Table 1. Based on this mapping,
implementation of FENL is surprisingly simple. Consider a pipeline register, for example.
Assuming the flush semantics are to randomise (resp. zeroise) the register, the implementa-
tion is realised by adding a suitably controlled multiplexer at the input (resp. reset). The
associated control logic is no more complex than any other instructions supported by the
core: the same requirement to transfer a result into an appropriate register still applies.

Hazards and latency. To support Section 4.5, two variants of the SCARV core can be
selected between: the bubbling variant resolves leakage hazards (cf. Section 2.2.2) by
stalling the decode stage and inserting pipeline bubbles, whereas the non-bubbling variant
ignores them.

For the PicoRV32 core, the fence instruction has a 3 cycle latency; this is the same as
a typical ALU-based instruction. For the SCARV core, the fence instruction has a 1 or 4
cycle latency. More specifically, for the non-bubbling variant the instruction always has a
1 cycle latency, but for the bubbling variant the instruction has a 1 cycle latency iff. no
pipeline resources (i.e. bits 0 to 9 in Table 1b) are being flushed; otherwise, if any pipeline
resource is being flushed, the instruction effectively takes 4 cycles to execute because the
three preceding instructions must complete execution before the fence instruction can exit
the decode stage. The mechanism to resolve existing (e.g., data) hazards is reused for the
bubbling variant, meaning the associated overhead is not significant.

Flush semantics. In cases that demand randomisation-based flush semantics, each core
makes use of a resource-constrained (P)RNG implementation. At a high level, one could
view this as a decision favouring reduction in area overhead over randomness quality. More
specifically, a single 32-bit randomness source is provided by using a Linear Feedback Shift
Register (LFSR); the LFSR is updated after being sampled (vs. each clock cycle), and, if
the resources flushed within a given execution stage demand more than 32 bits, reused
across them. Note that the PRNG state is not exposed to instructions executing on the
core, i.e., it cannot be read from nor written to.

SoC implementation. In order to present a consistent, uniform interface to either core,
we embed them in a simple System-on-Chip (SoC). A block diagram of said SoC is shown
in Figure 3, highlighting 1) system reset and clock management modules, 2) a Xilinx
GPIO IP module [Xil16] (e.g., to manage the trigger signal), 3) a Xilinx UART Lite IP
module [Xil17b] (e.g., to manage serial communication), and 4) various memories (e.g.,
a ROM for the boot-loader, and RAM and/or ROM for instructions and data), and 5)
an Xilinx Advanced eXtensible Interface (AXI) interconnect IP module [Xil17a]. Note
that use of off-the-shelf IP modules implies some inefficiencies. For example, the AXI
interconnect introduces a 4 cycle load penalty and a 6 cycle store penalty for all load and
store instructions; optimisation wrt. similar inefficiencies may alter the relative overhead
of FENL.

The SoC comprises components other than the core, and, as a result, we must also
consider leakage from them. This fact leads to Table 1 including in-core and un-core (i.e.,
at the SoC level) resources. We allow flushing of resources associated with the memories,
for example, as a way to control undesired behaviour10 they exhibit wrt. leakage. We
revisit the rationale for doing so in Section 4.4.

10Conventional behaviour for a BRAM is, for example, to retain the last value read in a register (or
buffer) until the next read request.

84 FENL: an ISE to mitigate analogue micro-architectural leakage

1 kernel1 : fenl. fence // fence
2 addi t1 , a1 , 16 // t1 = &x + 16
3 .L0: lbu t2 , 0(a1) // t2 = *x
4 fenl. fence // fence
5 add t2 , t2 , a0 // t2 = &sbox + *x
6 lbu t3 , 0(t2) // t3 = *(&sbox + *x)
7 fenl. fence // fence
8 sb t3 , 0(a2) // *r = t3
9 addi a1 , a1 , 1 // x++

10 addi a2 , a2 , 1 // r++
11 bltu a1 , t1 , .L0 // if x < t1 , goto .L0
12 ret // return

Figure 4: Target kernel for experiment 1: masked AES SubBytes (assuming pre-
computation of a masked S-box). Note that the kernel is described post-insertion of
fence instructions; the original, pre-insertion version can be inferred by ignoring said
instructions (i.e., lines 1, 4, and 7).

Implementation results. Table 2 presents a set of implementation results for each core,
including cases for the 1) baseline, 2) baseline plus FENL with zeroisation-based flush
semantics, and 3) baseline plus FENL with randomisation-based flush semantics. A broad
interpretation of these results would be that the overhead of FENL wrt. area is marginal
in both cores. Although the results show a difference wrt. timing slack, we found that, in
both cores, FENL did not interact with the existing critical path of the baseline core. The
reported timing slack does not behave consistently when additional logic is added to a
given core; this indicates the results step from variance due to the synthesis tool-chain,
since the cores operate far below their maximum frequency.

4 Evaluation
In this Section, we present a suite of experiments designed to explore the efficacy of the
FENL concept and our implementations of it. Each experiment is selected to evaluate a
specific aspect or articulate a specific point, so we are non-exhaustive wrt. presentation by
selecting a specific workload (i.e., kernel) and core to suit.

Note that we use the relative magnitude of t-statistic peaks (e.g., whether and how
significantly the use of FENL decreases them) as an intuitive metric for the efficacy of our
implementations; doing so is in line with the remit of FENL. One must obviously then
consider the absolute value (e.g., whether said peaks are above or below some threshold),
and indeed other metrics, in any broader security evaluation.

4.1 Experiment 1: intuitive localisation and reduction of leakage
Motivation. In certain situations, an intuitive approach can inform 1) where leakage
stems from, and/or 2) how to reduce said leakage. As an example of the latter, one can
identify cases using NOP instruction(s) as “padding” in an attempt to separate, and so
weakly isolate instructions from each other wrt. leakage. For RISC-V, this makes some
sense: rather than define a specific encoding, nop is a pseudo-instruction translated [RV:19a,
Page 20] into addi x0, x0, 0. Although such a NOP has no architectural impact, as a
valid instruction one might assume it is executed as normal; this implies it would have an
impact on micro-architectural registers, e.g., setting them to zero.

Experiment. Figure 5 captures the result of t-test based leakage detection, applied to
100, 000 power consumption traces; these stem from execution of (variants of) the masked
AES SubBytes kernel shown in Figure 4 on the PicoRV32 (randomisation-based flush
semantics) core. Insertion of the fence instructions follows an intuitive approach: line 1

Si Gao, Ben Marshall, Dan Page and Thinh Pham 85

(a) Fence instructions removed.
FENL.CR ignored, latency = 1224 cycles.

(b) Fence instructions replaced with nop.
FENL.CR ignored, latency = 1461 cycles.

(c) Fence instructions used as is.
FENL.CR = 7F (16), latency = 1497 cycles.

Figure 5: Results for experiment 1, relating to leakage from Figure 4 as executed on the
PicoRV32 core (randomisation-based flush semantics). Note that the t-statistic is plotted
in absolute form; the plots are cropped wrt. the target kernel, which has a longer latency
post-insertion of fence instructions.

86 FENL: an ISE to mitigate analogue micro-architectural leakage

1 kernel2 : lw t0 , 0(a0) // t0 = a[0]
2 lw t2 , 0(a1) // t2 = b[0]
3 lw t1 , 4(a0) // t1 = a[1]
4 lw t3 , 4(a1) // t3 = b[1]
5 and t4 , t0 , t2 // t4 = a[0] & b[0]
6 fenl. fence // fence
7 and t5 , t1 , t3 // t5 = a[1] & b[1]
8 fenl. fence // fence
9 xc. rngsamp t6 // t6 = random mask

10 xor t6 , t4 , t6 // t6 = (a[0] & b[0]) ^ random mask
11 sw t6 , 0(a2) // c[0] = t6
12 and t0 , t0 , t3 // t0 = a[0] & b[1]
13 fenl. fence // fence
14 and t1 , t1 , t2 // t1 = a[1] & b[0]
15 fenl. fence // fence
16 xor t0 , t0 , t6 // t0 = (a[0] & b[1]) ^ c[0]
17 xor t0 , t0 , t1 // t0 = (a[0] & b[1]) ^ c[0] ^ (a[1] & b[0])
18 xor t5 , t5 , t0 // t5 = (a[0] & b[1]) ^ c[0] ^ (a[1] & b[0]) ^ (a[1] & b[1])
19 sw t5 , 4(a2) // c[1] = t5
20 ret // return

Figure 6: Target kernel for experiment 2: 2-share ISW [ISW03] multiplication. Note
that the kernel is described post-insertion of fence instructions; the original, pre-insertion
version can be inferred by ignoring said instructions (i.e., lines 6, 8, 13, and 15). This
kernel is based on the implementation of Goudarzi et al. [GJRS18], adapted for RISC-V
from ARMv7.

(a) Fence instructions removed
from lines 6 and 8, 13, and 15;

FENL.CR ignored, latency = 74 cycles.

(b) Fence instructions removed
from lines 13 and 15;

FENL.CR = 1F F F (16), latency = 82 cycles.

(c) Fence instructions used as is;
FENL.CR = 1C14(16), latency = 88 cycles.

(d) Fence instructions used as is;
FENL.CR = 1F F F (16), latency = 93 cycles.

Figure 7: Results for experiment 2, relating to leakage from Figure 6 as executed on
the SCARV core (randomisation-based flush semantics, bubbling variant). Note that the
t-statistic is plotted in absolute form; the plots are cropped wrt. the target kernel, which
has a longer latency post-insertion of fence instructions.

Si Gao, Ben Marshall, Dan Page and Thinh Pham 87

isolates the kernel from, e.g., previous, mask-related pre-computation, and lines 4 and 7
isolate load, look-up, and store steps within the kernel itself.
• Figure 5a removes the flush instructions, acting as a baseline; the latency is 1224 cycles.

One can identify two significant leakage peaks per iteration of the loop, namely a smaller
and a larger peak.

• Figure 5b replaces the flush instructions with nop; the latency is 1461 (+19.4%) cycles.
Doing so significantly reduces the smaller peaks, but has no impact on the larger peaks.
Intuitively, this is explained by the smaller peaks stemming from update of a micro-
architectural register which the NOPs implicitly flush by updating it with zero (per the
above).

• Figure 5c retains the flush instructions as is; the latency is 1497 (+22.3%) cycles. By
using FENL.CR = 7F (16) 7→ R = { mem_wdata, reg_op1, reg_op2, reg_out, alu_out_q,
uncore_0, uncore_1 }, both register and memory resources are explicitly flushed, and,
as a result, the smaller and larger peaks are significantly reduced.

Discussion. Although the use of NOP can provide some reduction of leakage, this
experiment demonstrates two limitations. First, it will have an impact on a fixed subset of
micro-architectural resources, which may not cover those from which the leakage stems;
in the above, this is illustrated by the lack of impact on the larger peaks in Figure 5b.
Second, any impact it does have is not robust, meaning it cannot be guaranteed. As an
example, consider ARMv6-M: this ISA defines a specific encoding for NOP, but the ISA
specification includes the note “[t]he timing effects of including a NOP instruction in code
are not guaranteed. It can increase execution time, leave it unchanged, or even reduce
it” [ARM18, Section A6.7.47, Page 146], with the compiler documentation going further
by stating “[t]he processor might remove it from the pipeline before it reaches the execution
stage” [ARM13, Section 13.75, Page 449]. This suggests such a NOP may not be executed
in the sense expected, and so may not have the intended isolating effect. Both (security)
limitations are addressed by FENL, albeit with some overhead wrt. latency. To assess
the latter at a broader scale, we applied the same approach to a complete masked AES
implementation: the initial implementation executed in 18609 cycles, whereas reduction of
residual (first order) leakage peaks through use of FENL increased this to 22024 (+18.3%)
cycles.

4.2 Experiment 2: systematic localisation and reduction of leakage
Motivation. In certain situations, an intuitive approach per Section 4.1 is not possible: it
may be unclear 1) where leakage stems from, and/or 2) how to reduce said leakage. This is
problematic, in that one cannot typically give up: a practitioner is likely still tasked with
producing a secure implementation, for example, and so needs an alternative approach.
We posit that a systematic alternative is made possible by leveraging FENL in a two-phase
process:
1. In the first phase, we attempt to identify which instructions cause leakage. To do so,

we proceed as follows: a) set the insertion point to the start of the kernel, b) insert
a fence instruction at the current insertion point, with FENL.CR configured to flush
all resources, c) move the fence instruction through the kernel until a leakage peak is
reduced or removed, d) set the insertion point to after the fence instruction, e) goto b)
unless all leakage points are dealt with, or the insertion point reaches the end of the
kernel.

2. In the second phase, we attempt to identify which resources, as used by the previously
identified instructions, cause leakage. For each previously inserted fence instruction, we
configure FENL.CR so as to (de-)activate flushing for specific resources; when there is a

88 FENL: an ISE to mitigate analogue micro-architectural leakage

(resp. is no) change in the leakage peak(s), we infer the associated leakage does (resp.
does not) stem from that resource.

Note that such a process assumes independence between the fence instructions inserted. One
could interpret any dependence between said instructions as a violation of the guarantees
FENL hopes to enforce, and, as such, validating the assumption demands associated
evaluation of the implementation.

Experiment. Figure 7 captures the result of t-test based leakage detection, applied to
100, 000 power consumption traces; these stem from execution of (variants of) the 2-share
ISW multiplication kernel shown in Figure 6 on the SCARV (randomisation-based flush
semantics, bubbling variant) core.
• Figure 7a removes the flush instructions, acting as a baseline; the latency is 74 cycles.

This case is before the process is applied: one can identify two significant leakage peaks
per iteration of the loop, namely a left-hand and a right-hand peak, the reduction of
which forms the goal.

• Figure 7b and Figure 7c capture cases during the process being applied. The for-
mer retains lines 6 and 8, removes lines 13 and 15, uses FENL.CR = 1FFF (16) 7→
R = { s2_opr_a, s2_opr_b, s2_opr_c, s3_opr_a, s3_opr_b, fu_mult, fu_aessub,
fu_aesmix, s4_opr_a, s4_opr_b, uncore_0, uncore_1, uncore_2 }; the latency is 82
(+10.8%) cycles. The latter retains lines 6 and 8, 13 and 15, uses FENL.CR = 1C14(16) 7→
R = { s2_opr_c, s3_opr_b, s4_opr_b, uncore_0, uncore_1, uncore_2 }; the latency
is 88 (+18.9%) cycles. The cases demonstrate independent isolation and reduction of
the left-hand or right-hand peak respectively. In short, the insertion and configuration
of flush instructions allows us to infer that the a) the left-hand peak stems from pipeline
registers, and b) the right-hand peak stems from memory access.

• Figure 7d retains the flush instructions as is, and uses FENL.CR = 1FFF (16) 7→
R = { s2_opr_a, s2_opr_b, s2_opr_c, s3_opr_a, s3_opr_b, fu_mult, fu_aessub,
fu_aesmix, s4_opr_a, s4_opr_b, uncore_0, uncore_1, uncore_2 }; the latency is 93
(+25.7%) cycles. This case is after the process is applied: through systematic insertion
and configuration of fence instructions, both register and memory resources are explicitly
flushed, and, as a result, the left-hand and right-hand peaks are significantly reduced.

Discussion. Above and beyond Section 4.1, this experiment demonstrates that FENL
enables a systematic approach to the localisation and reduction of leakage: using appropri-
ately inserted, appropriately configured, fence instructions one can a) determine which
instructions and resources leakage stems from, and, in doing so, b) significantly reduce
said leakage, albeit with some overhead wrt. latency.

Note that some sources of leakage identified wrt. Figure 6 were far from trivial. It
seems reasonable, for example, to claim that the offset between store instructions on lines
11 and 19 acts to obfuscate understanding of the leakage (wrt. update of s2_opr_c) they
produce; it therefore also seems reasonable to use this fact in support of the systematic
approach enabled by FENL.

4.3 Experiment 3: flush semantics
Motivation. In Section 2.2.2 we stressed the optionality associated with flush semantics,
including use of either zeroisation or randomisation. Per Section 3.3, both options are
supported by both cores; the latter implies a higher area overhead, even with the resource-
constrained implementation adopted. However, we offered only an intuitive argument
wrt. the security properties of either option: this experiment provides a more concrete
comparison.

Si Gao, Ben Marshall, Dan Page and Thinh Pham 89

(a) Randomisation-based flush semantics.
FENL.CR = 7F (16), latency = 1497 cycles.

(b) Zeroisation-based flush semantics.
FENL.CR = 7F (16), latency = 1497 cycles.

Figure 8: Results for experiment 3, relating to leakage from Figure 4 as executed on the
PicoRV32. Note that the t-statistic is plotted in absolute form; the plots are cropped wrt.
the target kernel, which has a longer latency post-insertion of fence instructions.

(a) Randomisation-based flush semantics.
FENL.CR = 1F F F (16), latency = 93 cycles.

(b) Zeroisation-based flush semantics.
FENL.CR = 1F F F (16), latency = 93 cycles.

Figure 9: Results for experiment 3, relating to leakage from Figure 6 as executed on the
SCARV core (bubbling variant). Note that the t-statistic is plotted in absolute form; the
plots are cropped wrt. the target kernel, which has a longer latency post-insertion of fence
instructions.

1 kernel3 : lw a3 , 0(a0) // a3 = x[0]
2 fenl. fence // fence
3 lw a4 , 4(a0) // a4 = x[1]
4 ret // return

Figure 10: Target kernel for experiment 4: sequential load. Note that the kernel is
described post-insertion of fence instructions; the original, pre-insertion version can be
inferred by ignoring said instructions (i.e., line 2).

90 FENL: an ISE to mitigate analogue micro-architectural leakage

(a) Fence instructions removed;
no resources flushed.

FENL.CR ignored, latency = 102 cycles.

(b) Fence instructions used as is;
in-core resources flushed.

FENL.CR = 03F F (16), latency = 109 cycles.

(c) Fence instructions used as is;
un-core resources flushed,
with modified BRAM.

FENL.CR = 1C00(16), latency = 109 cycles.

(d) Fence instructions used as is;
all resources flushed,
with modified BRAM.

FENL.CR = 1F F F (16), latency = 109 cycles.

Figure 11: Results for experiment 4, relating to leakage from Figure 10 as executed on
the SCARV core (randomisation-based flush semantics, bubbling variant). Note that the
t-statistic is plotted in absolute form; the plots are cropped wrt. the target kernel, which
has a longer latency post-insertion of fence instructions.

(a) Non-bubbling variant.
FENL.CR = 1F F F (16), latency = 81 cycles.

(b) Bubbling varient.
FENL.CR = 1F F F (16), latency = 93 cycles.

Figure 12: Results for experiment 5, relating to leakage from Figure 6 as executed on the
SCARV core (randomisation-based flush semantics). Note that the t-statistic is plotted in
absolute form; the plots are cropped wrt. the target kernel, which has a longer latency
post-insertion of fence instructions.

Si Gao, Ben Marshall, Dan Page and Thinh Pham 91

Experiment. Figure 8 and Figure 9 capture the result of t-test based leakage detection,
applied to 100, 000 power consumption traces:
• Figure 8a and Figure 8b stem from execution of the masked AES SubBytes kernel shown

in Figure 4 on the PicoRV32 core. More significant leakage peaks are evident in the
left-hand, randomisation-based case.

• Figure 9a and Figure 9b stem from execution of the 2-share ISW multiplication kernel
shown in Figure 6 on the SCARV (bubbling variant) core. Slightly more significant
leakage peaks are evident in the right-hand, zeroisation-based case.

Discussion. More so than elsewhere, our results for this experiment are inconclusive: it
seems important to a) better understand and b) reduce the design space for flush semantics
to avoid implementation mistakes that may degrade the guarantees FENL is intended to
provide. Doing so demands a (more) rigorous approach, ideally with a formal basis; we
view this as non-trivial, so delegate it to future work.

4.4 Experiment 4: leakage from un-core resources
Motivation. The use of (third-party) IP modules (or cores) can be hugely beneficial
when developing hardware: such modules help tame design complexity, for example, and
promote engineering best-practices such as reuse. Particularly if the IP module is available
under an open-source11 license, use of it can be viewed as cost effective. However, this must
be considered in the context of arguments wrt. trust and security (see, e.g., [MBT17]). For
example, reusing the functionality offered by an IP module implies some trust relationship
with it; the module forms part of the attack surface, so any insecurity introduced by it
will plausibly impact the security of the design.

Per Section 3.3 we make use of such IP modules in our SoC, and, in developing
our implementation of FENL, we encountered exactly an instance of the scenario above.
Specifically, we identified kernels whose leakage, despite all our efforts, could not be
influenced by FENL. Concluding that said leakage stemmed from an un-core (or external)
vs. an in-core (or internal) resource, we investigated the IP modules outlined in Figure 3.

Experiment. Having narrowed the leakage source to data load operations, we focused on
the minimal test kernel in Figure 10: the kernel simply loads two words from memory into
two different registers. By inspecting the RTL for the SCARV core, we were able to verify
the values never interact internally; as a result, one would not expect leakage relating to
the Hamming distance between them.

Figure 11 captures the result of t-test based leakage detection, applied to 100, 000
power consumption traces; these stem from execution of (variants of) the kernel on the
SCARV (randomisation-based flush semantics, bubbling variant) core.
• Figure 11a removes the flush instructions, acting as a baseline; the latency is 102 cycles.
• Figure 11b retains the flush instructions as are, and uses FENL.CR = 03FF (16) 7→
R = { s2_opr_a, s2_opr_b, s2_opr_c, s3_opr_a, s3_opr_b, fu_mult, fu_aessub,
fu_aesmix, s4_opr_a, s4_opr_b } (i.e., all in-core resources); the latency is 109 (+6.9%)
cycles.

• Figure 11c retains the flush instructions as are, and uses FENL.CR = 1FFF (16) 7→ R = {
uncore_0, uncore_1, uncore_2 } (i.e., all un-core resources); the latency is 109 (+6.9%)
cycles.

• Figure 11c retains the flush instructions as is, and uses FENL.CR = 1FFF (16) 7→
R = { s2_opr_a, s2_opr_b, s2_opr_c, s3_opr_a, s3_opr_b, fu_mult, fu_aessub,

11https://opencores.org, https://www.librecores.org

https://opencores.org
https://www.librecores.org

92 FENL: an ISE to mitigate analogue micro-architectural leakage

fu_aesmix, s4_opr_a, s4_opr_b, uncore_0, uncore_1, uncore_2 } (i.e., all resources);
the latency is 109 (+6.9%) cycles.

Despite the latter flushing all in-core resources, comparing Figure 11a and Figure 11b
shows a significant leakage peak. Through careful analysis of the SoC and constituent IP
modules, we identified two potential sources:
1. The Xilinx AXI interconnect IP module [Xil17a]. Leakage stemming from this module

was (relatively) less significant; it stemmed from the module buffering data before
making it available to the core. Closer analysis revealed that the same register was
shared between all attached devices, meaning, e.g., two adjacent data load operations
are interspersed with an instruction fetch; although this prevents Hamming distance
leakage between the values loaded, it unexpectedly yields Hamming weight leakage.

2. The Xilinx BRAM IP module [Xil19b, Xil19a]. Leakage stemming from this module was
(relatively) more significant; it stemmed from the module buffering the most recently
loaded value. When using separate BRAMs for instructions and data, a given data load
operations would therefore yield Hamming distance leakage between the current and
previous value.

To mitigate this problem, we developed a custom BRAM module; it supports the flushing
of internal resources, e.g., the read data register, which can then be controlled via un-core
bit(s) in FENL.CR. Figure 11c and Figure 11d demonstrate the outcome of executing the
same kernel on the same core, using the custom BRAM module. Note that the leakage
peak is significantly reduced by flushing all un-core resources, with no significant further
reduction as the result of also flushing all in-core resources.

Discussion. This experiment demonstrates that robust implementation of FENL must
adopt a system-wide approach that considers in-core and un-core resources: focusing on
the former alone is not sufficient. In a sense, this fact simply shifts principles outlined by
the aISA [GYH18, Section 5], forcing the same reasoning to be applied to un-core resources.
However, it also implies some challenges wrt. the form and function of IP modules. For
example, vs. the state-of-the-art, one could argue that use of FENL would demand IP
modules provide 1) a compatible interface (i.e., which enables flushing by FENL), and
even 2) some mechanism to reason about leakage-related design features (e.g., the presence
or absence of internal registers).

4.5 Experiment 5: leakage hazard resolution
Motivation. Pipelining [HP17, Section C] is a micro-architectural optimisation that
focuses on increasing instruction throughput, i.e., the number of instructions executed in a
given time unit; it works by overlapping the execution of multiple in-flight instructions
in time. Although the SCARV core uses exactly this approach, the implementation
of FENL in such a micro-architecture demands care. As outlined in Section 2.2.2, for
example, naive use of forwarding to resolve data hazards (stemming from dependencies
between instructions) has the effect of allowing interaction that FENL should disallow.
Per Section 3.3.2 we therefore support two variants of the SCARV core, which demand
some comparative evaluation.

Experiment. Figure 12 captures the result of t-test based leakage detection, applied to
100, 000 power consumption traces; these stem from execution of (variants of) the 2-share
ISW multiplication kernel shown in Figure 6 on the SCARV (randomisation-based flush
semantics) core. Note that the PicoRV32 core uses a non-pipelined micro-architecture, so
the same considerations do not apply.

Si Gao, Ben Marshall, Dan Page and Thinh Pham 93

• Figure 12a retains the flush instructions as is, using the non-bubbling variant of the
SCARV core with FENL.CR = 1FFF (16) 7→ R = { s2_opr_a, s2_opr_b, s2_opr_c,
s3_opr_a, s3_opr_b, fu_mult, fu_aessub, fu_aesmix, s4_opr_a, s4_opr_b, uncore_0,
uncore_1, uncore_2 }; the latency is 81 cycles.

• Figure 12b retains the flush instructions as is, using the bubbling variant of the SCARV
core with FENL.CR = 1FFF (16) 7→ R = { s2_opr_a, s2_opr_b, s2_opr_c, s3_opr_a,
s3_opr_b, fu_mult, fu_aessub, fu_aesmix, s4_opr_a, s4_opr_b, uncore_0, uncore_1,
uncore_2 }; the latency is 93 (+14.8%) cycles.

A broad interpretation of these results would mirror the obvious trade-off our leakage
hazard resolution approach implies: for a given kernel, the bubbling variant of the SCARV
core slightly increases the latency but will yield slightly less significant leakage.

Discussion. We note that although Zoni et al. [ZBPF18] investigate leakage from for-
warding paths, their analysis was performed on a simulated and thereby noiseless platform.
The less significant leakage from forwarding paths in the SCARV core is likely due, in part,
to a lower SNR. It still exists, however, so we view the resolution of leakage hazards as a
necessary but conservative step: the latency overhead is worthwhile, because it ensures
more robust isolation and so security properties.

5 Conclusion
Summary. The augmented ISA (or aISA) proposal of Ge at al. [GYH18] fundamentally re-
evaluates the role and structure of both ISA and associated micro-architecture(s). Although
exposing micro-architectural details in the ISA is controversial from some perspectives, it
seems plausible that such an approach will be required to robustly mitigate certain attack
vectors. Assuming such a premise, this paper has explored an aISA-style approach to the
significant challenge of analogue micro-architectural leakage. Specifically, we designed,
implemented, then evaluated FENL, an ISE that, by analogy, acts as a fence for analogue
leakage: it affords a configurable guarantee wrt. interaction between and hence leakage
from instruction before and after the fence.

Our evaluation demonstrates applicability to different micro-architectures, and efficacy
wrt. reduction in leakage (so improvement in security level). such advantages are achievable
with low overhead in both hardware (e.g., area and critical path) and software (e.g.,
execution latency and memory footprint); in a sense it acts as a compromise solution vs.
more heavy-weight approaches (see, e.g., [MGH19] or [FGBR19]) which apply hardware
masking or encryption to the data processed by a core, implying some increased latency
but significantly lower area.

Future work. Although our results are largely positive, we view FENL as a first step
vs. a complete solution. As such, various directions represent either important and/or
interesting future work:
1. The micro-architectural design space is large: although the FENL concept may apply,

a range of interesting and important questions apply for more complex instances than
considered here. For example, it is not clear if FENL could (or should) be employed to
control resources related to more complex memory hierarchies (i.e., caches) or execution
pipelines (e.g., out-of-order execution).
That said, existing forms of micro-architectural control, such as the x86 clflush [X8618,
Page 3-139] or “cache line flush” instruction, are already somewhat analogous. Using
FENL to realise a similar form of control seems plausible but, potentially demands a
higher degree of configuration; an example would be the specification of a set or line

94 FENL: an ISE to mitigate analogue micro-architectural leakage

to flush (vs. the whole cache). Defining a suitably extended set of FENL-like fence
instructions for RISC-V seems useful.

2. In Section 2.2, we briefly discussed the specification of privilege wrt. components in FENL.
We neither considered nor evaluated whether FENL could be used in an adversarial
manner, as is the case for clflush [X8618, Page 3-139], which could inform whether or
not kernel mode access is preferable to user mode access. Exploring and resolving this
question is clearly important.

3. It seems clear that FENL can support a (semi-)automatic methodology, where the
compilation tool-chain is tasked with injection of suitably configured fence instructions;
doing so could be guided via either a) static analysis, and/or b) dynamic, profile-guided
approaches. We view the latter approach as aligning with related work such as that
of Bayrak et al. [BRN+15]; the Rosita tool of Shelton et al. [SSB+19], which appeared
post-submission, already goes some way to realising such a methodology. Likewise, it
also seems plausible to (semi-)automate the implementation of FENL within a given
micro-architecture. This is particularly true for approaches such as that of Rocket
Chip12, which harness a rich, high-level HDL and associated synthesis tools.

4. In Section 1, one cited motivation for FENL was as an anchor for proof techniques.
Intuitively, one could view a fence instruction as a way to reduce transition-based
leakage [BGG+14, Definition 1] so (ideally) leave only value-based leakage [BGG+14,
Definition 2]; a proof can then confidently consider the latter alone. Whether this is the
right anchor, e.g., whether it is general or strong enough, is an interesting question. In
a sense, exploring an answer requires some form of hardware-software-proof co-design,
since the requirements or guarantees of one element will impact on the others.

5. Verification of a FENL implementation poses some challenges. On one hand, verification
engineers must show that the implementation operates correctly at both architectural
and micro-architectural levels; an example would be to show it does not incorrectly
influence any architectural state. We believe that doing so would be (relatively) simple,
because existing verification techniques can ensure both correct behaviour and the
absence of incorrect behaviour. On the other hand, however, cryptographic engineers
must also have confidence the implementation works in context (i.e., as used within
their software). This is more challenging, because it requires evaluation via gate-level
and post-layout power consumption simulation and modelling. Although Sijacic et
al. [SBY+18], for example, discuss how such design-time side-channel evaluations can be
integrated into existing verification flows, doing so in a more concrete, FENL-specific
manner would be an interesting task.

Acknowledgements
We would like to thank the anonymous reviewers for their helpful and constructive
comments. This work has been supported in part by EPSRC via grant EP/R012288/1,
under the RISE (http://www.ukrise.org) programme, and by the European Commission
through the H2020 project 731591 (acronym REASSURE).

References
[AP14] K. Asanović and D.A. Patterson. Instruction sets should be free: The case

for RISC-V. Technical Report UCB/EECS-2014-146, 2014.

[ARM13] ARM. ARM Compiler: armasm User Guide, DUI0473J (issue J) edition,
2013.

12https://bar.eecs.berkeley.edu/projects/rocket_chip.html

http://www.ukrise.org
https://bar.eecs.berkeley.edu/projects/rocket_chip.html

Si Gao, Ben Marshall, Dan Page and Thinh Pham 95

[ARM18] ARM. ARMv6-M Architecture Reference Manual, DDI0419E (issue E) edition,
2018.

[BBD+15] G. Barthe, S. Belaïd, F. Dupressoir, P.-A. Fouque, B. Grégoire, and P.-Y.
Strub. Verified proofs of higher-order masking. In Advances in Cryptology
(EUROCRYPT), LNCS 9056, pages 457–485. Springer-Verlag, 2015.

[BGG+14] J. Balasch, B. Gierlichs, V. Grosso, O. Reparaz, and F.-X. Standaert. On
the cost of lazy engineering for masked software implementations. In Smart
Card Research and Advanced Applications (CARDIS), LNCS 8968, pages
64–81. Springer-Verlag, 2014.

[BP18] A. Barenghi and G. Pelosi. Side-channel security of superscalar CPUs:
evaluating the impact of micro-architectural features. In Design Automation
Conference (DAC), pages 120:1–120:6, 2018.

[BRN+15] A.G. Bayrak, F. Regazzoni, D. Novo, P. Brisk, F.-X. Standaert, and P. Ienne.
Automatic application of power analysis countermeasures. IEEE Transactions
on Computers, 64(2):329–341, 2015.

[CGD18] Y. Le Corre, J. Großschädl, and D. Dinu. Micro-architectural power simulator
for leakage assessment of cryptographic software on ARM Cortex-M3 proces-
sors. In Constructive Side-Channel Analysis and Secure Design (COSADE),
LNCS 10815, pages 82–98. Springer-Verlag, 2018.

[CGMA+15] C. Cernazanu-Glavan, M. Marcu, A. Amaricai, S. Fedeac, M. Ghenea,
Z. Wang, A. Chattopadhyay, J. Weinstock, and R. Leupers. Direct FPGA-
based power profiling for a RISC processor. In IEEE International Instrumen-
tation and Measurement Technology Conference (I2MTC), pages 1578–1583,
2015.

[CZP14] R.L. Callan, A.G. Zajić, and M. Prvulovic. A practical methodology for
measuring the side-channel signal available to the attacker for instruction-
level events. In IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 242–254, 2014.

[DAK19] W. Diehl, A. Abdulgadir, and J.-P. Kaps. Vulnerability analysis of a soft
core processor through fine-grain power profiling. Cryptology ePrint Archive,
Report 2019/742, 2019.

[DB18] C. Dunham and J. Beard. This architecture tastes like microarchitecture. In
Workshop on Pioneering Processor Paradigms (WP3), 2018.

[DMWS12] J. Demme, R. Martin, A. Waksman, and S. Sethumadhavan. Side-channel
vulnerability factor: a metric for measuring information leakage. In In-
ternational Symposium on Computer Architecture (ISCA), pages 106–117,
2012.

[DMWS13] J. Demme, R. Martin, A. Waksman, and S. Sethumadhavan. A quantitative,
experimental approach to measuring processor side-channel security. IEEE
Micro, 33:68–77, 2013.

[FGBR19] M. Arsath K F, V. Ganesan, R. Bodduna, and C. Rebeiro. PARAM: A
microprocessor hardened for power side-channel attack resistance. arXiv
preprint arXiv:1911.08813, 2019.

96 FENL: an ISE to mitigate analogue micro-architectural leakage

[GJJR11] G. Goodwill, B. Jun, J. Jaffe, and P. Rohatgi. A testing methodology for side-
channel resistance validation. In NIST non-invasive attack testing workshop,
volume 7, pages 115–136, 2011.

[GJRS18] D. Goudarzi, A. Journault, M. Rivain, and F.-X. Standaert. Secure multipli-
cation for bitslice higher-order masking: Optimisation and comparison. In
Constructive Side-Channel Analysis and Secure Design (COSADE), LNCS
10815, pages 3–22. Springer-Verlag, 2018.

[GYCH18] Q. Ge, Y. Yarom, D. Cock, and G. Heiser. A survey of microarchitectural
timing attacks and countermeasures on contemporary hardware. Journal of
Cryptographic Engineering (JCEN), 8:1–27, 2018.

[GYH18] Q. Ge, Y. Yarom, and G. Heiser. No security without time protection: we
need a new hardware-software contract. In Asia-Pacific Workshop on Systems
(APSys), 2018.

[GYLH17] Q. Ge, Y. Yarom, F. Li, and G. Heiser. Your processor leaks information –
and there’s nothing you can do about it. CoRR, abs/1612.04474, 2017.

[Hei18] G. Heiser. For safety’s sake: We need a new hardware-software contract!
IEEE Design & Test, 35(2):27–30, 2018.

[HJBG81] J. Hennessy, N. Jouppi, F. Baskett, and J. Gill. MIPS: A VLSI processor
architecture. In H.T. Kung, R. Sproull, and G. Steele, editors, VLSI Systems
and Computations, chapter 37, pages 337–346. Springer, 1981.

[HKSS12] Y. Hori, T. Katashita, A. Sasaki, and A. Satoh. SASEBO-GIII: A hardware
security evaluation board equipped with a 28-nm FPGA. In IEEE Global
Conference on Consumer Electronics, pages 657–660, 2012.

[HP17] J.L. Hennessy and D.A. Patterson. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann, 6th edition, 2017.

[ISW03] Y. Ishai, A. Sahai, and D. Wagner. Private circuits: Securing hardware
against probing attacks. In Advances in Cryptology (CRYPTO), LNCS 2729,
pages 463–481. Springer-Verlag, 2003.

[KGS+19] J. Krautter, D.R.E. Gnad, F. Schellenberg, A. Moradi, and M.B. Tahoori.
Active fences against voltage-based side channels in multi-tenant FPGAs.
Cryptology ePrint Archive, Report 2019/1152, 2019.

[KJJ99] P.C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In Advances in
Cryptology (CRYPTO), LNCS 1666, pages 388–397. Springer-Verlag, 1999.

[LPAF+18] J. Lowe-Power, V. Akella, M.K. Farrens, S.T. King, and C.J. Nitta. A case for
exposing extra-architectural state in the ISA. In Hardware and Architectural
Support for Security and Privacy (HASP), pages 8:1–8:6, 2018.

[MBT17] P. Mishra, S. Bhunia, and M. Tehranipoor, editors. Hardware IP Security
and Trust. Springer, 2017.

[MGH19] E. De Mulder, S. Gummalla, and M. Hutter. Protecting RISC-V against side-
channel attacks. In Design Automation Conference (DAC), pages 45:1–45:4,
2019.

[MIP16] MIPS architecture for programmers Volume II-A: The MIPS32 instruction
set manual. Technical Report MD00086 (rev. 6.06), MIPS, 2016.

Si Gao, Ben Marshall, Dan Page and Thinh Pham 97

[MM17] M. Mayhew and R. Muresan. An overview of hardware-level statistical power
analysis attack countermeasures. Journal of Cryptographic Engineering,
7:213–244, 2017.

[MOP07] S. Mangard, E. Oswald, and T. Popp. Power Analysis Attacks: Revealing
the Secrets of Smart Cards. Springer, 2007.

[MPP19] B. Marshall, D. Page, and T. Pham. XCrypto: a cryptographic ISE for
RISC-V. Technical Report 1.0.0, 2019.

[RV:19a] The RISC-V instruction set manual. Technical Report Volume I: User-Level
ISA (Version 20190608-Base-Ratified), 2019.

[RV:19b] The RISC-V instruction set manual. Technical Report Volume II: Privileged
Architecture (Version 20190608-Priv-MSU-Ratified), 2019.

[SBY+18] D. Sijacic, J. Balasch, B. Yang, S. Ghosh, and I. Verbauwhede. Towards
efficient and automated side channel evaluations at design time. Kalpa
Publications in Computing, pages 16–31, 2018.

[SR15] H. Seuschek and S. Rass. Side-channel leakage models for RISC instruction
set architectures from empirical data. In Euromicro Conference on Digital
System Design, pages 423–430, 2015.

[SSB+19] M.A. Shelton, N. Samwel, L. Batina, F. Regazzoni, M. Wagner, and Y. Yarom.
Rosita: Towards automatic elimination of power-analysis leakage in ciphers.
Cryptology ePrint Archive, Report 2019/1445, 2019.

[SSG17] H. Seuschek, F. De Santis, and O.M. Guillen. Side-channel leakage aware
instruction scheduling. In Cryptography and Security in Computing Systems
(CS2), pages 7–12, 2017.

[Sze16] J. Szefer. Survey of microarchitectural side and covert channels, attacks, and
defences. Cryptology ePrint Archive, Report 2016/479, 2016.

[TMW94] V. Tiwari, S. Malik, and A. Wolfe. Power analysis of embedded software: A
first step towards software power minimization. In IEEE/ACM International
Conference on Computer-Aided Design, pages 384–390, 1994.

[Wat16] A. Waterman. Design of the RISC-V Instruction Set Architecture. PhD
thesis, University of California at Berkeley, 2016.

[Wel47] B.L. Welch. The generalization of “student’s” problem when several different
population variances are involved. Biometrika, 34(1-2):28–35, 1947.

[WG03] D.L. Weaver and T. Germond, editors. The SPARC Architecture Manual:
Version 9. Prentice-Hall, 2003.

[X8618] Intel 64 and IA-32 architectures – software developer’s manual (Volume 2:
Instruction set reference A-Z). Technical Report 325383-067US, Intel Corp.,
2018.

[Xil16] Xilinx Inc. LogiCORE IP Product Guide: AXI GPIO, v2.0 (PG144) edition,
2016.

[Xil17a] Xilinx Inc. LogiCORE IP Product Guide: AXI Interconnect, v2.1 (PG059)
edition, 2017.

98 FENL: an ISE to mitigate analogue micro-architectural leakage

[Xil17b] Xilinx Inc. LogiCORE IP Product Guide: AXI UART Lite, v2.0 (PG142)
edition, 2017.

[Xil19a] Xilinx Inc. 7 Series FPGAs Memory Resources User Guide, v1.14 (UG473)
edition, 2019.

[Xil19b] Xilinx Inc. LogiCORE IP Product Guide: AXI Block RAM (BRAM) Con-
troller, v4.1 (PG078) edition, 2019.

[YHHF19] J. Yu, L. Hsiung, M. El Hajj, and C.W. Fletcher. Data oblivious ISA
extensions for side channel-resistant and high performance computing. In
Network and Distributed System Security Symposium (NDSS), 2019.

[ZBPF18] D. Zoni, A. Barenghi, G. Pelosi, and W. Fornaciari. A comprehensive
side-channel information leakage analysis of an in-order RISC CPU mi-
croarchitecture. Transactions on Design Automation of Electronic Systems
(TODAES), 23(5):57:1–57:30, 2018.

[ZSM19] D. Zagieboylo, G. Suh, and A. Myers. Using information flow to design
an ISA that controls timing channels. In Computer Security Foundations
Symposium (CSF), 2019.

	Introduction
	Design
	Related work
	An overview of FENL

	Implementation
	Experimental platform
	Implementing FENL in the ISA
	Implementing FENL in the micro-architecture(s)

	Evaluation
	Experiment 1: intuitive localisation and reduction of leakage
	Experiment 2: systematic localisation and reduction of leakage
	Experiment 3: flush semantics
	Experiment 4: leakage from un-core resources
	Experiment 5: leakage hazard resolution

	Conclusion

