
3566 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

Fast DRAM PUFs on Commodity Devices
Jack Miskelly and Máire O’Neill, Senior Member, IEEE

Abstract—Intrinsic physical unclonable functions (PUFs),
which derive hardware identifiers from components already
present in a system without modification, are an appealing way
to add a layer of hardware rooted security into a system. This is
evidenced by the fact that the majority of PUF designs in com-
mercial use today are intrinsic. However, as each intrinsic PUF
design is reliant on specific hardware their use is limited to a
subset of systems. It is therefore desirable to have practical intrin-
sic PUF designs for as wide a range of underlying hardware as
possible. Most intrinsic PUF designs to date have used memory
as the entropy source, with the most well studied type being
based on SRAM. More recently designs based on DRAM have
been proposed, an appealing prospect considering the ubiquity
of that technology. While previous research has demonstrated
that entropy can be extracted from DRAM there has not yet
been a substantive demonstration of such a PUF operating in
real-time on a commodity system. In this article, we present a
novel set of algorithms for deriving PUF responses in-runtime
from DRAM by altering timing parameters using only software.
These algorithms reduce the critical period of system disruption
by 96% from 88 ms to 3 ms on average compared to exist-
ing designs. We present a large scale dataset derived from 1824
DRAM chips characterized using the proposed design on com-
modity off-the-shelf desktop hardware running a Linux OS. An
analysis of the data shows that in addition to the speed improve-
ments the proposed design shows near ideal (>44%) uniqueness
and good (>88%) reliability.

Index Terms—DRAM physical unclonable function (PUF),
hardware derived identifier, hardware security, intrinsic PUF,
memory PUF, PUF.

I. INTRODUCTION

PHYSICAL unclonable functions (PUFs) are a form of
hardware-based security primitive which derive entropy

from low level physical variation in components. A PUF
typically consists of a circuit that can accept some set of
input challenges and derive an output response based on the
challenge and entropy extracted from the low level hardware
variances in the circuit components. The PUF response acts as
a unique “fingerprint” for the circuit as the low-level variations
that dictate the response cannot be selected without access to
a process orders of magnitude more precise than that used to
produce the PUF itself.

Despite close to two decades of research on PUFs there
has been minimal adoption of the discrete circuit PUFs which

Manuscript received April 17, 2020; revised June 17, 2020; accepted
July 6, 2020. Date of publication October 2, 2020; date of current version
October 27, 2020. This article was presented in the International Conference
on Embedded Software 2020 and appears as part of the ESWEEK-TCAD
special issue. (Corresponding author: Jack Miskelly.)

The authors are with the Centre for Secure Information Technologies,
Queen’s University Belfast, Belfast BT7 1NN, U.K. (e-mail:
jmiskelly08@qub.ac.uk; maire.oneill@qub.ac.uk).

Digital Object Identifier 10.1109/TCAD.2020.3012218

comprise the majority of research to date. In part, this is due
to the difficulty in implementation. PUFs are often touted as
being well suited to resource constrained device and in partic-
ular IoT devices but introducing new and unfamiliar hardware
components into existing designs requires a cost in develop-
ment resources that on balance does not seem to appeal to
many device manufacturers.

It is perhaps because of this that the most widely used sub-
category of PUFs at present are Intrinsic PUFs. These PUFs
do not use a dedicated circuit to produce the PUF response but
rather extract the entropy from components in circuitry already
present in the target system. In many senses, this is ideal as
it avoids the overheads of discrete circuit PUFs with many
Intrinsic PUFs able to be implemented entirely through soft-
ware on existing devices. However, such PUFs are restricted
to devices that contain the necessary base hardware. Due to
this, the development of practical Intrinsic PUF designs for as
broad a range of base hardware as possible is vital.

A. PUF Fundamentals

The underlying entropy sources for a given PUF design vary
substantially. The variance in almost any component property
can be used as the entropy source with the right extraction
mechanism. For example, in Arbiter PUFs [6], two nominally
identical sets of delay stages are used, with an arbiter at the
end outputting a 1 or 0 depending on whether the upper or
lower path executes faster, which is determined by low-level
variance in the delay elements themselves. Similarly, ring-
oscillator (RO) PUFs [3], [4] use loops of delay elements to
generate frequencies determined by the delay component vari-
ances. Comparing two of these frequencies generates a single
bit of the response depending on which frequency is higher.
Other entropy sources include the startup state of SRAM
cells [1], the point-of-failure frequency in overclocked pro-
cessor cores [5], and the stable state of cross coupled latch
cells on FPGA [7].

While the specifics of the hardware implementations are
highly varied between PUF designs, at a higher level all PUFs
can be conceptualised as a some kind of physically rooted
function which cannot be easily cloned. It is sufficient to
understand that the PUF function accepts some set of chal-
lenges as input and produces a corresponding set of responses
as output. Any instance of a PUF should produce a unique
response set to the set of challenges. This property is called
uniqueness and is derived from the interdevice Hamming
distance. However, within a given PUF instance the same chal-
lenge should consistently produce the same response under
repeated measurements. This property is called reliability and
is calculated from the Hamming distance between repeated

0278-0070 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 26,2023 at 08:59:29 UTC from IEEE Xplore. Restrictions apply.

MISKELLY AND O’NEILL: FAST DRAM PUFs ON COMMODITY DEVICES 3567

measurements of the same PUF. Ideally, a PUF should also
show minimal bias toward binary 0 or 1 in the response set.

PUFs in practice are most commonly used in two applica-
tions. The first and simpler is as a source of secret information
for use in cryptographic algorithms. In this case, the PUF,
which may have only a single valid challenge and response,
provides some secret hardware derived value when prompted
which is fed into a standard cryptographic function. In
effect, the PUF serves as an alternative to storing the secret
information in ROM or similar techniques.

The second use case is for device ID and authentication. In
this case, it is generally assumed that this process is centrally
managed in some way, with a central device controlling the
authentication of many other devices. This requires the enrol-
ment of each PUF instance on creation. Enrolment involves
the characterization of the full set of challenges and responses,
such that the controlling device has a record of the expected
response of each PUF instance to each possible challenge.
When a device needs to be authenticated one of this set of
challenges is selected and sent to that device, which passes it
to the PUF circuit and returns the response. If the response
matches that derived at enrolment then the identity of the target
device is verified. This challenge-response verification process
is referred to as a PUF query.

B. PUF Classification

When discussing PUFs it is often useful to classify them as
“Weak” or “Strong.” This is not a measure of the attack resis-
tance of a PUF but is rather based on the size of the challenge-
response space—that is, how many unique challenge-response
pairs (CRPs) that are possible for a given PUF design. Weak
PUFs have only a single or small amount of CRPs, while
strong PUFs have a large CR space with the number of CRPs
ideally increasing exponentially as the number of challenge
bits is increased.

Strong PUFs, due to the large set of CRPs, can in theory
be used for device authentication without additional crypto-
graphic hardware. However, they are also vulnerable to certain
attacks, particularly machine learning (ML)-based attacks.
Many of the most well known PUF designs, such as the RO
PUF [3], [4] or the Arbiter PUF [6] are strong PUFs. While
there have been substantial efforts to mitigate the issues with
strong PUFs they have yet to see adoption in the industry on
the level of weak PUFs.

Weak PUFs are more limited in application but less vulner-
able to ML attacks due to the small CRP space not allowing
an attacker to build a large enough training dataset. Weak
PUFs are mainly used for the generation of small amounts
of secret information, as True Random Number Generators,
and to generate hardware derived identifiers. Weak PUFs have
seen substantial adoption in industry, particularly the SRAM
PUF [1], a variant of which is deployed in many commercial
FPGA accelerator cards.

C. Intrinsic PUFs

Intrinsic PUFs are a subset of PUF designs that form the
PUF response by extracting entropy from hardware already

present in a system. Truly intrinsic PUFs require no modifica-
tion or addition of hardware whatsoever instead using existing
software and hardware functions to extract the entropy from
the underlying hardware. This has obvious benefits as it can
add a layer of hardware rooted security into a system while
requiring no additional hardware resources. Intrinsic PUFs
extract additional security functionality from components that
will be used in the system regardless. The main drawback to
Intrinsic PUFs is that by their very nature they can only be
implemented in systems that have specific hardware already
present. While it is entirely possible to add hardware to allow
for an Intrinsic PUF, this negates most of the benefits of these
PUFs over discrete circuit PUFs.

The most well studied intrinsic PUF design is the SRAM
PUF [1]. When powered on SRAM cells enter into an unsta-
ble state which will fall into either a 1 or 0, with the bias
of a cell toward either value determined by variances in the
cell components. The PUF response is derived from the set
of power-on values of the memory cells. In the most basic
form this bit pattern is simply used unaltered as the response
with more advanced methods also being used to improve the
uniqueness and reliability of the PUF response. As the single
PUF challenge in this case is to power cycle the memory mod-
ule the viable use cases of this design are limited. Designs for
memory intrinsic PUFs based on other memory technologies,
such as DRAM have also been proposed. These are discussed
in greater detail in Section II. As with the SRAM PUF spe-
cific conditions are required for the PUF to be viable in a
given system.

D. Contributions and Outline

In this article, we introduce a novel sets of algorithms
for extracting PUF responses from commodity-off-the-shelf
(COTS) DRAM memory modules by leveraging internal
memory timing parameters. These algorithms provide a purely
software-based in-runtime intrinsic DRAM PUF. Further, they
improve upon existing comparable designs by greatly low-
ering the system disruption required to query the PUF. We
demonstrate the proposed design on unaltered COTS comput-
ing systems running a live Linux OS. From this, we present
a dataset based on 1820 discrete DRAM chips, which is the
largest of its kind to date to the best knowledge of the authors
at the time of writing. This dataset is provided freely for the
use of the research community. Finally, we use this dataset to
analyse the quality of the proposed PUF design, demonstrat-
ing that it exhibits near ideal uniqueness and good reliability.
Further, we demonstrate that at the cost of increased memory
overheads the reliability can be improved to a near ideal
value. The contributions of this article can be summarized as
follows.

1) A novel implementation of the latency-based DRAM
PUF concept with a new set of algorithms for PUF
enrolment and query which reduce the critical period
of system disruption by up to 96% to below 31 ms in
the worst case and 3 ms on average.

2) A demonstration of the proposed design on live desk-
top systems, using only COTS hardware and a widely

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 26,2023 at 08:59:29 UTC from IEEE Xplore. Restrictions apply.

3568 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

Fig. 1. DRAM structure for a standard DIMM [8].

used OS (Ubuntu Linux). Results from six individual
machines are presented.

3) A large scale dataset using a measurements from over
1800 COTS DRAM chips from three manufacturers
and in two form factors [dual in-line memory module
(DIMM) and small outline DIMM (SODIMM)]. This
is by a substantive amount the largest dataset of its
kind to date and is provided for the use of the research
community.

4) An analysis of the performance of the proposed design
taking into account the standard metrics of unique-
ness and reliability, the bias of individual responses,
the required query time, and the overheads required to
implement the proposed design.

II. BACKGROUND AND LIMITATIONS OF EXISTING

DRAM PUFS

A. DRAM Structure

The fundamental storage medium of DRAM is an array of
capacitive cells, gated by transistors with each cell storing a
single bit of data. The data bit stored depends on the charge
of the capacitor—in general a charged capacitor equates to
a binary 1 and a discharged capacitor to a binary 0. This is
a simplification of the hardware level operations, where in
practice there exist both cells and anti-cells which are inverted
in terms of what level of charge equates to each value.

These cells are arranged into a grid of rows and columns
referred to as a bank. There will usually be many such banks in
a single DRAM chip. Often, multiple chips are combined into
a rank which share a single chip select. While individual chips
are deployed the most recognizable form factor for DRAM is
the DIMM which incorporates multiple chips. Another com-
mon form factor is the SODIMM which is used in smaller
form factor devices.

B. DRAM Volatility and the Refresh Cycle

DRAM cells are inherently volatile. Over time due to leak-
ages the value stored in a cell will decay and eventually a bit
flip may occur depending on the stable state of that particular
cell. In order to retain the memory values the entire memory
must be refreshed periodically. This is done by reading the
value in each cell and writing it back. In modern DRAM this is
controlled and carried out by dedicated refresh cycle circuitry.

C. DRAM Operations and Timings

Due to the multiple steps involved in internal memory
operations and the inherent latency of some of these steps
certain delays are introduced to ensure correct functionality.
These delays are dictated by timing parameters imposed by
the memory controller. The safe range for each parameter is
specified by the device manufacturer. In most systems these
parameters can be changed at the BIOS level, and can be
adjusted to improve either the performance or the stability
of the memory in a system. If timings are lowered past the
lower limit given by the manufacturer the stability of memory
operations can no longer be guaranteed resulting in undefined
behavior, though depending on the exact circumstances the
system may still be able to function with “unsafe” values for
some timings.

A timing value that is critical in this work is tRCD. This
is the required delay between the row address strobe (RAS)
signal which selects a row to perform the operation on, and
the column address strobe (CAS) signal which selects a col-
umn within the row. When tRCD is given a value below the
recommended limit the memory enters an undefined state in
which read operations return incorrect values for some or all
of the bits being read. This property is discussed in greater
detail in later sections.

D. DRAM-Based PUFs

As a ubiquitous technology found in a wide range of
devices the idea of using DRAM as the core hardware for
an Intrinsic PUF has been explored in several works. While
some designs exploiting more obscure properties of DRAM
have been proposed, such as the Rowhammer Effect PUF [10]
the majority of DRAM PUF designs proposed to date fall
into one of two categories: 1) the more well studied Retention
PUFs which use the refresh cycle to extract entropy and 2) the
recently proposed Latency PUFs which use the latency of
operations to do so.

E. DRAM Retention PUFs

The DRAM Retention PUF proposed by
Tehranipoor et al. [2] exploited the volatile nature of
DRAM cells to extract entropy based on either the drainage
rate or the stability of cells. Nominally the charge of a cell
containing a 1 and the rate at which that cell discharges
should be fixed. In practice this is not the case as due to
process variation in the various components the real values
vary within an acceptable range centred around the nominal
value. This variance is marginal and hence does not impact
the normal functions of the memory.

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 26,2023 at 08:59:29 UTC from IEEE Xplore. Restrictions apply.

MISKELLY AND O’NEILL: FAST DRAM PUFs ON COMMODITY DEVICES 3569

Fig. 2. Diagram showing the timings used in a burst read operation [9].

The Retention PUF exploits this by filling a segment of
DRAM with a bit pattern and then disabling the refresh cycle
of the memory. If the components all had the exact nominal
values this would result in a period of normal operation until
a fixed period had passed, at which point the charge leak-
age would be enough that all the bits would flip. In practice,
however, each cell leaks at a slightly different rate with some
cells flipping after only a short period and others retaining their
value for much longer. Further, the distribution of the fast flip-
ping cells and the slow flipping cells is highly random across
commercial DRAM giving this type of PUF high uniqueness.
By stopping the refresh cycle and reading the memory back
after a fixed period a bit pattern unique to that memory seg-
ment is generated. In a following work it was also shown that
a PUF of this type is fairly resistant to degradation due to
ageing [12].

The initial proof-of-concept Retention PUF designs suffered
from the requirement for a lengthy period in the order of
minutes to allow for the decay of cells before the response
could be read. In addition, it was unclear if the PUF response
could be generated in-runtime on a real system without mod-
ification (i.e., as a truly intrinsic PUF). Sutar et al. later
proposed means by which the query time could be reduced
to between 20 and 60 s [13] while Schaler, Xiong et al. [14]
and Schaller et al. [15] demonstrated the viability of using a
Retention PUF on a commodity system, either by generating
the response at boot or by generating the response in-runtime
while manually refreshing key parts of memory to prevent a
system crash.

Despite the advances from the original proposal in terms of
practical implementation and query time, there are still seri-
ous drawbacks to the Retention PUF, either the response must
be generated at boot (and may not be regenerated during run-
time) or the response can be generated in-runtime but with

substantial limitations on the system for the query duration
due to the need to reserve sections of memory and the com-
putational cost of manually refreshing key areas of memory
to prevent instability. To date in most designs this period is
in the order of several minutes and in all designs it is at
minimum 20 s.

F. DRAM Latency PUFs

As a response to the technical challenges inherent to DRAM
Retention PUFs Kim et al. [11] proposed the DRAM Latency
PUF. Rather than using cell decay as the entropy source this
design exploits the latency-stability tradeoff of modern DRAM
to extract entropy by placing the memory into a state of unde-
fined behavior through the manipulation of timing parameters.
By lowering specific timing parameters, such as tRCD, beyond
the normal lower bound the memory is placed into a state
where read operations do not return the values held in memory
but instead return a pattern derived from both the memory val-
ues and the low-level variances in the DRAM circuitry. The
resultant error patterns are repeatable within a given piece of
hardware and form the PUF response.

This PUF has several advantages over the Retention PUF.
Like some of the more recent Retention PUF proposals it
is in theory viable for use in-runtime so long as the system
allows in-runtime changing of timing parameters. This means
it can be used for authentication within a standard challenge-
response framework. Like the Retention PUF it exhibits high
uniqueness. Most importantly it requires only a relatively short
query time in the order of 88 ms to generate an 8 KiB response,
a substantial improvement over the Retention PUF.

In this work, we propose a novel PUF based on the latency
PUF concept which works to further minimize the query time.
We will demonstrate that by the careful selection of bit patterns
and a more efficient query scheme that the key period of

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 26,2023 at 08:59:29 UTC from IEEE Xplore. Restrictions apply.

3570 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

system disruption can be reduced to just 3 ms while retaining
excellent uniqueness and high reliability.

III. PROPOSED PUF DESIGN

In this section, we present a set of novel algorithms that
allow for the extraction of PUF responses from COTS DRAM
memory by exploiting the behavior of memory with extremely
reduced timing parameter values. This new approach leads to
drastic reductions in the critical period during which memory
must be reserved for PUF use thus minimizing system dis-
ruption while maintaining near ideal performance in other
metrics.

The proposed design is a Weak PUF. The design can pro-
duce a CRP set equal in size to twice the available memory
size. While in many cases this will be relatively large it
increases only linearly with PUF segment size. As such the
operating assumption is that the proposed PUF will be used
as a Weak PUF to generate hardware rooted identifiers. The
enrolment and query algorithms and the threat model have
been chosen with this in mind.

A. Challenge-Response Mechanism

In the proposed design the PUF challenge consists of a set
of values to set each timing parameter to combined with a
series of offsets used to target sections of the PUF segment.
By default, the timing parameter changes are simply to set
tRCD to the lowest possible value which is sufficient to extract
entropy from the hardware. Supplementary to this is the start
address of the memory segment reserved for the PUF and a bit-
pattern which will be written into it prior to query. As this data
is static and does not reveal any information about the PUF
response to an adversary without root access it can be stored on
the target device in order to reduce the size of the challenge,
or provided as part of the challenge for additional security.
The PUF response consists of a number of bits specified in
the challenge returned as a series of 32 b segments. These
segments are concatenated without further post-processing to
produce the final response.

The enrolment process and challenge-response mechanism
used have been designed with the aim of minimizing the query
time (and hence, the amount of system disruption) while max-
imizing the entropy of the PUF. The reasoning for how the
challenge values, memory segment, and bit-pattern are selected
is detailed in the following sections.

B. Enrolment

The bit pattern held in memory when the PUF is queried
has a significant impact on the generated response. In previous
works fixed bit patterns have been used in which the memory
segment is filled with all 1’s, all 0’s, or some other regular pat-
tern, such as alternating 1’s and 0’s. This approach is relatively
simple but does not extract the maximum available entropy
from each memory cell, as we observed that the responses
generated using the same memory segment but inverted bit
patterns were distinct and could exhibit markedly different
characteristics in terms of the probability of bit flip and the

reliability of bit flips. This observation and how it was reached
is discussed in further detail in Section V.

As such the key goal and contribution of the novel enrol-
ment algorithms presented here is in the derivation of nonreg-
ular mixed bit patterns which optimize the PUF response in
terms of reliability such that fewer repeated queries are needed
to acquire error-corrected responses, with a corresponding
improvement in the critical period of system disruption when
querying the PUF. This new approach also has the advantage
of exhibiting similar near ideal uniqueness values to compara-
ble works, despite optimizing for reliability and speed rather
than other metrics.

1) Changes to the Method of Entropy Extraction: Unlike
the approach in [11] where a count of the number of read
failures is used to determine the PUF response bits, here the
output of the read operations is used directly as the PUF
response and all error correction and post-processing is per-
formed after the query has finished. While the end result is
fairly similar, our approach allows for a further reduction in
the amount of system disruption by performing any process-
ing on the data after reserved memory has been released and
normal operation restored. In Section V—PUF analysis it will
be shown that this approach can produce a sufficiently robust
PUF with the only tradeoff being an increase to memory
overheads.

2) Initial Characterisation: The enrolment process starts
with characterizing the response of the PUF segment for a bit
pattern of all 1’s and also for an all 0 b pattern over a large
number of repeated measurements, n. The result of this will
be a set of n responses for each solid bit pattern.

3) Granularity of Characterisation: It may seem intuitive
that in deriving a mixed it pattern that the responses should
be analysed on a bitwise basis. We found that this approach
while certainly possible produced no better results in prac-
tice than analysing each 32-b subsegment while requiring a
substantially more complex enrolment process. Further, if this
bitwise derivation is used, then a bit pattern equal in size to the
PUF memory segment must be stored on device, or transmit-
ted as part of the PUF challenge. As such the 32-b response
from each single read operation is taken as a discrete unit and
kept or discarded as a whole. This means the mixed bit pattern
will consist of alternating blocks of 32-b solid patterns of 1
or 0 and the mixed pattern can be stored using only 1-b per
32-b of the output response.

4) Calculating the Reliability of Subsegments: The key
metric to select for in the mixed bit pattern is reliability as this
allows for minimal repetition during query and corresponding
reductions in query time. In addition, the reliability of sub-
segments is sufficiently randomly distributed that selecting for
reliability does not lower the uniqueness of PUF responses
significantly from what can be achieved using a regularly
alternating pattern of 0 and 1. This is detailed further in
Section V. To calculate reliability for each subsegment first
simple error correction is performed on the n repeat mea-
surements to derive a reference value. Reliability for each
subsegment is then calculated in reference to this value using
the equation in Section V-B. This operation is performed on
every characterized sub segment for both solid bit patterns.

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 26,2023 at 08:59:29 UTC from IEEE Xplore. Restrictions apply.

MISKELLY AND O’NEILL: FAST DRAM PUFs ON COMMODITY DEVICES 3571

5) Filtering of Zero Entropy Responses: We observed that
in certain devices there would be segments of memory that
produce no bit-flips under any of the possible PUF setups for
one or both of the inputs. Including these segments would
lower the entropy of the response. Further, if selecting for
reliability a disproportionate number of these segments will
be included as they will be near or at 100% reliability. In
cases where one input produces bit flips and the other does
not one value can be discarded immediately and the reliability
calculation skipped for that segment. If neither input produces
any bit flips then the location must be flagged and excluded
from the final CRP set. Again this improves the quality of the
response at the expense of further memory overheads.

6) Deriving the Optimal Bit Pattern: For all subsegments
which are not yet determined the value of that 32 b subseg-
ment in the mixed bit pattern is simply the value of whichever
bit pattern produced the more reliable response. Thus, the final
pattern should consist of only subsegments in which at least
one pattern exhibited entropy. If only one pattern exhibited
entropy the value of the subsegment in the mixed pattern is
whichever solid pattern produced entropy. If both solid patterns
exhibited entropy then the value in the mixed bit pattern sub-
segment is whichever solid pattern produced the most reliable
response.

Optionally a further step can be taken to filter out unreliable
responses by repeating some of the previous step using the
derived bit pattern. This allows a certain degree of control
over the reliability of the overall CRP set but at the expense
of lowering the size of the set. This can be compensated for
by increasing the PUF segment size if the increased overheads
can be tolerated. In Section V—PUF analysis it is shown that
it is possible to use this technique to produce a PUF with a
minimum reliability of 99% for all CRPs.

Through burst reads of memory offsets found to exhibit high
reliability and the use of a derived bit pattern which further
enhances reliability the throughput of the PUF is maximized
and the critical period of system disruption minimized. The
result is a PUF which has a greatly reduced query time while
maintaining high performance on key metrics.

C. Query

Much of the complexity in the operation of the proposed
design is in the initial enrolment phase. Once the PUF has been
enrolled the PUF query that will be performed on the target
system is much simpler and lightweight. Once the bit pattern
and map of memory locations is enrolled to query the PUF all
that is needed is to reserve the PUF memory segment, write the
known bit-pattern into the segment, lower the timing param-
eters to the specified values, and read the memory location
at each specified offset. As the timing parameters associated
with write operations remain unchanged the PUF response can
be stored in any part of memory, including the same area of
memory as the PUF segment if desired.

D. Selection of Parameter Values

The selection of the timing values is a key factor in getting
a useful CRP set from the proposed design. In all cases, the

tRCD timing parameter must be lowered enough to initiate
an unstable state. The point at which this state is initiated is
heavily dependant on the specifics of the memory controller
and the DRAM itself. In cases where this point is unknown
or uncertain it is viable to simply select the lowest possible
value for tRCD. Other timing parameters may be lowered in
conjunction with tRCD to varying effect but the exact results
of this and the means of selecting these parameters is outside
the scope of this work.

During the enrolment stage the number of repeated mea-
surements used to characterize the PUF can be varied, with
smaller numbers of repetitions speeding up the enrolment pro-
cess but higher numbers providing more accurate values for
reliability. In the experiments used in this work 100 rep-
etitions were used. Likewise, when querying the PUF the
number of repetitions presents a similar tradeoff between query
speed and the accuracy of the error corrected response. In all

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 26,2023 at 08:59:29 UTC from IEEE Xplore. Restrictions apply.

3572 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

measurements taken in this work ten repeated measurements
were used.

IV. EXPERIMENTAL SETUP AND METHODOLOGY

The following section details the hardware and process used
to derive the dataset used in the analysis in Section V.

A. Testing Platforms

The platforms used to perform the experiments consisted
of a set of three COTS desktop systems for testing DRAM
in the DIMM form factor and a further three laptop systems
for testing SODIMM form factor memory. Each device in the
testbed contained an AMD A-series processor and was running
a live instance of Ubuntu Linux 16.04.

The PUF itself was implemented as a set of Linux drivers
which could be activated to perform individual queries or to
perform a full enrolment of the PUF. As all test devices con-
tained related models of AMD processors using the same
memory controller architecture this driver was able to be
ported to each device with only minimal changes. A more
detailed description of the technical challenges of implement-
ing the PUF is provided in Section V.

The datasets were taken from a set of 1824 discrete DRAM
chips from three different manufacturers and in two form
factors. Of these 120 chips were from Apacer DRAM in
SODIMM form factor, 904 were from QUMOX DRAM in
DIMM form factor, and the remaining 800 were from Kingston
DRAM in DIMM form factor.

B. Experimental Methodology and Dataset

When extracting data from the test devices the follow-
ing methodology was used. From each DRAM chip a

representative 4 KB key was generated for the solid bit patterns
0xFFFFFFFF and 0x00000000, respectively. This was taken
from a contiguous 4KB segment with the same starting offset
relative to each chip. This segment was queried under eleven
parameter sets and repeated ten times within each set, produc-
ing an array of 11×10×8 KB for each chip. All tests were
performed at nominal supply voltage and at room temperature.

In addition to more accurately measure the timing of the
critical period of system disruption a single set of ten 40 KB
segments was generated from each chip starting at the same
base offset under the default timing parameters of tRCD = 0.

As a key part of this work is the reduction in system disrup-
tion in order to measure this accurately the experiments were
performed while the system was live and running the same set
of background processes.

The full dataset is made openly available for the use
of the research community and can be downloaded at
10.6084/m9.figshare.12149799.

V. PUF ANALYSIS

In this section, we present an analysis of the gathered data,
focusing on the key metrics of reliability, uniqueness, and
query time. Further, we give an analysis of the bias of response
bits across the gathered responses. Finally, an analysis of the
overheads required in implementing the design is provided.

A. Uniqueness

Uniqueness is a metric that measures how distinct the PUF
response of a given instance is likely to be from all the other
instances in a population. It is calculated by measuring the
interchip Hamming distance between each the devices in a
population of m devices. The ideal value of this metric is 50%.

The calculation used in this article is as follows, where a key
of n bits has been generated from a population of m devices:

U = 2

m(m − 1)

m−1∑

i=1

m∑

j=i+1

HD(Ri, Rj)

n
× 100%. (1)

While the memory used in these experiments is all stan-
dards compliant DDR memory, the precise specifications and
layout of memory components contributing to the entropy of
the PUF will not be identical across chips made by different
manufacturers. As such we have calculated both the overall
uniqueness for the entire population of devices from all man-
ufacturers, and on a per manufacturer basis. As can be seen
in Fig. 3 and Table I there is a substantial variance in PUF
uniqueness from manufacturer to manufacturer.

It can be observed from Fig. 3 that when using a solid
bit-pattern in memory (0x00000000 or 0xFFFFFFFF) the
uniqueness is generally poor and varies substantially between
manufacturers, with the median value of Kingston being above
25% while the median value for Apacer is below 10%.
However, when using a mixed bit-pattern (see Algorithm 4)
the uniqueness increases substantially, becoming close to the
ideal value and generally more consistent, as can be seen in
Fig. 4.

This can be attributed to several factors. First the solid
bit-pattern responses are heavily biased toward the pattern

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 26,2023 at 08:59:29 UTC from IEEE Xplore. Restrictions apply.

MISKELLY AND O’NEILL: FAST DRAM PUFs ON COMMODITY DEVICES 3573

Fig. 3. Uniqueness of solid bit-pattern 32-b responses.

TABLE I
INTERCHIP UNIQUENESS FOR EACH MANUFACTURER WITH SOLID AND

MIXED BIT-PATTERNS

value. This reduces uniqueness as all of the response bits are
weighted toward a certain value meaning the odds of two chips
having similar responses similarly increases. However, as can
be seen in Fig. 5 the bias for each bit-patterns is proportional
to the other but inverted.

This means so long as the selection criteria used to gener-
ate the mixed bit-pattern results in roughly equal amounts of
segments with each bit-pattern and that there is no correlation
between which segments use each bit-pattern in a given PUF

Fig. 4. Uniqueness of mixed bit-pattern 32-b responses.

Fig. 5. Hamming Weights of 32-b responses within Apacer chips using
various input values.

instance then the biases are canceled out, resulting in minimal
bias in the overall PUF responses with mixed bit-patterns. It
can be seen in Fig. 5 that this does occur in practice.

The variances which dictate the nature of the PUF response
seem to be distributed across the memory structure with a
high degree of randomness. This is consistent with the find-
ings of previous works albeit with a more complex set of
properties contributing to the overall result. As the PUF is
exploiting latency in the internal memory commands some
part of the entropy likely comes from the circuitry relating to
these operations. Further, some variance was observed between
the response of the same chips on different test devices under
the same test conditions, implying that the memory controller
itself may act as a partial entropy source.

Despite these factors playing some role we propose that the
primary entropy source is from the DRAM cells, more specif-
ically in the charge and discharge rates of the cell capacitors.
From the data we observed no obvious correlation between
the probability of bit-flips in cells when they contain a 1 or 0.
That is, a cell which reliably flips when containing one value
is no more or less likely to exhibit the same behavior when

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 26,2023 at 08:59:29 UTC from IEEE Xplore. Restrictions apply.

3574 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

TABLE II
RELIABILITY AND PROPORTION OF HIGH RELIABILITY (ABOVE 99%)

32-B SEGMENTS FOR EACH MANUFACTURER

containing the inverse value. From this the most likely expla-
nation is that the cell charge and discharge rate are the main
entropy source for each value, respectively, and that these two
variables are independent of one another.

B. Reliability

The ability of the PUF to generate keys consistently is of
paramount importance. Reliability is a metric which measures
the ability of a PUF design to generate the same response to
a given challenge over repeated measurements. In this arti-
cle, reliability has been calculated as follows, for m repeat
measurements of n bit keys:

Rel = 1

m

m∑

i=1

HD(Rref, Ri)

n
× 100%. (2)

We observed that the manner in which the memory is read
during a PUF query has a significant impact on the stability of
the PUF. The larger the contiguous segment queried the more
unstable the responses became. This is not a product of the
DRAM cells as querying the same cells in smaller sections
produced stable results. In practice, we found that querying
more than a few KB continuously led to a degradation of
results. Where larger keys are desired they can be broken down
into smaller queries of a sustainable size.

Reliability is generally high with values ranging from
80%–100%. The worst reliability is found in the QUMOX
chips with a mean value of 88%. As an unreliable response
requires more error correction when optimizing for minimal
query time it is best to use only the most reliable segments. As
this excludes some percentage of the CRP set a larger PUF seg-
ment is needed to generate a response of the desired size. As
can be seen in Table II if a cutoff of 99% is chosen the propor-
tion of suitable segments varies highly between manufacturers
but remains above 2.5%. These values have been used when
calculating the required memory overheads in Section V-C.

C. Speed and Overheads

In order to minimize the disruption to the overall system the
critical period during which memory must be reserved for PUF
use must be made as short as possible. In the design proposed
in [11] the average time for generating an 8 KiB key reliably is
88 ms. As can be seen in Table III our proposed design reduces
this critical period to an average of 3 ms per query, a reduction
of 96%. Even if ten repeated measurements are taken for the
purposes of error correction as in the experiments in this work
the query time is only on average 30.3 ms, a reduction of 65%.

TABLE III
MEAN QUERY TIME AND OVERHEAD FOR AN 8 KIB SEGMENT

This improvement comes mainly from two factors. First,
by using the results of the read operations directly to form the
response and by performing the processing for this formation
after the PUF memory has been released and timings restored
the period in which the PUF disrupts the system is kept to
a minimum. Additionally, using the new proposed enrolment
and query scheme to create a set of CRPs with near ideal reli-
ability allows for a reduction in the number of read operations
required to produce a response.

The main drawback of this approach is that it substan-
tially increases the memory needed for the PUF. In the worst
case only 2.5% of segments provide sufficient reliability to be
considered ideal meaning that, as can be seen in Table III,
to generate an 8 KiB response requires almost 300 KiB of
memory for PUF use. However, in comparison to the capac-
ity of most DRAM chips these overheads are still manageable
and the balance of overhead to query time can be controlled
by adjusting the threshold at which a segment is considered
ideal. Furthermore, these overheads are required only while
the PUF is operating and do not need to be reserved exclu-
sively for PUF use. It is entirely possible to move data out of
the PUF segment, perform the query, and restore the previous
values, though this does incur some computational costs. It
is also important to note that while a segment of 8 KiB has
been evaluated for the purposes of timing analysis in prac-
tice the response size needed for device authentication and
the corresponding overheads will be much smaller.

D. Potential Vulnerabilities and Security Concerns

The threat model for fully intrinsic PUFs, such as the
proposed design is not identical to that models used with more
conventional PUF designs. As such it is useful to discuss some
of the contingencies which would need to be considered if
using a PUF of this type in practice.

The major difference is the method of accessing PUF
entropy—namely, the lowering of timing parameters in
memory. In systems where this functionality exists it is a nor-
mal, if somewhat obscure, function of the memory controller.
This means that if an attacker gains root access they can easily
trigger the PUF. This is largely consistent with any PUF inte-
grated into a complex system. If an adversary has control of
the controlling system, they can access the PUF. The PUF, at
least in the case of the proposed design, is a mean to authen-
ticate devices, not a means in itself to secure the device from
illicit access. What is different in fully intrinsic PUFs is that
we cannot add any hardware which might limit the rate of this
access without rendering them nonintrinsic.

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 26,2023 at 08:59:29 UTC from IEEE Xplore. Restrictions apply.

MISKELLY AND O’NEILL: FAST DRAM PUFs ON COMMODITY DEVICES 3575

Should an attacker gain full root access they can perform the
same enrolment procedure as the device owner did to derive
the full set of CRPs. This will take a considerable amount of
time (in the order of 100 or 1000 times longer than generating
the keys from a known challenge) and if they do not have
helper data like the area of memory used for the PUF they
may have to also perform this process for the entire memory
of the device. While this is being done device operation will
be limited by necessity and this may allow the attack to be
detected if it disrupts device operations to the point that other
nodes can detect the discrepancy. However, a clever adversary
will perform this attack piecemeal so as to avoid detection.
Once the full CRP set is collected the attacker has a digital
model of that particular device that can be used to impersonate
it, but this would not be transferable to another device of the
same type as PUF CRP sets are unique to a specific item of
hardware.

Each cell provides a distinct entropy source, meaning that
acquiring the CRP data for a given memory segment does not
allow the prediction through modeling of other segments in
the same chip. We can conceptualize the proposed design as
a weak PUF in the vein of SRAM PUF, with two CRPs that
have very large responses and can be divided and recombined
to form a response of the desired size. ML modeling attacks
are therefore not applicable to the proposed design.

If an attacker were to gain root access to the system it is
entirely possible to use the PUF query mechanism without the
careful segregation of memory channels in order to destabi-
lize the system and force a crash. It is worth noting this is
not actually a weakness of the PUF design specifically, and
could be done in any system with the right memory controller
regardless of whether it was being used for PUF response gen-
eration. Likewise, a sufficiently knowledgeable adversary with
root access has many options for crashing a system, many of
which are easier to perform than this method.

If we assume that the attacker only has root access for a lim-
ited window then acquiring the CRP set becomes a nontrivial
challenge. The enrolment process takes considerable time, and
the attacker must possess helper data to know which memory
segment to target. It would be possible for an attacker to gather
the CRP set relatively quickly if the challenge set is known, but
as this set is not held on device they attacker would have to first
compromise the authentication server or perform some kind of
man-in-the-middle attack to gradually gather the challenge set
by listening in on normal operations.

In general, as is the case with any individual security prim-
itive, there are means by which a sufficiently knowledgeable
and resourced adversary can compromise a PUF of this type.
It is important, therefore, to keep in mind that this PUF
provides only an element of hardware derived authentica-
tion and cannot be relied on as a means of device security
in and of itself, but rather should be integrated into exist-
ing security mechanism as an additional assurance of device
authenticity. Hardware rooted security is not a silver bullet. It
is simply another hurdle for adversaries to overcome before
they can compromise a system, and critically which requires
different knowledge to attack than other aspects of system
security.

E. Technical Challenges of Implementation

There are several difficulties inherent in implementing a
DRAM latency PUF on commodity hardware. In this section
we discuss the technical challenges which must be overcome
when integrating a PUF of this type into a COTS system.

1) Memory Controller Requirements: A dynamic memory
controller (DMC) which has in-runtime access to tim-
ing parameters is needed. This is not insurmountable as
many existing architectures use such a memory controller.
Snapdragon processors for mobile phones have this capability,
as do the majority of server and HPC processor architectures.
At the level of desktop computing AMD processors use a
DMC on all multichannel systems. The testbeds used in this
article all use AMD processors for this reason. Nonetheless,
it limits the viable platforms for implementing a PUF of this
type. In architectures, where this functionality is present it is
a low level operation of the memory controller and so must
be implemented at a level where direct control of the memory
controller is possible. A major factor in how well a PUF of
this type can be implemented is the granularity of the memory
controller. Ideally the timing parameters would be modified
for only a single bank of memory, so that disruption to the
system is minimal. In practice depending on the specifics of
the memory controller the granularity may in fact only be to
the level of a chip, a rank, or an entire memory channel. In
the case of our experimental testbeds this function was only
possible at the level of memory channels, meaning that during
PUF operation an entire memory channel had to be rendered
temporarily inaccessible.

2) Maintaining System Stability: In the case where the
smallest section of memory that can have timing values altered
is relatively large there is a real technical challenge in lowering
these parameters without destabilizing the entire system. This
is because when the timings are lowered to the required levels,
while the data in memory remains unaltered, read operations
during this period will return junk data. If a critical process
attempts to do this it will cause severe problems. This means
that before the PUF is triggered it must be ensured that there
is no data in the same channel being used by the PUF which
is required by any critical process. It must also be ensured
that noncritical processes either do not have any necessary
data held in this part of memory, or that those processes are
paused for the duration of the PUF query. This is not a trivial
task, though it is worth noting that the query time as listed in
Section V-C is for a much larger response than would be used
in practice. The query time required to generate an authentica-
tion ID in a real system would likely be no more than 100 ms
(for a 2048 b ID).

Similarly, there are challenges in regards to the management
of the data held in the PUF segment and of the response data
as it is read. The PUF has to write a specific bit pattern into a
specific segment of memory as part of the query procedure. If
data is already present it must be shuffled out of this part of
memory and restored after the PUF query is complete. This
could be avoided by reserving a small amount of memory
exclusively for PUF usage depending on how much memory
is available. Some area of memory must also be used to store

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 26,2023 at 08:59:29 UTC from IEEE Xplore. Restrictions apply.

3576 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

the response as it is generated. Here, there is less of a problem,
as the alteration of timing parameters used in this design does
not affect the stability of write operations. Hence, the memory
used for this can be in the same memory being used by the
PUF already.

VI. CONCLUSION

In this article, we have presented a novel method for extract-
ing PUF responses from DRAM memory modules in-runtime
on live COTS systems. We propose a new enrolment and query
system for latency-based DRAM PUFs and have used these
algorithms to generate a large scale dataset of PUF challenge-
responses under various timing parameter adjustments which
is provided for the use of the research community. Our analysis
of this data shows that the proposed design exhibits near ideal
uniqueness and high reliability. Furthermore, the proposed
design reduces the critical period of system disruption by up
to 96% relative to comparable designs though at the cost of
increased memory overheads.

ACKNOWLEDGMENT

The data from the experiments in this article is available for
the use of the research community and can be downloaded at
10.6084/m9.figshare.12149799.

REFERENCES

[1] J. Guajardo, S. S. Kumar, G.-J. Schrijen, and P. Tuyls, “FPGA intrin-
sic PUFs and their use for IP protection,” in Proc. Int. Workshop
Cryptograph. Hardw. Embedded Syst. (CHES), 2007, pp. 63–80.
doi: 10.1007/978-3-540-74735-2_5.

[2] F. Tehranipoor, N. Karimian, W. Yan, and J. A. Chandy, “DRAM-
based intrinsic physically unclonable functions for system-level security
and authentication,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 25, no. 3, pp. 1085–1097, Mar. 2017.

[3] G. E. Suh and S. Devadas, “Physical unclonable functions for device
authentication and secret key generation,” in Proc. 44th ACM/IEEE Des.
Autom. Conf., 2007, pp. 9–14.

[4] A. Maiti and P. Schaumont, “Improved ring oscillator PUF: An FPGA-
friendly secure primitive,” J. Cryptol., vol. 24, pp. 375–397, Oct. 2010.

[5] A. Maiti and P. Schaumont, “A novel microprocessor-intrinsic physi-
cal unclonable function,” in Proc. FPL, 2012, pp. 380–387. [Online].
Available: https://doi.org/10.1109/FPL.2012.6339208

[6] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, “Silicon physical
random functions,” in Proc. 9th ACM Conf. Comput. Commun. Security
(CCS), 2002, p. 148.

[7] S. Kumar, J. Guajardo, R. Maes, G.-J. Schrijen, and P. Tuyls, “Extended
abstract: The butterfly PUF protecting IP on every FPGA,” in Proc. IEEE
Int. Workshop Hardw. Orient. Security Trust (HOST), 2008, pp. 67–70,
doi: 10.1109/HST.2008.4559053.

[8] L. A. Bathen, M. Gottscho, N. Dutt, P. Gupta, and A. Nicolau,
“ViPZonE: OS-level memory variability-driven physical address zon-
ing for energy savings,” in Proc. CODES+ISSS, 2012, pp. 33–42,
doi: 10.1145/2380445.2380457.

[9] “256Mb: x4, x8, x16 SDRAM” MT48LC64M4A2/MT4
8LC32M8A2/MT48LC16M16A2 Datasheet, Micron, Boise, ID,
USA, Nov. 1999.

[10] A. Schaller et al., “Intrinsic Rowhammer PUFs: Leveraging the rowham-
mer effect for improved security,” in Proc. HOST, 2017, pp. 1–7,
doi: 10.1109/HST.2017.7951729.

[11] J. Kim, M. Patel, H. Hassan, and O. Mutlu, “The DRAM latency
PUF: Quickly evaluating physical unclonable functions by exploiting
the latency-reliability tradeoff in modern commodity DRAM devices,”
in Proc. HPCA, 2018, pp. 194–207, doi: 10.1109/HPCA.2018.00026.

[12] F. Tehranipoor, N. Karimian, W. Yan, and J. A. Chandy, “Investigation
of DRAM PUFs reliability under device accelerated aging effects,” in
Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), Baltimore, MD, USA,
2017, pp. 1–4, doi: 10.1109/ISCAS.2017.8050629.

[13] S. Sutar, A. Raha, and V. Raghunathan, “D-PUF: An intrinsically recon-
figurable DRAM PUF for device authentication in embedded systems,”
in Proc. Int. Conf. Compliers Archit. Syth. Embedded Syst. (CASES),
Pittsburgh, PA, USA, 2016, pp. 1–10, doi: 10.1145/2968455.2968519.

[14] W. Xiong et al., Run-Time Accessible DRAM PUFs in Commodity
Devices (Lecture Notes in Computer Science), pp. 432–453, 2016,
doi: 10.1007/978-3-662-53140-2_21.

[15] A. Schaller et al., “Decay-based DRAM PUFs in commodity devices,”
IEEE Trans. Depend. Secure Comput., vol. 16, no. 3, pp. 462–475,
May/Jun. 2019, doi: 10.1109/TDSC.2018.2822298.

Jack Miskelly received the B.Eng. (First-Class
Hons.) and M.Eng. degrees in software and elec-
tronic systems engineering from Queen’s University
Belfast, Belfast, U.K., where he is currently pur-
suing the Ph.D. degree with the Centre for Secure
Information Technologies.

His research interests include hardware security,
true random number generators, IoT security, and
physical unclonable functions with a focus on intrin-
sic PUFs.

Máire O’Neill (Senior Member, IEEE) received
the M.Eng. (with Distinction) and Ph.D. degrees in
electrical and electronic engineering from Queen’s
University Belfast, Belfast, U.K., in 1999 and 2002,
respectively.

She is the Chair of information security with
Queen’s University Belfast and received an EPSRC
leadership fellowship to conduct research into
next generation data security architectures. She
previously held a United Kingdom Royal Academy
of Engineering research fellowship from 2003 to

2008. She has authored two research books and has more than 100 peer-
reviewed conference and journal publications. Her research interests include
hardware cryptographic architectures, side channel analysis, physical unclon-
able functions, and post-quantum cryptography.

Dr. O’Neill was awarded a Royal Academy of Engineering Silver Medal
in 2014, which recognizes outstanding personal contribution by an early or
mid-career engineer that has resulted in successful market exploitation.

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 26,2023 at 08:59:29 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1007/978-3-540-74735-2_5
http://dx.doi.org/10.1109/HST.2008.4559053
http://dx.doi.org/10.1145/2380445.2380457
http://dx.doi.org/10.1109/HST.2017.7951729
http://dx.doi.org/10.1109/HPCA.2018.00026
http://dx.doi.org/10.1109/ISCAS.2017.8050629
http://dx.doi.org/10.1145/2968455.2968519
http://dx.doi.org/10.1007/978-3-662-53140-2_21
http://dx.doi.org/10.1109/TDSC.2018.2822298

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

