
15

FPGADefender: Malicious Self-oscillator Scanning for

Xilinx UltraScale + FPGAs

TUAN MINH LA, KASPAR MATAS, NIKOLA GRUNCHEVSKI, KHOA DANG PHAM, and

DIRK KOCH, The University of Manchester, UK

Sharing configuration bitstreams rather than netlists is a very desirable feature to protect IP or to share IP

without longer CAD tool processing times. Furthermore, an increasing number of systems could hugely ben-

efit from serving multiple users on the same FPGA, for example, for resource pooling in cloud infrastructures.

This article researches the threat that a malicious application can impose on an FPGA-based system in a

multi-tenancy scenario from a hardware security point of view. In particular, this article evaluates the risk sys-

tematically for FPGA power-hammering through short-circuits and self-oscillating circuits, which potentially

may cause harm to a system. This risk includes implementing, tuning, and evaluating all FPGA self-oscillators

known from the literature but also developing a large number of new power-hammering designs that have

not been considered before. Our experiments demonstrate that malicious circuits can be tuned to the point

that just 3% of the logic available on an Ultra96 FPGA board can draw the power budget of the entire FPGA

board. This fact suggests a waste power potential for datacenter FPGAs in the range of kilowatts.

In addition to carefully analyzing FPGA hardware security threats, we present the FPGA virus scanner

FPGADefender, which can detect (possibly) any self-oscillating FPGA circuit, as well as detecting short-

circuits, high fanout nets, and a tapping onto signals outside the scope of a module for protecting data center

FPGAs, such as Xilinx UltraScale+ devices at the bitstream level.

CCS Concepts: • Security and privacy → Side-channel analysis and countermeasures; Hardware at-

tacks and countermeasures; • Hardware → Reconfigurable logic and FPGAs;

Additional Key Words and Phrases: Cloud computing, hardware security, FPGA, denial-of-service, power-

hammering, side-channel, bitstream, mitigation, countermeasure

ACM Reference format:

Tuan Minh La, Kaspar Matas, Nikola Grunchevski, Khoa Dang Pham, and Dirk Koch. 2020. FPGADefender:

Malicious Self-oscillator Scanning for Xilinx UltraScale + FPGAs. ACM Trans. Reconfigurable Technol. Syst. 13,

3, Article 15 (September 2020), 31 pages.

https://doi.org/10.1145/3402937

This work is kindly supported by the UK National Cyber Security Centre through the project rFAS (Grant Agreement

No. 4212204/RFA 15971) and by the European Commission through the project EuroEXA (Grant No. 754337).

Authors’ addresses: T. M. La, K. Matas, N. Grunchevski, K. D. Pham, and D. Koch, Advanced Processor Technologies Re-

search Group, Information Technology Building, Department of Computer Science, The University of Manchester, Oxford

Rd, Manchester M13 9PL, UK; emails: tuan.la@postgrad.manchester.ac.uk, {kaspar.matas, nikola.grunchevski, khoa.pham,

dirk.koch}@manchester.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

1936-7406/2020/09-ART15 $15.00

https://doi.org/10.1145/3402937

ACM Transactions on Reconfigurable Technology and Systems, Vol. 13, No. 3, Article 15. Pub. date: September 2020.

https://doi.org/10.1145/3402937
mailto:permissions@acm.org
https://doi.org/10.1145/3402937
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3402937&domain=pdf&date_stamp=2020-09-01

15:2 T. M. La et al.

1 INTRODUCTION

With the present trend of FPGAs being offered in cloud data centers [24, 25, 53, 68] and also more
and more hardware designs being provided as bitstreams (e.g., [10, 66]), there is a strong need to
investigate FPGA hardware security. While traditionally, the FPGA hardware, as well as the design
running on the FPGA, was entirely designed and integrated by one party, we are now increasingly
heading towards ecosystems with more complex supply chains. For example, nowadays we have
cloud data centers using off-the-shelf FPGA boards as well as a stack of own, vendor, and third
party IPs and tools to provide users with FPGA-enabled Acceleration-as-a-Service (AaaS) offerings
[24] as well as with FPGA-as-a-Service (FaaS) offerings [25, 68].

The origins of this trend can be referred to as the FPGA cloud effect, which has stimulated a
large body of FPGA-related research, which was triggered by the announcement of major cloud
service providers to offer FPGA instances (e.g., Amazon AWS with its F1 FPGA instances). For
the first time, these offerings gave everybody the possibility to access high-end FPGA hardware
at low initial cost and without the need to install any FPGA design tools locally. This effect also
initiated a Renaissance in FPGA hardware security research [47], and several recent papers have
demonstrated attacks on (1) how to compromise the integrity of a system and how to deny a
system’s service and (2) how to leak information from other parts of the system, as surveyed in
Section 2.

However, while there are many attacks demonstrated, there are only a few papers published
that propose countermeasures for FPGA hardware security threats. Cloud service providers such
as Amazon, Alibaba, Baidu, and Nimbix rely entirely on the FPGA vendor Xilinx to protect their
FPGA infrastructure by using design rule checking (DRC) at the netlist level [24, 25, 27, 28]. We
would like to stress that the common approach of AWS and other FPGA cloud service providers
is insufficient for adding security to their system, because the (Xilinx) DRCs are only catching
LUT-based ROs (see [19, 57], and our examples in Section 3). This lack of countermeasures is
surprising as security will be a paramount requirement for the possible next wave of systems
where multiple tenants may share the same FPGA in an FaaS setting (which allows harnessing
the full cloud advantages for processing and resource pooling also for FPGAs) or where end users
may download and execute configuration bitstreams as kind of hardware apps. Please note that
existing FPGA cloud offerings can already be considered as a multi-tenant scenario consisting of a
shell with the I/O infrastructure (commonly provided by the cloud service provider) and the user
modules that interface to a server node using that shell. In this setting, a user should not be able
to interfere with the shell in an uncontrolled manner, and it is essential to prevent a scenario that
would allow a hijacking of any shell functionality (e.g., for gaining access to the PCIe core, which
is connected to the server host node [26]).

In this article, we propose an FPGA virus scanner, named FPGADefender, that scans partial
module bitstreams such that a system can reject malicious modules if needed. We limit ourselves
to partial bitstreams, because the present version of FPGADefender does only fully support logic
tiles (CLBs), on-chip memories (BRAMs) and arithmetic blocks (DSPs). However, that is suffi-
cient for data center applications where users access all peripherals (e.g., DDR memory and PCIe)
through a shell and where direct access to I/O pins is commonly prohibited. The envisioned system
featuring FPGA virus scanner is shown in Figure 1. In a traditional system, a (partial) bitstream
would be sent directly to a configuration manager that is in charge of pumping the bitstream bi-
nary into the fabric. To perform virus scanning from a bitstream, we first have to rebuild a netlist,
which in turn requires an FPGA architecture model. This netlist can then be scanned by the ac-
tual virus scanner engine, which requires virus definitions (also known as virus signatures) and
system-specific constraints. If the scanner detects a malicious construct in the bitstream, then this
will be flagged to the configuration manager, which may reject malicious bitstreams.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 13, No. 3, Article 15. Pub. date: September 2020.

FPGADefender 15:3

Fig. 1. Envisioned system with a virus scanner for detecting malicious configuration bitstreams.

The current most severe FPGA hardware security threats relate to self-oscillators. Self-
oscillators (SOs) are circuits where the oscillation does not depend on an external clock (e.g., from
a quartz crystal) but on some feedback implemented in the soft logic of an FPGA. Ring-oscillators
(ROs) are a subset of self-oscillators representing circuits that are based on inverting combinato-
rial feedback loops. To provide the best possible protection against self-oscillators, we examined
a large number of reported as well as several novel self-oscillating designs. We quantified their
potential threats to power-hammering thoroughly and included virus signatures for all of them to
FPGADefender.

Throughout the rest of the article, we will describe the concepts, implementation, and evaluation
of the virus scanning in more detail. Our key contributions are as follows:

• An in-depth study on FPGA self-oscillators, including the discovery of novel oscillator de-
signs (Section 3).

• A model for FPGA virus scanning and virus signatures for detecting oscillators, wire-
tapping, and short-circuits from a bitstream (Section 4).

• An implementation, evaluation, and discussion of FPGADefender (Section 5).

In addition to these critical contributions, we are providing an overview of FPGA security threats
(Section 2) and a comparison of software virus scanning versus hardware virus scanning (Sec-
tion 4.1). Note that this article uses the term virus scanning in its figurative meaning for detecting
all kinds of malicious threats rather than in its original meaning of infecting a program with ma-
licious code to spread out in a virus-like manner.

2 HARDWARE SECURITY THREATS FOR MULTI-TENANT FPGAS

Traditionally, FPGA industry vendors considered that the security of an FPGA was primary about
protecting designs in terms of intellectual property (IP) in configuration data (or bitstream) against
cloning/overbuilding, reverse engineering, tampering, and spoofing, as summarized in [63]. How-
ever, FPGAs are now integrated into data centers and cloud computing infrastructures [17, 24, 53],
and hence, multi-tenant scenarios are expected to provide better utilization and power efficiency
as compared to the current one-user-per-fabric scheme [65]. However, due to their deep low-level
programmability, FPGAs comprise new threat models far beyond what is commonly known from
conventional CPU/GPU systems. For instance, modules running on an FPGA may include circuits

ACM Transactions on Reconfigurable Technology and Systems, Vol. 13, No. 3, Article 15. Pub. date: September 2020.

15:4 T. M. La et al.

Fig. 2. An illustration of the denial-of-service-like (DoS-like) threat model. A user may try to shutdown an

FPGA service in a data center by sending malicious circuits such that legitimate requests from other users

cannot use the FPGA resources. Short-circuits and power-hammering designs can be utilized for such attacks

on the system availability. Furthermore, this kind of attack may potentially age or damage the equipment.

being able to measure system states at high accuracy, which may open physical side-channels to
leak sensitive data from other users [18, 55] that are not available in known software threat models.

In this section, we take a brief literature review on potential threats against multi-tenant FPGAs,
which can be categorized into (1) attacks on the system availability (DoS-like attacks), (2) attacks
on the system integrity (via bitstream fault injection), and (3) attacks on the user confidentiality
(via physical side-channel analysis); as well as state-of-the-art countermeasures.

2.1 Attacks on the System Availability

Denial-of-service-like (DoS-like) attacks are used to bring down operating infrastructures or to
compromise states in other system components that stay outside the scope of an attacking module.
At the electrical level, two means for DoS-like attacks had been utilized: short-circuits and power-
hammering (see also Figure 2).

Short-circuits on FPGAs have a long history [2, 3, 22]. In contrast, more recent research [6]
demonstrated short-circuits within the multiplexers inside a switch matrix using a manipulated
configuration bitstream resulting in a substantial current increase (with several mA extra current
for a single routing multiplexer). Short-circuits may potentially age or even damage an FPGA chip
permanently. Alternatively, this may be used for power-hammering, as discussed in the following
paragraph.

Power-hammering is another mechanism to carry out DoS-like attacks. All current power-
hammering attacks [20] are based on fast toggling circuits to draw a substantial amount of
dynamic power. As we will show in Section 3, it is possible to implement self-oscillating circuits
running in the GHz frequency domain with a corresponding dynamic power footprint. In [20],
a grid of ring-oscillators could be activated at an adjustable rate (to stimulate resonance effects
in the power supply regulation circuit). With this, several FPGA platforms such as Xilinx Virtex
6, Kintex 7, and Zynq-7000 FPGAs had been crashed (and in some cases requiring power-cycling
for bringing up boards back into service). Although ring-oscillators are usually flagged with a

ACM Transactions on Reconfigurable Technology and Systems, Vol. 13, No. 3, Article 15. Pub. date: September 2020.

FPGADefender 15:5

Fig. 3. An illustration of the bitstream fault injection threat model in a multi-tenant computing environment.

warning by the vendor design tool flows and hence, are not allowed to be deployed on common
cloud or data center infrastructures, recent research [19] has reported new ring-oscillator designs
that can bypass such a Design Rule Checking (DRC).

In this article, we will investigate a large number of known as well as newly developed oscillator
variants that can be built from FPGA primitives, including LUTs, carry logics, and DSPs.

2.2 Attacks on the System Integrity

Further, FPGA security vulnerabilities include bitstream fault injection attacks [1, 58–60]. These
types of attacks are man-in-the-middle attack variants that directly compromise the integrity of a
system, commonly intending to leak a user’s confidential data, as illustrated in Figure 3. However,
bitstream fault injection attacks usually result in invalid FPGA bitstreams, which may not be easily
deployed in data centers thanks to tamper-resistant features in modern FPGAs [13, 29]. Indeed,
no such man-in-the-middle attack has been reported to be launched successfully against multi-
tenant computing infrastructures. Attestation protocols would typically identify modifications to
a bitstream. For example, a bitstream can be hashed before or after being loaded to the FPGA, and
a hash mismatch would flag any modification. In the latter case, where configuration readback
is commonly used, FPGADefender would ensure that no bitstream would reach the FPGA that
contains malicious configurations at the electrical level.

2.3 Attacks on the User Confidentiality

Side-channel attacks on FPGAs can be either active (e.g., timing fault injection) or passive (e.g.,
power analysis, crosstalk coupling, electromagnetic analysis, and thermal channel leakage). Dif-
ferential Fault Analysis (DFA) was shown in [9] for breaking cryptographical implementations,
whereas in [41], timing faults have been injected through a large number of ring-oscillators to
cause voltage drops followed by analyzing the resulting faulty ciphertext using DFA for success-
fully revealing the secret key of a crypto-core.

To deploy a passive side-channel attack remotely (see also Figure 4), an attacker needs to
measure parameters of covert channels such as latency, temperature, IR drop, or any crosstalk
effect, as summarized in a recent survey [47]. Power analysis attacks have been demonstrated to

ACM Transactions on Reconfigurable Technology and Systems, Vol. 13, No. 3, Article 15. Pub. date: September 2020.

15:6 T. M. La et al.

Fig. 4. An illustration of the eavesdropping threat model of user confidentiality in a multi-tenant computing

environment.

leak the secret key of a cryptographic function that was running on the same FPGA [55], running
on a CPU embedded on the same FPGA die [72], and running on a different FPGA on the same
FPGA board [56]. All these attacks have in common that they use ring-oscillators to measure
key-dependent fluctuations on the voltage.

In addition to sensing voltage, self-oscillators can be used to monitor latency variations induced
from crosstalk effects [18, 19, 54]. In these studies, it was found that a wire carrying a logical
one will slow down a ring-oscillator that is implemented directly adjacent to this wire. Therefore,
by taking advantage of the sensitivity of self-oscillators, attackers can leak the current state of
a signal, which is a concern in shared FPGA infrastructures. Furthermore, self-oscillators can be
used as a sensor to collect system states stealthily [73].

In summary, it is of paramount importance to detect any self-oscillating circuit in the valid FPGA
bitstreams, as enabled by FPGADefender.

2.4 State-of-the-art Countermeasures

To prevent side-channel power analysis attacks, different masking and hiding strategies had been
proposed. In the masking strategy, an implementation of a cryptographic algorithm is transformed
into another (typically larger) variant, which is functionally equivalent, but where the new circuit
can remain secure, although an attacker can observe some details of the operation through a side-
channel, as proposed in [35]. For example, a cryptographic module may change specific details of
the implementation (e.g., if an S-box lookup in an AES implementation is performed sequentially
or in parallel or if that S-box lookup is implemented through a table or some Boolean logic
functions). This approach makes power analysis attacks much harder as the data leaked has addi-
tionally to be correlated with the implementation changing scheme used inside the secured core.

However, the hiding strategy aims at lowering the Signal Noise Ratio (SNR) during the operation
by either adding more sources of noise or lessening the strength of the signal power trace that
relates to the operation of the core, as suggested in [14, 21, 37, 69].

ACM Transactions on Reconfigurable Technology and Systems, Vol. 13, No. 3, Article 15. Pub. date: September 2020.

FPGADefender 15:7

Ring-oscillators can be used to monitor the healthiness of an FPGA fabric [73] or even detect
voltage drop attacks (e.g., power-hammering, power analysis) [52, 74]. Further, recent work has
suggested using ring-oscillators not only to monitor a power analysis attack but also to respond
against the attack by triggering some noise generators [40].

Although these works claimed to respond against power-hammering and power analysis at-
tacks, it would be ideal that those kinds of attacks could be prevented and not even reach to an
FPGA in the first place! This protection scheme also simplifies system management as it would
otherwise require an exception handling after a fault due to an attack may have occurred. There-
fore, checking an FPGA bitstream before deploying it on a multi-tenant FPGA is a desirable (if not
essential) feature.

In a related work [42], LUT-based ring-oscillator designs are detected directly inside configura-
tion bitstreams. While that work fundamentally showed that oscillator circuits could be detected
from bitstreams, it was only shown for basic LUT-based oscillators (which are already spotted by
the FPGA vendor tools). This limitation leaves an attacker the chance to deploy alternative oscilla-
tor designs (e.g., based on glitch amplification), which the work in [42] cannot identify. In contrast,
FPGADefender is designed to detect any self-oscillating circuits in any user design. With user de-

sign, we refer to designs made of logic cells (LUTs), block RAMs, and DSP blocks only. This is the
model used by all cloud service providers where users can only program these blocks while a static
shell provides all other primitives that are commonly needed (e.g., for I/O and clocking). Further-
more [42] was implemented on a Lattice FPGA, and those FPGAs are relatively small for building
a multi-tenancy system. However, the vast majority of systems that would benefit from an FPGA
virus scanner are based on modern FPGA architectures, which are substantially more complex
(e.g., fracturable LUTs, complex DSP blocks with ALU functionality, complex clock networks, and
a hierarchical routing fabric). Therefore, FPGADefender was designed to be compatible with Xil-
inx UltraScale+ FPGAs. This feature makes FPGADefender applicable in real-world data centers
and cloud computing infrastructures [17, 24, 25].

In conclusion, discussed attacks compromise not only the user confidentiality but also the sys-
tem availability and the system integrity of an FPGA infrastructure. Although previous coun-
termeasures suggested that self-oscillators can also be used to detect potential power attacks or
monitor system healthiness after the malicious bitstream is already loaded, it is crucial to have a
stronger mechanism to detect the use of malicious circuits before it has already been deployed, as
provided by FPGADefender for Xilinx UltraScale+ FPGAs.

3 A STUDY ON FPGA SELF-OSCILLATORS

In this section, we will provide an in-depth study on a wide range of self-oscillating circuits to
quantity their potential threats with a focus on power-hammering. Besides, we use this study
to tune FPGADefender for detecting all kinds of self-oscillating circuits that are practically
implementable on Xilinx UltraScale+ FPGAs using any logic, memory, or arithmetic primitives.
This insight is essential as FPGADefender should not only detect some oscillator designs but any

known designs in a user circuit. Different effects can be used to design self-oscillators, as discussed
in the next paragraphs. Because the actual oscillator speed depends on the supply voltage and
temperature (which, in turn, relates to the current operation state of the FPGA), any oscillator is
probably a potential path for a side channel. Therefore, even focusing on power-hammering in
this section, by preventing oscillators, we will further prevent the most critical side channels that
are deployable remotely.

3.1 Experimental Setup

Our experiments are conducted on an Ultra96 board, which is equipped with a Xilinx Zynq Ultra-
Scale+ MPSoC ZU3EG. The primitive resources count for Ultra96 in comparison with a data center

ACM Transactions on Reconfigurable Technology and Systems, Vol. 13, No. 3, Article 15. Pub. date: September 2020.

15:8 T. M. La et al.

Table 1. Configurable Resources of Ultra96 Compared with the

Data Center FPGA Alveo U200

Primitive count ZU3EG Alveo U200
CLB LUTs 70,560 1,182,240
CLB flip-flops 141,120 2,364,480
DSP Slices 360 6,840
BRAM Slices 648 6,480

Fig. 5. Time-to-Digital construction.

Alveo U200 [28] is shown in Table 1. We created 15 different Ring-oscillator variants and evaluated
them in Table 2. To generate the RO circuits, the PathSearch function of the GoAhead tool [7]
was used. That tool can perform a breadth-first search between arbitrary ports of the FPGA fabric
and rank the resulting paths by their latency. The expected frequency is based on timing reports
generated by the Xilinx Vivado tool [30], and the measured frequency on the FPGA is determined
by using a Time-to-Digital Converter (TDC), as shown in Figure 5. Our TDC is a delay chain that
allows us to take a snapshot of a signal propagating down the chain precisely. By using NF F =

32 flip-flops (FFs) and tdelay ≈ 70 ps (between two adjacent sample flip-flops), we can capture
a signal with a snapshot window of ≈ 2170 ps (Equation (1)) and with a resolution of 70 ps ap-
proximately (see Figure 6 for details). This latency corresponds to a frequency range from 246 to
7,142 MHz (see Equation (2) where NH IGH and NLOW are the number of consecutive FFs that have
registered HIGH -state and LOW -state, respectively). Figure 6 shows how the samples of a TDC
are read out to measure a frequency.

It should be noted that the clock buffer primitives inside a programmable logic (PL) region of
the FPGA fabric are rated for a maximum clock frequency of 891 MHz [34]. Therefore, to ensure
stable TDC measurements, we operate the TDC sampling FFs at a moderate clock frequency of
100 MHz. This is a difference to other clock measurement designs used for FPGA side-channel
attacks, which feed the RO’s output directly to clock inputs of some FFs to form a counter [18, 19,
54]. Because we aim for generating frequencies in the GHz regime, simple counter designs cannot
be used:

snapshot_window = NF F × tdelay , (1)

fRO =
1

tRO
=

1

2 × cycle_path_delay

≈ 1

tdelay × (NH IGH + NLOW)
. (2)

ACM Transactions on Reconfigurable Technology and Systems, Vol. 13, No. 3, Article 15. Pub. date: September 2020.

FPGADefender 15:9

Table 2. Variants of Self-oscillating Circuits Studied on Xilinx UltraScale+ FPGAs

The results of power consumption are measured on the Ultra96 platform equipping with a Zynq UltraScale+ MPSoC

ZU3EG.

Designs 7, 8, 9, 10, 11, and 12 have not been previously reported in related work.

Comb: Combinatorial.
∗: DRC warning.
∗∗: DRC critical warning.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 13, No. 3, Article 15. Pub. date: September 2020.

15:10 T. M. La et al.

Fig. 6. Time-to-Digital Converter (TDC) waveform.

TDCs are subject to temperature changes, and we used heater circuits (circuits that waste power)
to heat the chip to 90◦C before actually taking any measurement. The temperature is within the
maximum operating temperature of the FPGA, which is 100◦C [34]. The heaters are not running
during the short period of time to take the (typically below one ms) measurements, and we use the
temperature sensor that is built into the FPGA to implement the temperature control. Additionally,
we took the median from 1,000 measurements for each frequency reported to reduce the impact
of quantization errors and noise.

3.2 Combinatorial Self-oscillator Variants

The simplest self-oscillator is a combinatorial loop, which is a circuit that consists of an odd number
of chained inverters. We will refer to this basic oscillator as Ring-oscillator. The frequency of an
RO can be calculated by the propagation delay of the whole combinatorial loop, which includes
propagation delay of all logic elements tloдic (e.g., LUTs or DSP blocks) and the net delay tnet (i.e.,
the routing delay) as given in Equation (3):

fRO =
1

tRO
=

1

2 × (tloдic + tnet)
. (3)

We performed a literature review on RO designs and found that previous researches [18–20,
41, 57] only use LUT primitives to implement ROs. To capture any possible oscillator design, we
analyzed the exact internal architectures of the logic (i.e., SliceL/SliceM), arithmetic (i.e., DSP48E2),
and BRAM primitives available in UltraScale+ FPGAs. And for each of these primitives, we asked
the question if there exists a configurable combinatorial path from any of the primary inputs to any

of the primary outputs, because this is a fundamental requirement for designing ROs. This study
has to incorporate all the different modes each primitive can be configured, and we found:

• Slices: We examined known RO designs through LUTs [18–20, 41, 57] as well as trans-
parent latches [19, 42, 57] and self-oscillating circuits based on glitch amplification or
asynchronous reset/preset [19, 42, 57]. In addition to these designs using FPGA slices,
we found combinatorial paths that have not been previously reported by the community,
but that can be used for ROs including (1) paths through MUX primitives (i.e., F7Mux and

ACM Transactions on Reconfigurable Technology and Systems, Vol. 13, No. 3, Article 15. Pub. date: September 2020.

FPGADefender 15:11

Fig. 7. (a) Dual-RO from LUT6 primitive; (b) RO design from Carry Logic; (c) RO design from DSP; (d) Glitch

amplification.

F8Mux multiplexers) inside the slices and (2) paths through the carry logic (i.e., the Carry

Look Ahead (CLA) logic introduced in UltraScale+ FPGAs) (see Figure 7(b)).
• DSPs had not been considered in previous research for building oscillators. However, DSPs

can be used in many different configuration options, and there are many possibilities for
designing ROs. This is possible because DSP blocks can be used purely combinatorial with-
out any pipeline registers between the primary inputs and outputs that would prevent self-
oscillation. For instance, an RO can be formed by feeding the output of a DSP primitive back
to an input for implementing a counter without using any register in the feedback path. The
DSP48E2 primitives include not only multipliers but a tiny ALU that can perform bit-level
operations that execute faster than arithmetic operations, and for the remainder of this ar-
ticle, we will only report results for the wide-XOR instruction that was found oscillating
the fastest (see also Figure 7(c)).
It is worth mentioning that we tried building an internal loop inside the DSPs, which may
exist in accumulator mode. We investigated this path because the accumulator register can
be bypassed to the output (as shown in Figure 8), and the documentation [32] does not state
if the bypass may eventually be used together with the accumulator mode. However, we
have not detected any switching activity or abnormal increase in power when configuring
this option. This fact implies that the flip-flop output is fed back to the accumulator input
rather than the output of the bypass multiplexer (see the top right box in Figure 8). Thus,
the DSP accumulator mode can be considered as secure from possible cycles in DSP48E2
primitives.

• BRAMs are mostly comprised of synchronous components (i.e., memory cells) that are
working on a clock basis with synchronous reset signals [33]. With this, we cannot

ACM Transactions on Reconfigurable Technology and Systems, Vol. 13, No. 3, Article 15. Pub. date: September 2020.

15:12 T. M. La et al.

Fig. 8. Tentative internal combinatorial loop inside DSP. This figure is adopted from [32].

Fig. 9. BRAM cascade functional diagram. This figure is adopted from [33].

implement any ROs directly through internal BRAM components. The only existing combi-
natorial part that we found is located inside the cascading logic, which is used to build larger
memories from multiple consecutive BRAM primitives. However, the cascading chains have
dedicated bottom-up routing resources that cannot be controlled by user logic, and cascade
multiplexers are controlled by flip-flops, as shown in Figure 9. Therefore, BRAMs are con-
sidered to be RO-free.

We like to stress that most new oscillator designs do not throw any DRC critical warning/error
message in the vendor tool Xilinx Vivado 2019.1, which means that these oscillators are possibly
deployable, for example, on Amazon F1 cloud instances [57]. Table 2 provides an overview of most
oscillator designs examined in this article.

While there are papers discussing self-oscillators for FPGAs [19, 42, 57], we have not found a
comprehensive study on performance tuning for improving the power-hammering potential as
well as a corresponding evaluation of such oscillators on real FPGA hardware. For differential
power analysis (DPA) attacks, an attacker typically seeks the fastest oscillator. In contrast, for a

ACM Transactions on Reconfigurable Technology and Systems, Vol. 13, No. 3, Article 15. Pub. date: September 2020.

FPGADefender 15:13

Fig. 10. Enhanced ROs grid for power-hammering: (a) schematic; (b) implementation with 2,000 ROs.

Fig. 11. Logical view of a Lookup Table 6-input primitive with timing information taken from Vivado.

denial-of-service attack, the waste power efficiency (power drawn per unit resources) is more im-
portant. Even for a basic RO using LUT primitives, we found that the different LUT6 primitives
inside a CLB (i.e., a cluster of 8 LUT6 primitives sharing a switch matrix) as well as using different
LUT inputs for implementing fastest possible ROs result in a wide range for both frequency and
waste power (see Figure 12). We have discovered frequencies ranging from 1 to 6 GHz approxi-
mately as a result of the internal architecture of the LUTs (see Figure 11) and a variance in the
routing path delay for implementing the fastest possible loop. The corresponding waste power is
not necessarily correlating with oscillator speed. Because we do not have access to the low-level
ASIC details of any Xilinx FPGA, we cannot fully explain this behavior. Still, one possible explana-
tion could be that longer paths are slower and have therefore a lower RO frequency; but because

ACM Transactions on Reconfigurable Technology and Systems, Vol. 13, No. 3, Article 15. Pub. date: September 2020.

15:14 T. M. La et al.

Fig. 12. ROs Frequency versus Waste Power Gain (measured for 2,000 ROs) for all 8 LUT6 primitives inside

a CLB for all corresponding different cases that implement the fastest possible loop from output O6 to an

input of the same LUT (resulting in 8 × 6 = 48 individual experiments).

there are longer wires (with more capacitive load), more switching elements, and drivers involved
per oscillator round-trip the overall waste power may still be high (or even higher).

Figure 11 shows the internal hierarchical architecture of a LUT, which is built from a tree struc-
ture of multiplexers where the inputs I0 to I5 are equal in their logical behavior but not for their
timing. The figure shows that input I0 needs to travel through 6 levels of multiplexing to propa-
gate to O6, which results in a primitive latency of 177 ps, while input I5 only needs to propagate
one level resulting in 41 ps latency. Moreover, because the adjacency of UltraScale+ switch ma-
trices is relatively sparse (as usual for FPGAs), the fastest possible loop routing has a relatively
high variance in latency depending on which specific LUT input is used for the loop. With this,
we examined the fastest possible ROs where the loop routing can be implemented in just a single
hop.1 For these ROs, Vivado reported a path delay for the external routing ranging from ≈ 46 ps to
≈ 71 ps. For having full control of the implementation throughout the experiments, we constraint
the routing using the GoAhead tool [7]. Comparing the single-hop routing RO variants against
each other is interesting, because the variance in frequency is now mostly related to the internal
latency inside the LUT itself (see Figure 15). The corresponding results are listed in Table 2.

3.3 Non-combinatorial Self-oscillator Variants

In addition to combinatorial loop-based ROs, non-combinatorial loops had been proposed in re-
cent papers [19, 42, 57]. These designs use transparent latches, glitch amplification [19, 42, 57], or
asynchronous reset/preset to create oscillators [19] (see also Section 4.3.2).

1Here, a hop is actually passing two switch matrix multiplexers that together act as a pair to form a larger two-level

multiplexer, similar as used for older Xilnix FPGA architectures (see also Figure 15).

ACM Transactions on Reconfigurable Technology and Systems, Vol. 13, No. 3, Article 15. Pub. date: September 2020.

FPGADefender 15:15

Table 3. Power-hammering Evaluation between Xilinx Power Estimator, Measured Power Consumption

on Ultra96, and Speculation Power Consumption on Alveo U200

Designs from Table 2
LUT6
used

Power/Primitive
Xilinx
Power
Estimation

Power
Gain in
Ultra96

Provisioned Power Gain
in Alveo U200 (with 50%
LUTs utilization)

WPP

Design 7 - Dual-RO 2,000 2.55 mW/Primitive 0.227 W 5.10 W 1,507 W 13.39

Design 8 - Enhanced ROs 2,000 3.33 mW/Primitive 2.067 W 6.66 W 1,968 W 17.51

Design 15 - Glitch Amplification 6,000 0.64 mW/Primitive 0.351 W 5.10 W 502 W 4.47

We repeated the experiments in [19, 42, 57] and confirmed that all designs could implement os-
cillators. Moreover, we manually optimized these oscillators for maximum speed by using different
local routing options to fine-tune routing latencies.

In our experiment using glitch amplification (see design 15 in Table 2), we created glitches by
creating routing paths with different signal propagation delays from a single T-flip-flop output to a
LUT, which implements an XOR gate to create a glitch that is fed back to the clock input pin of the
T-flip-flop. With a timing difference of 218 ps between the two paths, we measured a frequency
of 481 MHz. It should be noted that this oscillator requires an external signal to kick-start the
oscillator.

A common property shared among the here presented non-combinatorial loops is that they rely
on local clock routing resources rather than on the global clock distribution network. We have
not seen any use of clock routing resources for implementing the internal routing of High-Level
Synthesis (HLS) generated circuits, and the clock distribution network is entirely used for clock
signal routing. For the oscillator based on glitch amplification, the Vivado tool reported a gated
clock (DRC warning code: PDRC-153) and a warning indicating a possible hold-time violation (DRC
warning code: PLHOLDVIO-2).

3.4 Self-oscillator Power Evaluation

So far, we reported timing characteristics of self-oscillating circuits and if the Xilinx vendor tools
throw DRC error or warning messages that may or may not allow detecting oscillators in a design.
In this section, we report our results on waste power that was drawn from the different oscillator
designs, as shown in Table 2. From that table, we took the three most power-wasting designs
(Design 7, 8, 15) to highlight their suitability for power-hammering attacks (see Table 3). To quantify
the risk for power-hammering, we introduce the term Waste Power Potential (WPP), which we
define as

WPP =
possible_waste_power_when_usinд_the_whole_FPGA

total_FPGA_power_budдet

=
PWP

TP
,

(4)

where PWP (Possible Waste Power) denotes the assumed power consumed when a power-
hammering circuit is occupying the entire FPGA and where TP (Total Power) refers to the power
envelope typically defined by the power supply, the thermal design of the system, and the max-
imum power rating of individual components, including the FPGA. Depending on the system’s
power envelope, PWP may not be reachable in a particular system, and PWP is essentially ex-
pressing the potentially possible waste power.WPP reveals how a power wasting circuit performs
per unit resources and unit power budget available in a particular system. WPP < 1 expresses
that a power wasting circuit is likely not to be able to crash/harm the FPGA or system, while
WPP > 1 expresses a potential risk to crash the FPGA. Moreover, the value of WPP denotes the

ACM Transactions on Reconfigurable Technology and Systems, Vol. 13, No. 3, Article 15. Pub. date: September 2020.

15:16 T. M. La et al.

Fig. 13. Power-hammering Evaluation for Power over Core Voltage on Ultra96.

number of resources needed to crash an FPGA. For example, withWPP = 5, an attacker can crash
an FPGA by using at least 20% of the available resources. In reality, the threat will likely be even
higher for power-hammering circuits that have aWPP > 1, because there will be other parts of the
FPGA drawing some additional power (which could be incorporated by subtracting other power
contributors from TP). Nevertheless, WPP is a good measure to quantify if a system is at risk of
power-hammering. Please note that WPP assumes a steady waste power consumption and that
evenWPPs below one may cause harm due to dynamic voltage (IR) drops and other dynamic ef-
fects (e.g., resonance effects triggered in a power regulation circuit). However, the lowerWPP , the
lower the harm possible due to IR drops.

To maximize WPP , we amplified the power wasting effect caused by fast toggling ROs to ad-
ditionally drive a large amount of local routing and logic elements for wasting even more power.
Figure 10 shows the idea and implementation of our experiment. As shown, we intentionally con-
nect each of the RO loops to some unused inputs of other ROs. These other ROs are placed in dif-
ferent CLBs to use more routing resources (e.g., wires, multiplexers, etc.) along the routing paths,
which in turn wastes more power.

Figure 13 shows the power-hammering evaluation results on an Ultra96 board. VCCINT is the
core voltage of the FPGA, which is recommended to be 0.85 V [34];VCC_SMPS is the voltage mea-
sured at the output of the power supply regulator circuit for the FPGA; and BoardPower is mea-
sured at the 12 V input to the Ultra96 board. From the result, we can see a gap betweenVCC_SMPS
andVCCINT , which relates to the voltage drop of the board’s power supply network between the
power supply regulator circuit to the FPGA. The increasing gap indicates a rise in the current until
the power supply cannot compensate any longer and eventually crashing the board. We analyzed
the schematic of the used Ultra96 board [5]. While the actual power regulator circuit and power
drivers should be able to deliver over 10A to the FPGA, there is a TPS22920 load switch in the
power network path that is rated for 4A and that has an on-resistance of ≈ 10 mΩ (at working
temperature), which explains most of the VCC_SMPS - VCCINT gap.

Design 8 has a WPP = 40.54, and our experiments revealed that with only 6% of the available
LUT resources (4,000 LUTs of a ZU3EG FPGA), the used Ultra96 board crashed immediately. This
number is higher than what is suggested by WPP where 1/WPP would be enough to impose a
threat (which is 70K LUTs/40 ≈ 1,750 LUTs or 2.5% LUT resource for the used ZU3EG FPGA on an

ACM Transactions on Reconfigurable Technology and Systems, Vol. 13, No. 3, Article 15. Pub. date: September 2020.

FPGADefender 15:17

Fig. 14. Power-hammering Evaluation for Power over Temperature on Ultra96.

Ultra96 board). However, when studying Figure 13, we see that at≈ 2.7% of the total LUT resources
(≈ 2,000 LUTs), the core voltage starts to drop below the recommended core voltage, and the power
supply starts to struggle to keep up with the demand resulting from the power-hammering. After
that point, the power regulator circuit is unable to sustain the current demand resulting in a drop
of VCC_SMPS . The tipping point when the core voltage drops below its nominal value matches
quite close to the resources indicated byWPP .

The here presented results are even more significant when considering a datacenter FPGA card
such as the Alveo U200 board from Xilinx. When assuming that our Zynq UltraScale+ power-
hammering results can be directly transferred to the Xilinx Virtex UltraScale+ VU9P FPGA (be-
cause they use the exact same fabric architecture and the same 16nm FinFET process [31]), this
would be equivalent to a WPP of 17.51, which translates into a total possible waste power of
PWP ≈ 3940W, when deploying Design 8 on the entire VU9P of an Alveo U200 board (see also
Tables 2 and 3 for more results). This estimation is far beyond anything that the FPGA, the board,
or the system would ever sustain, hence expressing the importance of preventing such circuits
from getting configured on the FPGA in the first place.

Figure 14 shows the temperature of the board, corresponding to the number of deployed ROs
Although cooling mechanisms (i.e., heatsinks, fans) keep the temperature below the maximum
junction temperature, intensively heating the fabric may have a long term impact on the FPGA.
This phenomenon is in particular dangerous if the heat is generated in a hot spot and not evenly
spread across the entire FPGA die.

Additionally, we also implemented a “Dual-RO” (Figure 7(a)) exploiting the fact that a LUT6
primitive in UltraScale+ devices can be split into two individual LUT5 with shared inputs as shown
in Design 7 of Table 2. Thus, we can use both outputs of a fractural LUT to implement two inde-
pendent oscillators. For 2,000 LUTs (4,000 ROs), which corresponds to less than 3% of the device
capacity, we measured a waste power of 5.10W . Please note that this is an increment in power,
and the total power of the board was close to 8W and already close to the total power envelope of
an Ultra96 board [4]. With this, the total possible waste power PWP is over 180 W, considering all
the available 70K LUTs would be used for power-hammering.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 13, No. 3, Article 15. Pub. date: September 2020.

15:18 T. M. La et al.

4 FPGA VIRUS SCANNING AT THE ELECTRICAL LEVEL

4.1 Hardware versus Software Virus Scanning

In software systems, the confidentiality of data and task integrity are usually protected by different
layers that may go beyond what a software virus scanner is testing. This includes protection mech-
anisms provided by the software operating system (OS) or run-time environments. Software bina-
ries encode the functionality of a program primarily as sequences of instructions. Consequently,
a virus scanner for software binaries will include a pattern matching engine, typically searching
for regular expressions, which are also known as virus signatures.

Contrarily, a configuration bitstream encodes the functionality of a module essentially as a
netlist, which in turn is a structural representation given as configured FPGA primitives and con-
figured switching elements (i.e., multiplexers). A netlist can be modeled as a graph, and the whole
physical FPGA implementation process can be described by graph transformations, as summarized
in Section 4.2. Consequently, a virus scanner for FPGAs needs a checker engine for graph properties.
For example, in Section 3, we examined ring-oscillators in more detail that in one variant are im-
plemented as cyclic combinatorial circuits (e.g., a LUT that has an output connected to its input
without passing a flip-flop). By scanning a netlist (i.e., its corresponding graph representation), we
can spot such oscillators.

A software OS and most software virus scanners commonly check memory addresses (or mem-
ory ranges) used by programs to ensure that data is not corrupted in malicious ways or that, for
example, data segments are not executed as code. Similarly, a virus scanner for FPGAs has to check
that a configuration bitstream is not corrupting the configuration context of other parts of the sys-
tem, including other configurations or states of other parts of the system (e.g., the surrounding shell
that commonly provides DDR memory and PCIe access). Consequently, a virus scanner needs a
bitstream parser that ensures that a module will only change the configuration context of resources
allocated to that module. This requirement includes parsing addressing information that encodes
locations of primitives on the FPGA fabric as well as tracking the volume of configuration data
that is written to the device. The latter tracking prevents a kind of a buffer overflow that can arise
when configuring Xilinx FPGAs.2 This attack would exploit that Xilinx FPGAs perform something
similar to an auto-increment that keeps configuring an FPGA as long as it receives configuration
data through a configuration port. As a consequence, this could overwrite the configuration of the
fabric outside an intended module bounding box.

To some extent, the tracking of the configuration bitstream length is equivalent to buffer over-
flow detection and prevention techniques (e.g., bounds checking) as embedded into some compilers
like the Clang frontend for LLVM [43].

We summarized the main differences between software and hardware virus scanning in Table 4.
For full system security, it requires hardware support from the run-time system. For instance, sys-
tems commonly provide memory management units (MMUs) that can protect memory regions
against malicious accesses. These units are also available in CPU-FPGA hybrids such as Xilinx
Zynq UltraScale+ devices or Intel Stratix-10 SX SoC devices; and these chips include dedicated
IOMMUs to protect the memory subsystem from malicious accesses initiated from the FPGA side
(e.g., by an accelerator module). Alternatively, MMU functionality can be implemented in the
FPGA’s soft logic (commonly as part of a shell [66]). In this article, we are, in particular, focus-
ing on FPGA vulnerabilities at the electrical level, because protecting a system at the system level
is very well studied and, therefore, not further covered here.

2Please note that this problem is not necessarily bound to a specific vendor but that this problem is best understood for

Xilinx FPGAs, which dominate the research on run-time reconfigurable systems.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 13, No. 3, Article 15. Pub. date: September 2020.

FPGADefender 15:19

Table 4. Contrasting Protection Mechanisms: Software versus FPGA Hardware Techniques

Software Hardware

Check software binaries using regular
expressions and hash matches

Translate the FPGA bitstreams to netlists and
check graph properties on netlists

Check address ranges to prevent executing
malicious code

Check location information in configuration
bitstreams

Bounds checking and memory randomization
to prevent buffer overflows (eventually by
an OS)

Check volume of configuration data written to
prevent configuring adjacent regions

4.2 Modelling the FPGA Virus Scanning Problem

Formally, any FPGA architecture can be modeled by its architecture graph GA = (VA,EA), which
includes as its node primitives V P

A and switches V S
A

with VA = V
P

A ∪V
S

A
as well as directed edges

EA between the nodes representing wires or connections.3 When a module is implemented for an
FPGA, its specification (e.g., some RTL code) will undergo several transformation steps, including
logic compilation, technology mapping, placement of primitives, routing, and ultimately the gen-
eration of the configuration bitstream. Concisely, we can say that the technology mapping is an
allocation and mapping of primitive Boolean functions (the result of the logic synthesis step) to
a set of connected primitives (including their internal configurations). The result of this step is a
netlist, which is a graph GN = (VN ,EN), where the nodes are FPGA primitives.

During placement, the nodes get placed on the architecture graphGA, which is a binding β of the
netlist nodesVN → V P

A . In practice, this means that we annotate for each node in GN the location
coordinate L of the corresponding primitive of the FPGA:

VN → L
(
V P

A

)
,∀ V P

A ∈ VN .

The process of routing can be defined as computing a binding of the netlist edges EN to switches
V S

A
and wires EA. In general, this is a quite complicated process, and the actual routing has, among

other things, to find spanning trees (for multiple edges en ∈ EN that have the same source node in
VN). Primitive nodes commonly have multiple input and output ports p ∈ Pt , where Pt is the set
of ports for a specific primitive type t . The routing information can be seen as a set of switches (a
list of nodes inV S

A
) and wires (a list of edges in EA) that are used to implement each connection in

EN . The configuration of a switch is given by none (if the switch is not used) or exactly one edge
from another node (or port in the case the source is a primitive node), which in turn represents
the selected routing multiplexer input (e.g., in a switch matrix).

A placed and routed netlist can be directly mapped to a bitstream and encodes the exact config-
uration of each element V P

A ,V
S

A
∈ VA. It is essential to understand that this mapping is reversible,

meaning that a bitstream can be mapped back to a placed and routed netlist. However, this map-
ping needs the architecture graph to rebuild the routing, which is only encoded as segments in the
bitstream, rather than as complete paths. On the contrary, a netlist generated through the imple-
mentation flow still provides a substantially higher level of abstraction than the bitstream. This is
because a netlist typically includes information such as hierarchies, symbolic names of nets and
logic blocks, and information on signal vectors, which cannot be easily decompiled from an FPGA
configuration binary. This fact is similar to software compilation into obfuscated program binaries
that also do not allow to decompile symbolic names and hierarchies.

3For the sake of clarity, we deliberately omit a discussion about bidirectional wires that had been available in older FPGA

architectures.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 13, No. 3, Article 15. Pub. date: September 2020.

15:20 T. M. La et al.

This project uses the reversible correspondence between bitstream and netlist to rebuild flat
netlists that provide all primitives V P

N and all switching multiplexers V S
N

, but that will not offer
any higher-level information (such as symbol names or Boolean equations). For the remainder of
this article, we will use GN to refer to a netlist that is rebuilt from a bitstream for detecting virus
signatures.

Please note that the goal of this article is not to provide/offer a reverse engineering tool for
FPGAs but to show that configuration bitstreams are well suited to detect malicious circuit con-
structs in a module. Related work that focuses explicitly on reverse engineering includes [8, 61,
71].

4.3 Detecting Self-oscillating Circuits

As mentioned in Section 2, it is of paramount importance to identify self-oscillating circuits in a
design to be deployed. The following paragraphs are devoted to different classes of self-oscillating
designs.

4.3.1 Ring-oscillators. Ring-oscillators break the fundamental model of register-transfer level
(RTL) descriptions where a circuit is described by

(1) registers, including FPGA slice flip-flops, pipeline registers (e.g., inside DSP primitives),
or memories, and

(2) transforming logic that is forming acyclic combinatorial paths.

These paths can be described by a network of elementary Boolean functions implemented by
look-up tables (LUTs), or DSP blocks4 that are located between the registers.

It is a good design practice to follow the RTL design principle on FPGAs [62], and this is also
the model commonly generated by High-Level Synthesis (HLS) tools [39]. In this article, we as-
sume that all states are stored in flip-flops or other synchronous memory elements (which is the
typical case for FPGA designs). Circuit analysis using latches (which are sometimes used in ASIC
netlists) is a well-studied topic, and there is no fundamental obstacle to transfer the here presented
methodology to circuits based on latches.

To perform a search for cycles, we have to refine our netlist model so that each port p ∈ Pt

of a primitive VN can be either a register PR
t or a combinatorial element PL

t for routing or logic.

With this, we expand ∀p ∈ PR
t a path search that terminates at any other register port ∈ PR

t or that

recursively explores all paths while keeping track for duplicate ports visited in PL
t , which would

indicate a cycle.
In general, it requires an odd number of inverters in a cycle to form a Ring-oscillator. FPGADe-

fender is not interpreting the logic blocks for possible inverters, and we deliberately scan for
acyclic paths only. The reason for this is that if a combinatorial block (e.g., a LUT or DSP block)
implements an inverter between an input and an output can depend on other inputs and conse-
quently on a state that is only known when running a module. The philosophy of FPGADefender
is to flag any possible oscillator while not report a false positive for any design that is following
RTL design principles. Moreover, FPGADefender is stricter than the Xilinx vendor DRC checks,
which can also detect some cycles, but there are situations where the vendor DRC fails. For ex-
ample, an enabled transparent latch can be part of a Ring-oscillator, and due to the latch (which is
logically a wire), this cycle would not be flagged by the Xilinx vendor DRC but by FPGADefender.
More examples are provided in Section 3.

4For a sake of clarity, we are omitting a deeper discussion on pipeline registers in DSP blocks for the reminder of this

article, even FPGADefender can deal with all internal registers and pipeline stages in the DSP48 primitives, which are

available on Xilinx UltraScale+ FPGAs.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 13, No. 3, Article 15. Pub. date: September 2020.

FPGADefender 15:21

For our implementation, we used Xilinx Vivado for generating a report file containing the full
architecture graph for the used Zynq UltraScale+ XCZU3 FPGA. However, that model does not ex-
plicitly distinguish between PR

t and PL
t , and we added this annotation through a regular expression

replacement. Furthermore, the path search inside the virus scanner incorporates all combinatorial
primitives, including LUTs, DSPs, carry logic, cascading multiplexers (i.e., F7Mux and F8Mux in
Xilinx nomenclature), which requires an understanding of the bitstream encoding of primitive
control bits. However, the actual search does not have to distinguish between different types of
primitives. This scan will identify the oscillator cases 1 . . . 12, which are reported in Section 3.

4.3.2 Self-clocking Oscillators. In our oscillator evaluation section (Section 3), we evaluated an
oscillator circuit that is based on glitches that are generated by an XOR gate with different input
routing latencies and where the resulting glitches are fed back into the clock input of a toggle
flip-flop for a self-propelled oscillation (see variant 15 in Table 3). To detect this kind of oscilla-
tor, we examine for each used flip-flop the corresponding clock source. If the source is a global
clock network, then the bitstream is accepted. If the clock source cannot be considered to be sta-
ble (e.g., a combinatorial LUT output), then the bitstream is rejected. In our systems [17, 66], we
block configuration access to global clock resources for any partially reconfigurable module by
using BitMan [50] for preventing this kind of attack and FPGADefender will detect if partially
reconfigurable modules try driving global clock resources.

4.3.3 Other Oscillators. In Section 3, we presented further self-oscillating designs that allow
bypassing Vivado design rule checks (DRCs); therefore, this allows an attacker to implement oscil-
lators that can be deployed in cloud data centers. To confirm this, we ran experiments on Amazon
F1 instances for all Oscillator designs listed in Table 2 and all designs that don’t throw any warning
by the vendor tools can be deployed. The remainder of this paragraph will present the correspond-
ing detection mechanisms.

The self-oscillator detection mechanism in Section 4.3.2 scanned for the origin of a clock source,
and we use a very similar mechanism to handle asynchronous reset/preset inputs of slice flip-flops,
which can also be used for creating self-oscillating circuits (see variant 14 in Table 2). To detect
this, we query the asynchronous mode flag from the bitstream for each used flip-flop, and in case
any asynchronous reset/preset mode is used, we search from the control input (i.e., the reset/preset
primitive input) backward to find the origin of the corresponding control signal. If the origin is a
combinatorial primitive pin (PL

t), then the bitstream is rejected while we flag a warning for registers
PR

t .
To prevent the Vivado tool from flagging a combinatorial feedback loop, a transparent latch can

be incorporated in the loop (see variant 13 in Table 2). We, therefore, treat latches as combinato-
rial elements (essentially like a wire) and carry out a loop search as described for ring-oscillators
(Section 4.3.1). We also report a warning in the case latches are used.

The here presented tests allow detecting any FPGA implemented self-oscillating circuits that
have been reported in the literature, including all further variants reported in Section 3.

4.4 Detecting Short-circuits

In [2, 3, 6, 22], short-circuits had been reported that were implemented directly in the soft-logic
on an FPGA. In older FPGA families (e.g., Xilinx Virtex-II), the fabric included some long-distance
wires that could be accessed through tristate drivers at different positions, which could be used
to create short-circuits inside the fabric. The deployable attack for short-circuits in modern FP-
GAs is based on the way switch matrix multiplexers are commonly implemented. In SRAM-based
FPGAs, the multiplexers are implemented with transmission gates or pass-transistors [12] and by
activating multiple inputs (i.e., switching on multiple transmission gates or pass-transistors within

ACM Transactions on Reconfigurable Technology and Systems, Vol. 13, No. 3, Article 15. Pub. date: September 2020.

15:22 T. M. La et al.

Fig. 15. (a) Switch matrix multiplexer implementation on Xilinx 7-series FPGA; (b) ditto for UltraScale+

FPGAs.

the same multiplexer), a short-circuit situation arises when the corresponding multiplexer inputs
carry different logic levels. Therefore, by changing the input logic levels to the switch matrix mul-
tiplexers, it is possible to control the power that a shorted multiplexer is drawing precisely in time.
This configuration provides the potential for denial-of-service-like (DoS-like) attacks.

As shown in Figure 15, 7-Series FPGAs from the vendor Xilinx implement a switch matrix multi-
plexer by cascading two levels of switching, each controlled through a one-hot coded configuration
word (see [6, 44] for more details on FPGA switch matrix multiplexer implementations). In con-
trast, the multiplexers in UltraScale+ devices are smaller and use only one multiplexing level that
is again one-hot encoded in the configuration bitstream. Consequently, for UltraScale+ devices, a
used multiplexer input port corresponds directly to one specific configuration bit. Therefore, we
reject bitstreams where a switch matrix multiplexer encoding contains more than one bit among
the set of bits that control that particular multiplexer.

Please note that the vast amount of UltraScale+ switch matrix multiplexers are used as pairs.
Consequently, UltraScale+ multiplexers are similar to 7-Series multiplexers, with the main differ-
ence that internal multiplexer details are made visible to the user. This organization simplifies the
short-circuit detection for UltraScale+ devices as it is not necessary to determine the sets of config-
uration bits that control a specific multiplexing level, as performed in [6] using graph algorithms
(e.g., the configuration bits C0, . . . , C3 in Figure 15(a)) form a set of configuration bits).

4.5 Bitstream Bounding-box Tests

Testing if a bitstream is exceeding its allocated (partial) region during configuration was examined
in several projects before. For example, the configuration manager for the Erlangen Slot Machine
project evaluated start address information and scanned the length of the bitstream written to
the device [46]. The REPLICA project parsed configuration bitstreams directly in hardware as
part of the configuration controller that connects to the configuration port of the FPGA [36]. A
full overview of partial reconfiguration techniques is provided in [38]. For the virus scanning
implemented in this article, we use BitMan [50], which supports parsing of all Xilinx UltraScale+
FPGA configuration bitstreams. BitMan is used inside the FPGADefender flow for bounding box
testing and for converting FPGA bitstreams to the required netlist for further graph search, as
illustrated in Figure 1.

4.6 Detecting Wire-tapping

The wire-tapping test checks if a partial module is connected to ports that belong to the static sys-
tem or another module outside the circuit boundary (i.e., the region allocated to a reconfigurable

ACM Transactions on Reconfigurable Technology and Systems, Vol. 13, No. 3, Article 15. Pub. date: September 2020.

FPGADefender 15:23

Fig. 16. FPGADefender flowchart.

module). However, a static signal may have to cross a reconfigurable region, like, for example, to
access a gigabit transceiver (as part of the shell), and a module placed into this region should not
be allowed to access this crossing signal. We define, therefore, prohibited ports/nodes in the archi-
tecture graph p− ∈ GA (i.e., a negative filter) that are not allowed to exist in the netlist GN , which
corresponds to the circuit encoded by the bitstream to be examined: p− � GN . For convenience, we
allow defining prohibited ports by regular expressions, which, for example, allows the definition of
a bounding-box. This definition would be the same bounding-box as defined during system floor-
planning when reconfigurable regions are defined (i.e., a P-block in Xilinx terminology). Because
static routes may cross the area of a partial module differently in different systems, it is necessary
to define the port list individually for each system. The port list for a static route can be easily
derived automatically using the TCL interface in Vivado using the get_property command on the
specific signals to be protected.

4.7 Interface Sanity Check

As mentioned in the previous section, we defined a negative filter for a set of ports (p− ∈ GA).
FPGADefender can also search for port connections that must exist in a bitstream, which im-
plements a positive filter (p+ ∈ GN). This filter is, in particular, used for partially reconfigurable
modules to check if the module connects to the foreseen wires between the static system and the
module such that no interface wires are left over as antennas. Only such interface wires imple-
ment the communication between a partial module and the surrounding while all other signals
are strictly separated for both the surround (static) system and the partially reconfigurable mod-
ule, as implemented in systems [51, 67]. An interface wire antenna may not necessarily indicate a
malicious circuit but flags that a reconfigurable module may have an incompatible interface.

5 FPGADEFENDER: IMPLEMENTATION AND EVALUATION

This section is devoted to the implementation and evaluation of our FPGADefender bitstream
virus scanner (see Figure 16). The existing implementation was carried out for and tested on an
Ultra96 board, but because FPGADefender operates on models that are automatically derived
from the Xilinx Vivado tool suite, the approach is portable to all other Xilinx UltraScale+ FPGA
platforms.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 13, No. 3, Article 15. Pub. date: September 2020.

15:24 T. M. La et al.

5.1 FPGADefender Implementation

{
"begin": {"tile": {"name": "INT", "x": 18, "y": 19}, "name": "WW2_E_END6"},
"end": {"tile": {"name": "INT", "x": 18, "y": 19}, "name": "INT_NODE_SDQ_34_INT_OUT0"},
"attributes": []

},

Listing 1. A snippet of a single edge of a netlist graph.

FPGADefender5 is built entirely in Python, which provides a bundle of supportive packages
such as NetworkX [23] to represent and analyze netlist graphs derived from bitstreams using Bit-
Man. BitMan, as discussed in Section 4, provides netlist graphs GN , which contain node informa-
tion VN and edge information EN . The netlist graphs are encoded in JSON format, as shown in
Listing 1.

After parsing a netlist graph GN , scanning options are parsed to provide inputs for the virus
detector engines as well as a set of positive filters p+ ∈ GN and negative filters p− ∈ GN . Then the
scanning process is executed based on a set of virus detector engines:

• Combinational cycle detector: Detect combinatorial cycles and transparent latch cycles.
• Attribute detector: Detect unusual synchronous design elements such as the use of

latches.
• Port detector: Detect prohibited ports that are used in the bitstream.
• Path detector: Detect prohibited paths that are used in the bitstream.
• Antenna detector: Detect dangling paths in the bitstream (which indicate physical inter-

face mismatches).
• Short-circuit detector: Detect short-circuits caused by possible bitstream manipulations

(FPGADefender rejects bitstreams with invalid encodings for the routing).
• Fanout detector: Detect and report maximum fanout of the examined module.

A score is given in each of the scanning stages and summed up to deliver a total score. Based on
the reported result, the configuration manager will be able to decide whether a bitstream is safe to
be deployed or not, as shown in Figure 1. The specific security grading can be more complicated
and depends on the security requirements of a specific system. For example, the FPGADefender
scan result may be interpreted as strict or more relaxed (i.e., to allow latches). However, in any
case, the scan result is quantifying the risk potential of a partially reconfigurable configuration
bitstream.

The actual implementations of the virus detector engines are based on set operator functions
and graph traversals. This graph, however, considers FPGA-specific details in the FPGADefender
implementation. For example, all modern FPGA architectures support LUTs that are fracturable.
This fact means in the case of Xilinx FPGAs that a LUT6 can implement two independent LUT5
logic functions where the five lowest inputs are shared. For instance, we could think of a full adder
where one LUT5 implements the sum result bit and the second LUT5 the carry to the next full
adder. In Section 3, fractural LUTs were introduced for implementing two ROs in a single LUT.

In contrast to this, as shown in Figure 17, it is possible that a combinatorial path runs through
one of the fracturable LUTs and later runs through the other fracturable LUT without forming a
cycle or any RO. For such situations, it is not enough to analyze just the routing to decide if a
netlist contains cycles or not. For example, in Section 4, the cycle scanning was introduced for
single output LUTs. In the single output case, the path search is for each LUT input expanded to

5Available online at https://github.com/KasparMatas/FPGAVirusScanner.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 13, No. 3, Article 15. Pub. date: September 2020.

https://github.com/KasparMatas/FPGAVirusScanner

FPGADefender 15:25

Fig. 17. Example of a path that closes in LUT_A but that does not form a cycle or RO.

the output of the corresponding LUT. In the case of using the fractural LUT mode, expanding the
search for each LUT input to both LUT outputs could result in flagging false positives (i.e., flagging
cycles in a netlist that cannot implement ROs). This result would happen in the example shown in
Figure 17 for LUT_A when, for example, the most bottom LUT input would expand a path search to
the top LUT output despite that the bottom LUT input can only affect the bottom LUT output. We
solved this problem by analyzing the LUT function table (i.e., the LUT init values in the bitstream)
using the Espresso logic minimizer [11] with the help of the PyEDA library for Python [15]. By
optimizing the LUT table values to provide a logic optimized Boolean expression, we know which
of the LUT inputs affect each of the individual LUT outputs of a fracturable LUT. We, therefore,
only expand the path search for detecting cycles for LUT inputs to a LUT output when the input
affects that LUT output. With this, we circumvent the false positive problem for fracturable LUTs.

5.2 Design Evaluation

To test and evaluate FPGADefender, we developed several test cases including (1) 15 malicious de-
signs from Table 2 as well as a short-circuit design; and (2) 28 reference designs including the Spec-
tor OpenCL benchmark [16], soft-core CPUs (MIPS and RISC-V [70]), crypto cores (AES, DES [64],
and SHA3 [49]) and other peripheral circuits [48], which all do not contain malicious circuits (see
Table 5 for the list of malicious circuits and Table 6 for list of all normal test cases).

FPGADefender found all malicious circuits and the short-circuits in our test cases. For the ex-
periments, each malicious circuit from Design 1 to 15 was implemented 2,000 times spread out
across the FPGA. The Short-circuit design was created directly at the bitstream level. This was
implemented with the help of BitMan, which features a low-level API to access LUT values and
switch matrix multiplexer configurations. To inject short-circuits, we looked for valid one-hot en-
coded switch matrix multiplexer configurations and randomly toggled some of the zero bits (to
create randomly more hots in the multiplexer configurations). Note that the Vivado design tool
does not allow to create a bitstream that contains any short-circuit. This restriction means that
short-circuits can be prevented if, for example, a cloud service provider generates the bitstream
at the provider side rather than accepting a bitstream binary from a user. However, this also im-
plies that users have to share their design with the cloud service provider (at least to some extent
through design checkpoints (DCPs)), which in turn is an IP protection issue. In contrast to this,
FPGADefender would allow a cloud service provider to directly accept FPGA configuration bit-
streams while being able to detect short-circuits.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 13, No. 3, Article 15. Pub. date: September 2020.

15:26 T. M. La et al.

Table 5. Evaluation Results for Malicious Designs Circuits

Designs LUT used Comb Cycle Latch Short-Circuit Fanout

Malicious Circuits
Design 1 2,000 2,000 0 No 1
Design 2 2,000 2,000 0 No 1
Design 3 2,000 2,000 0 No 1
Design 4 2,000 2,000 0 No 1
Design 5 2,000 2,000 0 No 1
Design 6 2,000 2,000 0 No 1
Design 7 2,000 4,000 0 No 2
Design 8 2,000 2,000 0 No 10
Design 9 0 2,000 0 No 1
Design 10 0 2,000 0 No 1
Design 11 0 2,000 0 No 1
Design 12 0 2,880 0 No 1
Design 13 2,000 2,000 2,000 No 1
Design 14∗ 4,000 0 0 No 3
Design 15∗ 6,000 0 0 No 4
Short Circuit 15,974 11,669 12 Yes 5,223
∗Designs are flagged as flip-flop clock input violation.

It should be noted that the FPGA vendor Xilinx does currently not provide any tool or mecha-
nism to scan a bitstream for any malicious construct or any manipulation. The only requirement
FPGADefender imposes to perform its virus scanning is a plain (i.e., non-encrypted) bitstream.

So far, we tested each threat in isolation. For more rigid testing, we created designs that mix
different threats and tested each time if FPGADefender finds all threats correctly just by scanning
the configuration bitstream. In these experiments, FPGADefender correctly flagged all threats in
all test cases.

We compared the FPGADefender combinatorial cycle detection with the Xilinx DRC checker
(See Table 2). Here, FPGADefender did not only detected correctly Designs 1 to 8 but also de-
tected the hidden combinatorial cycles from MUX primitives in Designs 9 and 10, CLA primitive in
Design 11, and even cycles through the DSP primitive, as in Design 12, where the Xilinx tool fails.

In Design 13, ROs are implemented through transparent latches. While Xilinx failed to flag those
ROs (even if the latch enable is activated by a constant), FPGADefender found all cyclic paths that
run through latches.

In Designs 14 and 15, combinatorial logic paths are used to drive the clock input of flip-flops
instead of global clock sources. This will be flagged using the path detector engine in FPGADe-
fender.

As a sanity check, we used FPGADefender to scan all the 28 bitstreams of the test cases that are
not intentionally designed with malicious constructs. FPGADefender has not detected malicious
constructs except for one case, the true random number generator (TRNG). The TRNG uses ring-
oscillators as a source of randomness, which all got flagged by FPGADefender. This case is a
dilemma that could be solved by providing primitives by a system vendor (e.g., a cloud service
provider) for exceptional use cases like TRNGs or PUFs (Physical Unclonable Functions). For the
True Random Number Generator using ROs, we found exact 128 combinatorial cycles corresponding
to the 128-bit random number generated.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 13, No. 3, Article 15. Pub. date: September 2020.

FPGADefender 15:27

Table 6. Evaluation Results for Benchmarking Circuits

Designs LUT used Comb Cycle Latch Short-circuit Fanout

Normal Circuits
8b10b EncDec∗ 72 0 0 No 15
CAN Controller∗ 1,310 0 0 No 146
BCD Adder∗ 68 0 0 No 6
PRNG∗ 237 0 0 No 107
Cordic∗ 1,312 0 0 No 99
I2C∗ 307 0 0 No 87
Parallel Scrambler∗ 66 0 0 No 11
RS232 UART∗ 102 0 0 No 19
SPI∗ 988 0 0 No 174
Stepper Motor∗ 69 0 0 No 9

Breadth First Search (BFS)† 604 0 0 No 204

DCT† 10,085 0 16 No 418

FIR Filter† 3,842 0 4 No 749

Histogram† 2,409 0 0 No 217

Merge Sort† 2,905 0 1 No 235

Matrix Multiplication† 8,116 0 9 No 1782

Normal Estimation† 8,504 0 6 No 620

Sobel Filter† 14,045 0 0 No 272

SPMV† 10,670 0 9 No 1552

Black-Scholes‡ 12,326 0 10 No 259

RISC-V CPU‡ 3,556 0 0 No 170

AES§ 4,520 0 0 No 162

DES§ 278 0 0 No 20

Mandelbrot§ 1,716 0 42 No 183

MIPS CPU§ 4,163 0 0 No 572

SHA3§ 10,662 0 0 No 262

Skin Color Detection§ 2,022 0 0 No 147

TRNG§ 1,069 128 0 No 61
∗Peripheral IP designs from OpenCores [48].
†Open-source OpenCL designs from Spector benchmark [16].
‡Other open source designs [45, 70].
§Academic handcrafted RTL designs [49, 64].

6 DISCUSSION AND CONCLUSIONS

In this article, we provided a complete investigation of self-oscillator threats deployable on cloud
FPGAs. We systematically researched all published and several new oscillator designs for imple-
menting such self-oscillating circuits, considering all logic, arithmetic, and memory primitives on
a Zynq UltraScale+ FPGA from the vendor Xilinx, and we considered a range of different modes
of operation to create self-oscillation circuits (e.g., combinatorial loops, glitch amplification, and
asynchronous flip-flop modes of operation). In particular, we examined and quantified the threat
potential for power-hammering, and we found for an optimized design that by using just 3% of
the LUT resources of an Ultra96 board, we can draw more power than the allocated power bud-
get. This result means that an attacker would only need control over a small amount of the to-
tal FPGA resources to crash an FPGA board or even cause permanent damage to a system. By

ACM Transactions on Reconfigurable Technology and Systems, Vol. 13, No. 3, Article 15. Pub. date: September 2020.

15:28 T. M. La et al.

giving strong evidence about the risk potential using small FPGAs for the experiments, we can
project results onto new data center FPGAs that use the same FPGA fabric architecture and man-
ufacturing process technology. Furthermore, several of the here researched oscillator designs are
deployable on FPGA cloud service instances, as we tested for Amazon F1 instances with potential
power-hammering potentials in the range of kilowatts, which has enormous potential for harming
equipment with a corresponding substantial monetary risk.

Due to similarities in how different FPGA architectures of different FPGA vendors are physi-
cally implemented, the here presented attack vectors are not bound to a specific vendor. However,
different vendors provide different details on their devices and tools, and the more information is
released, the more defenses can be implemented. For instance, Intel has not released a full FPGA
architecture graph or any details on the bitstream encoding for their recent FPGAs. Therefore,
anybody who wants to perform an independent security assessment of a bitstream has to carry
out a substantial amount of reverse engineering work. The same holds for adding support for Intel
FPGAs in FPGADefender. We believe that security through obscurity is a bad practice and that only

fully documented devices should be considered for building secure systems.

We strongly believe that a security-first strategy is imperative for existing and future FPGA ecosys-

tems and that business models based on end-users having access to FPGA hardware can only be carried

out with an FPGA hardware security infrastructure in place.

We addressed this issue with the development of FPGADefender, which not only can identify
(probably) any kind of self-oscillating circuit but in addition to essential threats like short-circuits
in the interconnect and tapping of wires outside of the scope of a user module. With this, FP-
GADefender can prevent all recent approaches for remote side-channel analysis [18, 54, 55] and
all popular power hammering attacks [20]. Future work will investigate if potential malicious
power-hammering from glitches (e.g., from XOR trees) can be detected reliably at the bitstream
level.

We strongly believe that all FPGA hardware security issues can be tackled by tools, and we see no

fundamental obstacle that would prevent building systems allowing user access to an FPGA, including

multi-tenancy and the direct deployment of bitstreams.

To make this happen and to stimulate more research on hardware security, FPGADefender, as
well as a gallery with design checkpoints and bitstreams of malicious circuits, is provided under:
https://github.com/KasparMatas/FPGAVirusScanner.

ACKNOWLEDGMENT

We thank the Xilinx University Program for providing tools and boards.

REFERENCES

[1] A. C. Aldaya, A. Sarmiento, and S. Sánchez-Solano. 2016-04. AES T-box tampering attack. J. Cryptogr. Eng. 6, 1 (2016-

04), 31, 48.

[2] R. Amerson, R. Carter, W. Culbertson, P. Kuekes, G. Snider, and L. Albertson. 1996. Plasma: An FPGA for million gate

systems. In Proceedings of the 4th International ACM Symposium on Field-Programmable Gate Arrays. 10–16.

[3] R. Amerson, R. J. Carter, W. B. Culbertson, P. Kuekes, and G. Snider. 1995. Teramac-configurable custom computing.

In Proceedings of the IEEE Symposium on FPGAs for Custom Computing Machines. 32–38.

[4] Avnet. 2018. Ultra96 Hardware User Guide. Retrieved from http://zedboard.org/sites/default/files/documentations/

Ultra96-HW-User-Guide-rev-1-0-V0_9_preliminary.pdf.

[5] Avnet. 2018. Ultra96 Schematics. Retrieved from https://github.com/96boards/documentation/blob/master/

consumer/ultra96/ultra96-v1/hardware-docs/files/ultra96-schematics.pdf.

[6] C. Beckhoff, D. Koch, and J. Torresen. 2010-08. Short-circuits on FPGAs caused by partial runtime reconfiguration. In

Proceedings of the International Conference on Field Programmable Logic and Applications. IEEE, 596, 601.

[7] C. Beckhoff, D. Koch, and J. Torresen. 2012. Go ahead: A partial reconfiguration framework. In Proceedings of the IEEE

20th International Symposium on Field-Programmable Custom Computing Machines. 37–44.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 13, No. 3, Article 15. Pub. date: September 2020.

https://github.com/KasparMatas/FPGAVirusScanner
http://zedboard.org/sites/default/files/documentations/Ultra96-HW-User-Guide-rev-1-0-V0_9_preliminary.pdf
http://zedboard.org/sites/default/files/documentations/Ultra96-HW-User-Guide-rev-1-0-V0_9_preliminary.pdf
https://github.com/96boards/documentation/blob/master/consumer/ultra96/ultra96-v1/hardware-docs/files/ultra96-schematics.pdf
https://github.com/96boards/documentation/blob/master/consumer/ultra96/ultra96-v1/hardware-docs/files/ultra96-schematics.pdf

FPGADefender 15:29

[8] F. Benz, A. Seffrin, and S. A. Huss. 2012. Bil: A tool-chain for bitstream reverse-engineering. In Proceedings of the 22nd

International Conference on Field Programmable Logic and Applications (FPL’12). 735–738.

[9] E. Biham and A. Shamir. 1997. Differential fault analysis of secret key cryptosystems. In Proceedings of the Annual

International Cryptology Conference. Springer, 513–525.

[10] A. Bradbury, L. James, L. Marques, T. Roberts, P. Vogel, P. Wagner, and S. Elliott. 2019. LowRISC-Running on the

FPGA. Retrieved from https://www.lowrisc.org/docs/debug-v0.3/fpga/.

[11] R. K. Brayton, G. D. Hachtel, C. McMullen, and A. Sangiovanni-Vincentelli. 1984. Logic Minimization Algorithms for

VLSI Synthesis. Vol. 2. Springer Science & Business Media.

[12] C. Chiasson and V. Betz. 2013. Should FPGAs abandon the pass-gate? In Proceedings of the 23rd International Confer-

ence on Field Programmable Logic and Applications. 1–8.

[13] Intel Corp. 2018. White Paper: Secure Device Manager for Intel Stratix 10 Devices Provides FPGA and SoC Secu-

rity. Retrieved from https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01252-

secure-device-manager-for-fpga-soc-security.pdf.

[14] J. Danger, S. Guilley, S. Bhasin, and M. Nassar. 2009. Overview of dual rail with precharge logic styles to thwart

implementation-level attacks on hardware cryptoprocessors. In Proceedings of the 3rd International Conference on

Signals, Circuits and Systems (SCS). 1–8.

[15] C. Drake. 2018. Python Electronic Design Automation. Retrieved from https://pyeda.readthedocs.io/en/latest/2llm.

html.

[16] Q. Gautier, A. Althoff, Pingfan Meng, and R. Kastner. 2016. Spector: An OpenCL FPGA benchmark suite. In Proceedings

of the International Conference on Field-Programmable Technology (FPT’16).

[17] K. Georgopoulos, K. Bakanov, I. Mavroidis, I. Papaefstathiou, A. Ioannou, P. Malakonakis, K. D. Pham, D. Koch, and

L. Lavagno. 2019. A Novel Framework for Utilising Multi-FPGAs in HPC Systems. 153–189.

[18] Ilias Giechaskiel, Kasper B. Rasmussen, and Ken Eguro. 2018. Leaky wires: Information leakage and covert commu-

nication between FPGA long wires. In Proceedings of the 2018 on Asia Conference on Computer and Communications

Security (ASIACCS’18). ACM, New York, NY, USA, 15–27.

[19] I. Giechaskiel, K. Rasmussen, and J. Szefer. 2019. Measuring long wire leakage with ring oscillators in cloud FPGAs.

In Proceedings of the International Conference on Field-Programmable Logic and Applications (FPL’19).

[20] D. Gnad, F. Oboril, and M. Tahoori. 2017. Voltage drop-based fault attacks on FPGAs using valid bitstreams. In Pro-

ceedings of the 27th International Conference on Field Programmable Logic and Applications (FPL’17). IEEE, 1–7.

[21] T. Güneysu and A. Moradi. 2011. Generic side-channel countermeasures for reconfigurable devices. In Cryptographic

Hardware and Embedded Systems, Bart Preneel and Tsuyoshi Takagi (Eds.). Springer, Berlin, 33–48.

[22] I. Hadžić, S. Udani, and J. Smith. 1999. FPGA viruses. In Proceedings of the International Workshop on Field Pro-

grammable Logic and Applications. Springer, 291–300.

[23] A. Hagberg, P. Swart, and D. Schult. 2014. NetworkX—Software for Complex Networks. Retrieved from https://

networkx.github.io/.

[24] Amazon Inc. 2019. Amazon EC2 F1 Instances. Retrieved from https://aws.amazon.com/ec2/instance-types/f1/.

[25] Alibaba Inc. 2019. Deep Dive into Alibaba Cloud F3 FPGA as a Service Instances. Retrieved from https://www.

alibabacloud.com/blog/deep-dive-into-alibaba-cloud-f3-fpga-as-a-service-instances_594057.

[26] Amazon Inc. 2020. AWS FPGA: Programmer’s View of the Custom Logic. Retrieved from https://github.com/aws/

aws-fpga/blob/master/hdk/docs/Programmer_View.md.

[27] Baidu Inc. 2020. FPGA Cloud Server. Retrieved from https://cloud.baidu.com/product/fpga.html.

[28] Nimbix Inc. 2020. Xilinx Alveo Accelerator Cards. Retrieved from https://www.nimbix.net/alveo.

[29] Xilinx Inc. 2018. Using Encryption and Authentication to Secure an UltraScale/UltraScale+ FPGA Bitstream. Retrieved

from https://www.xilinx.com/support/documentation/application_notes/xapp1267-encryp-efuse-program.pdf.

[30] Xilinx Inc. 2018. Vivado 2018.02. Retrieved from https://www.xilinx.com/products/design-tools/vivado.html.

[31] Xilinx Inc. 2019. Delivering a Generation Ahead at 20nm and 16nm. Retrieved from https://www.xilinx.com/about/

generation-ahead-16nm.html.

[32] Xilinx Inc. 2019. UltraScale Architecture DSP Slice. Retrieved from https://www.xilinx.com/support/documentation/

user_guides/ug579-ultrascale-dsp.pdf.

[33] Xilinx Inc. 2019. UltraScale Architecture Memory Resources. Retrieved from https://www.xilinx.com/support/

documentation/user_guides/ug573-ultrascale-memory-resources.pdf.

[34] Xilinx Inc. 2019. Zynq UltraScale+ MPSoC Data Sheet: DC and AC Switching Characteristics. Retrieve from https://

www.xilinx.com/support/documentation/data_sheets/ds925-zynq-ultrascale-plus.pdf.

[35] Y. Ishai, A. Sahai, and D. Wagner. 2003. Private circuits: Securing hardware against probing attacks. In Advances in

Cryptology, Dan Boneh (Ed.). Springer, Berlin, 463–481.

[36] H. Kalte, G. Lee, M. Porrmann, and U. Rackert. 2005. REPLICA: A bitstream manipulation filter for module relocation

in partial reconfigurable systems. In Proceedings of the 19th IEEE International Parallel and Distributed Processing

Symposium.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 13, No. 3, Article 15. Pub. date: September 2020.

https://www.lowrisc.org/docs/debug-v0.3/fpga/
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01252-secure-device-manager-for-fpga-soc-security.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01252-secure-device-manager-for-fpga-soc-security.pdf
https://pyeda.readthedocs.io/en/latest/2llm.html
https://pyeda.readthedocs.io/en/latest/2llm.html
https://networkx.github.io/
https://networkx.github.io/
https://aws.amazon.com/ec2/instance-types/f1/
https://www.alibabacloud.com/blog/deep-dive-into-alibaba-cloud-f3-fpga-as-a-service-instances_594057
https://www.alibabacloud.com/blog/deep-dive-into-alibaba-cloud-f3-fpga-as-a-service-instances_594057
https://github.com/aws/aws-fpga/blob/master/hdk/docs/Programmer_View.md
https://github.com/aws/aws-fpga/blob/master/hdk/docs/Programmer_View.md
https://cloud.baidu.com/product/fpga.html
https://www.nimbix.net/alveo
https://www.xilinx.com/support/documentation/application_notes/xapp1267-encryp-efuse-program.pdf
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/about/generation-ahead-16nm.html
https://www.xilinx.com/about/generation-ahead-16nm.html
https://www.xilinx.com/support/documentation/user_guides/ug579-ultrascale-dsp.pdf
https://www.xilinx.com/support/documentation/user_guides/ug579-ultrascale-dsp.pdf
https://www.xilinx.com/support/documentation/user_guides/ug573-ultrascale-memory-resources.pdf
https://www.xilinx.com/support/documentation/user_guides/ug573-ultrascale-memory-resources.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds925-zynq-ultrascale-plus.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds925-zynq-ultrascale-plus.pdf

15:30 T. M. La et al.

[37] N. Kamoun, L. Bossuet, and A. Ghazel. 2009. Correlated power noise generator as a low cost DPA countermeasures to

secure hardware AES cipher. In Proceedings of the 3rd International Conference on Signals, Circuits and Systems (SCS).

1–6.

[38] Dirk Koch. 2012. Partial Reconfiguration on FPGAs: Architectures, Tools and Applications. Vol. 153. Springer Science &

Business Media.

[39] D. Koch, F. Hannig, and D. Ziener. 2016. FPGAs for Software Programmers (1st ed.). Springer.

[40] J. Krautter, D. Gnad, F. Schellenberg, A. Moradi, and M. Tahoori. 2019. Active Fences against Voltage-based Side

Channels in Multi-Tenant FPGAs. Retrieved from https://eprint.iacr.org/2019/1152.pdf.

[41] J. Krautter, D. R. E. Gnad, and M. B. Tahoori. 2018. FPGAhammer: Remote voltage fault attacks on shared FPGAs,

suitable for DFA on AES. IACR Trans. Cryptogr. Hardware Embed. Syst. 2018, 3 (Aug. 2018), 44–68.

[42] J. Krautter, D. Gnad, and M. Tahoori. 2019. Mitigating electrical-level attacks towards secure multi-tenant FPGAs in

the cloud. ACM Trans. Reconfig. Technol. Syst. 12, 3, Article 12 (Aug. 2019), 26 pages.

[43] C. Lattner. 2019. Clang: A C Language Family Frontend for LLVM. Retrieved from https://clang.llvm.org/.

[44] D. Lewis, E. Ahmed, G. Baeckler, V. Betz, M. Bourgeault, D. Cashman, D. Galloway, M. Hutton, C. Lane, A. Lee,

P. Leventis, S. Marquardt, C. McClintock, K. Padalia, B. Pedersen, G. Powell, B. Ratchev, S. Reddy, J. Schleicher,

K. Stevens, R. Yuan, R. Cliff, and J. Rose. 2005. The Stratix II logic and routing architecture. In Proceedings of the

ACM/SIGDA 13th International Symposium on Field-programmable Gate Arrays (FPGA’05). ACM, New York, NY, 14–

20.

[45] L. Ma, F. B. Muslim, and L. Lavagno. 2016. High performance and low power Monte Carlo methods to option pricing

models via high level design and synthesis. In Proceedings of the European Symposium on Computer Modeling and

Simulation (EMS’16). 157–162.

[46] M. Majer, J. Teich, A. Ahmadinia, and C. Bobda. 2007. The Erlangen Slot Machine: A dynamically reconfigurable

FPGA-based computer. J. VLSI Signal Process. Syst. 47, 1 (Apr. 2007), 15–31.

[47] S. S. Mirzargar and M. Stojilovic. 2019. Physical side-channel attacks and covert communication on FPGAs: A survey.

In Proceedings of the 29th International Conference on Field-Programmable Logic and Applications (FPL’19).

[48] OpenCores. 2020. Free and Open Source gateware IP cores. Retrieved from https://opencores.org/.

[49] K. Pham, E. Horta, D. Koch, A. Vaishnav, and T. Kuhn. 2018. IPRDF: An isolated partial reconfiguration design flow

for Xilinx FPGAs. In Proceedings of the IEEE 12th International Symposium on Embedded Multicore/Many-core Systems-

on-Chip (MCSoC’18). 36–43.

[50] K. D. Pham, E. Horta, and D. Koch. 2017. BITMAN: A tool and API for FPGA bitstream manipulations. In Proceedings

of the Design, Automation & Test in Europe Conference & Exhibition (DATE’17). IEEE, 894–897.

[51] K. D. Pham, A. Vaishnav, M. Vesper, and D. Koch. 2018. ZUCL: A ZYNQ UltraScale+ framework for OpenCL HLS

applications. In Proceedings of the 5th International Workshop on FPGAs for Software Programmers (FSP’18).

[52] G. Provelengios, D. Holcomb, and R. Tessier. 2019. Characterizing power distribution attacks in multi-user FPGA en-

vironments. In Proceedings of the 29th International Conference on Field-Programmable Logic and Applications (FPL’19).

[53] A. Putnam, A. Caulfield, E. Chung, D. Chiou, K. Constantinides, J. Demme, H. Esmaeilzadeh, J. Fowers, G. Gopal, J.

Gray, M. Haselman, S. Hauck, S. Heil, A. Hormati, J. Kim, S. Lanka, J. Larus, E. Peterson, S. Pope, A. Smith, J. Thong,

P. Xiao, and D. Burger. 2014. A reconfigurable fabric for accelerating large-scale datacenter services. In Proceedings

of the 41st Annual International Symposium on Computer Architecuture (ISCA’14). IEEE Press, Piscataway, NJ, 13–24.

[54] C. Ramesh, S. Patil, S. Dhanuskodi, G. Provelengios, S. Pillement, D. Holcomb, and R. Tessier. 2018. FPGA side

channel attacks without physical access. In Proceedings of the IEEE 26th Annual International Symposium on Field-

Programmable Custom Computing Machines (FCCM’18). IEEE, 45–52.

[55] F. Schellenberg, D. Gnad, A. Moradi, and M. Tahoori. 2018. An inside job: Remote power analysis attacks on FPGAs.

In Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE’18). IEEE, 1111–1116.

[56] F. Schellenberg, D. R. E. Gnad, A. Moradi, and M. B. Tahoori. 2018. Remote inter-chip power analysis side-channel

attacks at board-level. In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design (ICCAD’18).

1–7.

[57] T. Sugawara, K. Sakiyama, S. Nashimoto, D. Suzuki, and T. Nagatsuka. 2019. Oscillator without a combinatorial loop

and its threat to FPGA in data centre. Electron. Lett. 55, 11 (2019), 640–642.

[58] P. Swierczynski, G. Becker, A. Moradi, and C. Paar. 2018-03-01. Bitstream fault injections (BiFI)-automated fault

attacks against SRAM-based FPGAs. IEEE Trans. Comput. 67, 3 (2018-03-01), 348, 360.

[59] P. Swierczynski, M. Fyrbiak, P. Koppe, A. Moradi, and C. Paar. 2017. Interdiction in practice—Hardware Trojan against

a high-security USB flash drive. J. Cryptogr. Eng. 7, 3 (1 Sep 2017), 199–211.

[60] P. Swierczynski, M. Fyrbiak, P. Koppe, and C. Paar. 2015-08. FPGA Trojans through detecting and weakening of

cryptographic primitives. IEEE Trans. Comput.-Aid. Design Integr. Circ. Syst. 34, 8 (2015-08), 1236–1249.

[61] SymbiFlow. 2019. Project X-Ray. Retrieved from https://github.com/SymbiFlow/prjxray.

[62] V. Taraate. 2019. Advanced HDL Synthesis and SOC Prototyping. Springer US.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 13, No. 3, Article 15. Pub. date: September 2020.

https://eprint.iacr.org/2019/1152.pdf
https://clang.llvm.org/
https://opencores.org/
https://github.com/SymbiFlow/prjxray

FPGADefender 15:31

[63] S. Trimberger and J. Moore. 2014-08. FPGA security: Motivations, features, and applications. Proc. IEEE 102, 8 (2014-

08), 1248, 1265.

[64] A. Vaishnav, J. R. G. Ordaz, and D. Koch. 2017. A security library for FPGA interlays. In Proceedings of the 27th

International Conference on Field Programmable Logic and Applications (FPL’17). 1–4.

[65] A. Vaishnav, K. D. Pham, D. Koch, and J. Garside. 2018. Resource elastic virtualization for FPGAs using OpenCL. In

2018 28th International Conference on Field Programmable Logic and Applications (FPL). 111–1117.

[66] A. Vaishnav, K. D. Pham, K. Manev, and D. Koch. 2019. The FOS (FPGA Operating System) Demo. Retrieved from

https://github.com/khoapham/fos.

[67] M. Vesper, D. Koch, and K. Pham. 2017. PCIeHLS: An OpenCL HLS framework. In Proceedings of the 4th International

Workshop on FPGAs for Software Programmers (FSP’17). 1–6.

[68] R. Watanabe, S. Ura, Q. Zhao, and T. Yoshida. 2019. Implementation of FPGA building platform as a cloud service.

In Proceedings of the 10th International Symposium on Highly-Efficient Accelerators and Reconfigurable Technologies

(HEART’19). ACM, New York, NY, Article 6, 6 pages.

[69] A. Wild, A. Moradi, and T. Güneysu. 2018. GliFreD: Glitch-free duplication towards power-equalized circuits on

FPGAs. IEEE Trans. Comput. 67, 3 (Mar. 2018), 375–387.

[70] Clifford Wolf. 2019. PicoRV32. Retrieved from https://github.com/cliffordwolf/picorv32.

[71] T. Zhang, J. Wang, S. Guo, and Z. Chen. 2019. A comprehensive FPGA reverse engineering tool-chain: From bitstream

to RTL code. IEEE Access 7 (2019), 38379–38389.

[72] M. Zhao and G. Suh. 2018. FPGA-based remote power side-channel attacks. In Proceedings of the IEEE Symposium on

Security and Privacy (SP’18). IEEE, 229–244.

[73] K. Zick and J. Hayes. 2012-03-01. Low-cost sensing with ring oscillator arrays for healthier reconfigurable systems.

ACM Trans. Reconfig. Technol. Syst. 5, 1 (2012-03-01), 1, 26.

[74] K. Zick, M. Srivastav, W. Zhang, and M. French. 2013. Sensing nanosecond-scale voltage attacks and natural transients

in FPGAs. In Proceedings of the ACM/SIGDA International Symposium on Field Programmable Gate Arrays. ACM, 101–

104.

Received November 2019; revised March 2020; accepted May 2020

ACM Transactions on Reconfigurable Technology and Systems, Vol. 13, No. 3, Article 15. Pub. date: September 2020.

https://github.com/khoapham/fos
https://github.com/cliffordwolf/picorv32

