
Here and there at once, with my mobile phone!

Ioana Boureanu1, David Gerault2 and James Lewis3

1University of Surrey, Surrey Centre for Cyber Security, UK
2Nanyang Technological University, Singapore

3Sky UK Ltd, UK
i.boureanu@surrey.ac.uk, david@gerault.net, jamesal246@gmail.com

Keywords: NFC security, proximity checking, proximity attacks

Abstract: Whilst proximity-checking mechanisms are on the rise, proximity-based attacks other than relaying have not been studied
from a practical viewpoint, not even in academia. Are the simplest proximity-based attacks, namely distance frauds, a
practical danger? Can an attacker make it look like they are here and there at the same time? In this paper, we first distin-
guish “credible” vs. impractical distance frauds, in a quantifiable, formal manner. Second, we implement two “credible”
distance frauds on off-the-shelf NFC-enabled Android phones. We present an initial evaluation focused on their feasibility.

1 Introduction

Consider two devices, a prover and a verifier, executing
a communication protocol. In relay attacks, a man-in-the-
middle adversary forwards the messages from the far-away
prover to the verifier and vice-versa, unbeknown to the two
devices, with the aim to gain a privilege illicitly: e.g., au-
thenticate as the prover. Distance-bounding (DB) protocols
were introduced in (Brands and Chaum, 1993) as a counter-
measure to relay attacks. Distance bounding counteracts re-
laying by having the verifier measure the round-trip time in
its exchanges with the prover; if these take longer than a pre-
established bound, then the verifier concludes that a relay
from a distant prover may be occurring. But, there are other
threats that distance bounding opens to. Maybe the simplest
DB-specific attack (other than relaying) is called distance
fraud (DF). In simple words, distance frauds are about a
dishonest prover making it look like they are in the permit-
ted range of the verifier when in fact they are far-away.

With the threat of relaying increasing, protection via dis-
tance bounding is being incorporated in every-day products,
such as contactless payments by Mastercard. Thuswise,
malicious relaying is slowly getting less feasible in practice,
and arguably the next step for fraudsters is to mount
other distance-bounding-specific attacks. But are distance-
bounding threats other than relaying relevant? For instance,
as contactless payments may soon log the proximity-
checking measurements (Chothia et al., 2019), we should
be incentivised to prevent distance frauds; otherwise, dis-
honest, remote payees could get cryptographically-backed
alibis of being by a payment terminal when they were not,
or issue reimbursements claims to the card-issuing bank.
Yet, unlike relaying, distance frauds have not been tried
in practice, not even in academia, despite the fact that they
are much studied theoretically (Avoine et al., 2018). To
this end, we tackle a series of aspects as follows.

Contributions.
1. Within existing white-box corruption models

introduced in (Avoine et al., 2011) and recently revisited
by (Boureanu et al., 2018), we draw a new, fine-grained
distinction relevant to distance-fraud threats: strong
white-box corruption vs weak white-box corruption.
Intuitively, “ weak white-box distance fraud” involves
the dishonest prover learning his secret key and using
this knowledge to increase his advantage in mounting a
distance fraud in a trivial manner. By contrast, a “ strong
white-box distance fraud” involves the dishonest prover
further in intricate cryptographic attacks. Arguably, weak
white-box distance fraud are much more plausible: it
simply requires the prover to infer its key by statistical
or side-channel attacks onto its own protocol executions,
or read it off the device with existing tools. Yet, it takes
an expert and potential collusion with other parties to
mount strong white-box distance frauds, e.g., to use the
inferred key in complicated cryptographic attacks a la
“PRF programming” in (Boureanu et al., 2012).

2. In the “weak white-box corruption-model”, we
implement two DF attacks onto the Swiss Knife pro-
tocol (Kim et al., 2008) executing on NFC-enabled
Android phones. In line with the threat model, we use
little resources besides the knowledge of the secret key
and simple techniques. This demonstrates that someone
with low-to-middle level of experience in Android and
NFC programming can implement a distance fraud attack,
if they can get to the secret material on their device. We
report on our experimental results, on what we believe to
be the first DF attacks implemented in practice.

2 Preliminaries
The Swiss-Knife Protocol

In the Swiss-Knife protocol (Kim et al., 2008) (depicted
in Fig. 1), the prover and the verifier share a secret

key x. During the initialisation phase, they respectively
generate random nonces NP and NV and exchange them.
Furthermore, both of them generate a session key a as:
a := fx(cte,NP), where cte denotes a constant. Then, they
compute the values Z0 and Z1 such that: Z0 :=a
Z1 := a⊕x. In each distance-bounding round, of which
there are n, the verifier selects a random challenge ci
(where i∈{1...n}) and the prover responds with ri such
that: if c′i=0 then ri:=Z0

i , and if c′i=1 then ri:=Z1
i , where

c′i is the challenge that the prover actually received in the
i-th round. That is, c′i will be ci itself, if the transmission
was correct, or c′i will be the negation ci of the sent value ci,
if ci was perturbed by noise. The verifier measures the time
each challenge-response exchange took and stores this in a
variable δi, with i∈{1,...,n}. After the end of the distance-
bounding phase, the prover transmits a message tB such that
tB := fx(C,ID,NP,NV) where C=c′1,...,c

′
n.The verification

phase is self-explained, where tmax,errc,errr,errt,err,T are
all fixed tolerance-parameters of the protocol denoting the
upper bounds on the duration of timed round, the accept-
able number of noise-perturbed challenges, the acceptable
number of erroneous response, the acceptable number of
late responses, the acceptable number of total errors.

Verifier V Prover P

shared key x shared key x
Initialisation phase

NV←{0,1}m
NV−−−−−−−−−−−−−−−−→ NP←{0,1}m

a := fx(cte,NP) a := fx(cte,NP){
Z0 :=a
Z1 :=a⊕x

NP←−−−−−−−−−−−−−−−−
{

Z0 :=a
Z1 :=a⊕x

Distance-bounding phase
for i=1 to n

Pick ci∈U {0,1}
Start Clock ci−−−−−−−−−−−−−−−−→

ri :=
{

Z0
i , i f c′i=0

Z1
i , i f c′i=1

Stop Clock ri←−−−−−−−−−−−−−−−−
End of distance-bounding phase

tB,C=(c′1,...,c
′
n)←−−−−−−−−−−−−−−−− tB := fx(C,ID,NP,NV)

Check ID,
errc :=#{i :ci 6=c′i}

errr :=#{i :ci=c′i∧ri 6=Zci
i }

errt :=#{i :ci=c′i∧∆ti>tmax}
err :=errc+errr+errt

If err≥T ,
then REJECT.

tA := fx(NP)

tA−−−−−−−−−−−−−−−−→
Check tA

Figure 1: Swiss-Knife protocol (Kim et al., 2008)

.
3 Refinement of White-Box

Corruptions in Distance Bounding

Existing Corruption Modes in DB. In DB security,
provers can be corrupted in a white-box (WB) manner,
or in a black-box (BB) manner; see (Avoine et al., 2018;
Boureanu et al., 2018) for details. We summarise these now.

Let P denote the algorithm of an honest prover,
as specified by a distance-bounding protocol. Let P∗
denote a malicious prover device/algorithm, mounting a
distance-bounding attack. In the BB case, the dishonest
prover P∗ can use the algorithm P only as per the protocol

specification to mount the attack. I.e., P∗ sends inputs to
and get outputs from the honest P as if P was a black-box.
In the WB case, the dishonest prover P∗ has read/write
access to all the prover’s components, including algorithms
and cryptographic keys. As such, P∗ can run any variation
of P’s specification or even use its secrets inside any
algorithm to run the attack.

Our Refinement of Corruption Modes in DB. We
identify 2 types of white-box attacks: i.e., Def. 3.1 and 3.2.
Definition 3.1. Strong White-box (WB) Attacks. Strong
WB attacks in DB are formed via active actions by the
attacker which use knowledge of the algorithm of the prover
P and of P’s secrets, to subvert cryptographic primitives.

Here is an example of a strong WB attack. A
prover P∗ corrupted in a WB manner has access to his
long-term secrets. Based on these secrets, P∗ can –for
instance– adaptively choose inputs for one of the protocol’s
pseudorandom function instances keyed on his secrets,
to yield a special output. For everyone else other than
P∗ (who does not know his secrets), the pseudorandom
function (PRF) still behaves pseudorandomly. That
is, a P∗ corrupted in a white-box manner can mount
a “PRF programming attack” (Boureanu et al., 2012).
Yet, breaking cryptographic mechanisms in this way or,
equivalently building the machinery to do so (e.g., relying
on a PRF for which P’s manufacturer/specifier allowed
for a backdoor when the keys are known) are demanding
settings. Synonymously, it is a strong threat-model.

Contrarily to this, the second class of WB attacks we
define, we call weak white-box (weak WB):
Definition 3.2. Weak White-box Attacks. Weak WB at-
tacks in DB are formed via passive or active actions which
may use knowledge of the algorithm of the prover P and of
P’s secrets, but do not subvert cryptographic primitives.

In other words, a weak WB attacker uses his knowledge
to simply to decide on inflicting forged messages but he
obtains these messages by mechanisms that do not involve
adversarial manipulation of the protocol’s cryptography.
That is, a weak WB adversary mounts his attack by
non-cryptographic means: e.g., by guessing in an informed
manner, by blocking messages at the right time, etc.

4 Practical Distance-Frauds
in the Swiss-Knife Protocol

In Section 4.1, we show that, in the SwK protocol, poly-
nomial attackers cannot mount strong white-box distance
frauds, and that black-box distance frauds are not bene-
ficial; in Section 4.2, we discuss weak white-box distance
frauds. In all these attacks, we consider no communication
noise, as our experiments in Section 5 show to be case.

4.1 Strong White Box & Black Box
Distance Frauds in the SwK Protocol

If strong-WB DFs were mounted onto the SwK pro-
tocol, then they would entail the subversion of the

computation a := fx(cte,NP) and/or of the computation
tB := fx(C, ID,NP,NV). The first amounts to a PRF
programming attack a la (Boureanu et al., 2012). That is,
the dishonest P∗ would adaptively choose NP, on the bases
of x, cte, such as to bias the output a (assuming the PRF f
is such that its instance fx is “programmable” in this way).
The goal of the attacker is to lower HW(Z0 ⊕ Z1), or
equivalently to maximise #{i∈{1,2,...,n}|(Z0)i=(Z1)i}
= #{i∈{1,2,...,n}|ai=ai⊕xi} = #{i∈{1,2,...,n}|xi=0},
where by HW we mean Hamming weight. Hence, the
attacker’s advantage depends on HW(x), which is inde-
pendant of the output a from a programmed fx(cte,NP).
Similarly, programming f to adaptively choose tB does
not improve the attacker’s advantage to a DF, since tB is
not involved in the timed exchanges. Hence, manipulating
the output of the PRF does not help the adversary to mount
a distance fraud against the SwK protocol.

In the case of black-box DFs, as the attacker cannot
change the implementation of P, the attacker can simply
not bias HW(Z0⊕Z1) and as such he cannot increase his
advantage.

4.2 Weak White Box
Distance Frauds in the SwK Protocol

We showed that strong model did not help the adversary
against the SwK protocol. We now describe two weak
white-box distance frauds 1 next.

4.3 Early-Reply in SwK: A Weak White
Box DF with “Imperfect DB-Timing”

In this attack, the dishonest, far-away prover P∗ generally
acts as follows. With his WB access to P, the attacker P∗
gathers the indexes i of P’s key x for which the correspond-
ing key-bit is 0, i.e., P∗ computes S={i∈{1,...,n}|xi=0}.
For the rounds appearing in S, the answers are the same
irrespective of value of the challenge and therefore the
prover P∗ can and will answer early. For the rounds
not appearing in S, P∗ will await V ’s challenges despite
gathering DB-timing errors, and answer correctly as each
arrives. A step-by-step description follows.

The Detailed Attack. First, being in weak-WB mode,
P∗ runs the initialisation phase correctly.

Second, in the DB phase, for rounds not in S, the prover
behaves honestly. For the rounds in S, P∗ answers early
but cannot do it in a manner that does not consider the
NFC/RFID timing issues. That is, if P∗ sends his prede-
termined responses too early, then the verifier will halt due
to NFC timing issues. To avoid this, the dishonest prover
P∗ acts as follows: P∗ approximates the duration between
the end of the initialisation phase tend-o f -init-phase and the

1Note that these attacks were known in the literature. We
add two things: (1) we identify them as being of our type called
“weak WB” attacks; (2) we detail their workings, the exact
parameters they affect in a way that allows us to measure, in the
next sections, their effectiveness as DF attacks.

start of the DB phase over a number of executions. Further,
depending on P∗’s distance d from V and the speed vcomm
of the communication medium, P∗ approximates the times
tk at which to send the responses Z0

k , for k∈S. These times
can in fact be refined on the bases of the time tarrivalck−1

of
arrival at P∗ of the challenge ck−1 which precedes the early-
send rk. In other words, the time tk to send preemptively a
predetermined answer rk in the round k∈S is a function F:

tk=

{
F(tend-o f -init-phase,d,vcomm), if k=1
F(tend-o f -init-phase,d,vcomm,[tarrivalck−1

]), if k>1
Note a square bracket around the time tarrivalck−1

:
it denotes that this parameter is optional. It would
make the attack online and more accurate, but it would
require more real-time computations and measurements
by P∗ in the timed phased. Such precision-driven,
real-time computations themselves can inflict delayed
response-times, hindering the feasibility of the attack in
practice; see Section 5 for details.

Third, after the timed phase, the dishonest prover sends
the values c′i equal the values ci that it received, both inside
C and inside tB.

High-level Success Analysis. In this attack, errc=0,
since the dishonest prover sends the correct challenges in
the verification phase. Also, errr =0, since the dishonest
prover sends the correct responses throughout. However,
errt = n−#{S} = HW(x), where HW is the Hamming
weight. Hence, we dubbed this attack “imperfect
DB-timing”. So, in this case, err= errt'HW(x).

4.4 Pre-ask & Early-Reply
in SwK: A Weak White-box
DF with “Perfect DB-Timing”

The Detailed Attack. First, let us look at the pre-attack
phase, when the pre-computed response-table is built. For
rounds k∈S, the prover has already predetermined answers,
as in the previous strategy. For each round j 6∈S for which
the attacker does not have a predetermined answer, this dis-
honest, far-away prover will now guess, at random, a chal-
lenge c∗j , and pre-compute the answer for this anticipated
challenge c∗j . In this way, the dishonest prover now builds
a full table containing one answer ready for each round.

Second, in the DB, P∗ will send all his answers early.
To send these answers in “good” time, the prover P∗ acts as
per the previous strategy and pre-computes the times ti of
sending each answer ri, i∈{1,...,n} using the function F.

Third, in the verification phase, P∗ declares c′j to be
equal to c∗j for all the guessed challenges and to be equal
to the really-sent c j otherwise.

High-level Success Analysis. In this attack,
errc=#{c∗j 6= c j | j ∈ {1, ... , n} ∧ x j = 1}, since the
dishonest guesses some challenges in the DB phase and
reports the facts as such in verification phase. Also, errr
=0, since the dishonest prover sends the correct responses
for challenges where c′j= c j (which is what errr checks

for). However, errt = 0, as for the challenges that coincide
on both side the timing is right (in fact, the timing is right
throughout). Hence, we dubbed this attack as “perfect
DB-timing”. So, in this case, err= errc' HW(x)

2 .
Alternative Version. Depending on the distance d be-

tween the dishonest prover and the verifier (i.e., if the prover
is just superficially outside of the distance-bounding or it
is considerably further) and on the tolerance of the verifier
w.r.t. NFC timing issues (i.e., if the verifier allows fewer or
more NFC time errors), a variant of this attack is as follows.
Instead of computing the times ti to send the answers early
as per the above, the prover will wait for the first challenge
c1 to send back the response r1, and –after a time δ1– will
send the rest of the response table. (The value δ1 is close
to the RTT for the distance d in the medium given.) In this
variant of the attack, errc=#{c∗j 6=c j| j∈{2,...,n}∧x j=1}.
Also, errr =0, as before. However, errt = 1, as the prover
awaits for the first challenge to arrive at it. So, in this case,
err= errc'(HW(x2...xn)

2 +1).
Theoretically, in this attack, the guessing of the

challenges ci for i 6∈ S and the computation of the
corresponding ri can be done in real time. In practice, this
takes too long hindering the attack; see Section 5.

5 Distance Fraud on Android Phones

In this section, we describe the implementation of DF
attacks on the Swiss-Knife protocol, similar to the ones
presented in the previous section, using two NFC-enabled
Android phones. The attacks’ implementation is given
in Section 5.1, but first we present some background and
preliminaries.

Existent SwK Implementation. We base our DF
implementations on an existing proof-of-concept imple-
mentation of the Swiss-Knife protocol on NFC-enabled,
Android phones presented in (Gambs et al., 2016). The
implemented Swiss-Knife protocol follows the ISO/IEC
14443 standard and allows two smartphones to communi-
cate via the ISO-DEP protocol. One phone acts as a prover
which emulates a ISO/IEC 14443-4-compliant NFC-A
tag through host-card emulation, and the other phone is
a verifier behaving as a card reader. The implementation
is split out into two parts, one for the reader and one for
the tag. The resulting applications can be installed on
smartphones running Android 4.4 (KitKat) or higher. The
execution of the SwK protocol is initiated by the reader,
and triggered when a card-emulating phone is in range.

Pre-Attack Time-Measurements. A dishonest
prover would first run a series of tests to see how a protocol
works and discover its potential weak points. This amounts
to the practical computation of the measures stated theo-
retically in Section 4: the values tk (i.e., the moments in
time to send the answer k early) and the function F (i.e.,
used to compute these tk, based on different parameters
and measurements), etc. From this viewpoint, a dishonest
prover would measure or ascertain: 1. How long one single
challenge takes to arrive from the verifier and/or how long it

takes for the response to go the verifier. 2. The difference in
communication time for a challenge or response containing
a 0 or a 1. 3. How long it takes to process a challenge and
send back a response (possibly again varying these upon
the specific values of the challenge); an instance of this
was denoted as δ1 in Section 4. 4. The total duration of the
whole timed phase. 5. The time it takes from the end of the
initialisation phase to the beginning of the fast/time phase;
we denoted this as t1 in Section 4. 6. The time it takes
from the end of the fast/timed phase to the beginning of the
verification phase; this is important in case the dishonest
prover has to process some additional aspects after the fast
phase so that only after he becomes ready to pass the verifi-
cation phase. 7. All of the above can (in a first instance) be
done from several distinct distances (still) within the usual
bound, to get the time differentials as the prover would
gets further from the verifier. Using the commonly-known
transmission-speed on the channel, the attacker would then
extrapolate (with some error) what the communication
times would be over larger distances d outside the bound.

A dishonest prover will/should do variations of the
measurements 1-7 above in repeated executions and
average the results. In the weak WB corruption-model,
such dishonest provers would undertake most of these
measurements from their side, during correct executions
(i.e., with no direct access to the verifier’s side or
measurements, no intricate hardware attacks, etc).

For the weak WB DFs’ implementations presented next,
we did not carry out all the measurements presented in the
“real-world DF considerations” above. Notably, we did
evaluate points 1, 5 and 6 above and a few other aspects (de-
tailed further in Sec. 5.1). To this end, one important aspect
for the DF attacks described in Section 3 is the time be-
tween two consecutive responses by the prover. Concretely,
we were interested in the measurements shown in Fig. 2.

Figure 1: Fast-phase communication-times diagram

round-to-round
time

The verifier does not process anything
here. He just samples a random bit.
This time can be considered negligibly
small, for dishonest provers in DFs
who do not have access to this
measurement.

Figure 2: Communication & Computation Times in DB

Using the notations in Fig. 2, we have that “two-way
communication time” = (“round to round time” -
“prover processing time” - “verifier process-
ing time”). However, again, a weak WB dishonest
prover does not have access the verifier processing time, but
can approximate this to zero. So, “response communi-
cation time ' “two-way communication time′′/2.
This gives the prover an estimate for the time-travel of a
response from itself to the verifier.

Based on the SwK implementation, with the prover

and verifier within the distance-bound (at 2cm apart), over
100 iterations, we measured the above from the perspective
of a (dishonest) prover, i.e., keeping time logs only on the
prover’s side. The results of these are given in Table 3.
By performing the same measurements from the verifier’s
viewpoint, we observed that the prover’s estimates only dif-
fer by cca. 0.5ms, i.e., that a dishonest prover can reliably
approximate these times, without having access to infor-
mation on the time-measurements on the verifier’s side.

round-to-round time 12.56746 ms
average round processing time 0.324687 ms
two-way communication time 12.24277 ms
response communication time 6.121385 ms

Table 1: Relevant Timing Measurements Executed from the
Prover’s Side (avg. over 100 iterations)

5.1 Implementations of DF Attacks

In all our experiments, we used two off-the-shelf Google
Nexus 5 smartphones. Our implementation and tests are
available at: people.itcarlson.com/ioana/df.zip.

5.1.1. The “Imperfect DB-Timing” Attack

This is the DF in Section 3.1.1. Based on x, we construct a
table of precomputed answers rk for each k∈S. Then, for
any index j∈{1,...,n}, the provers will send answers k≥ j
early if k∈S, until k 6∈S. Otherwise, if still k 6∈S, then P∗
waits for the challenge by the verifier. Note that, depending
on the fixed value of the key x, the prover P∗ may send not
one but several answers at once in advance. This can cause
NFC timing issues: the larger the number of consecutive
early responses, the larger the chance that the verifier may
receive a (NFC) response before the (NFC) challenge, or
simply the chance to produce NFC framing/timing issue. To
avoid this, we did implement a small wait in between two
such consecutive early sends. This wait was in line with pre-
attack measurement 1 and the “response communication
time” reported in Table 3, i.e., 6ms (which we later fine-
tuned further as per the below). Also, this amounts to ap-
proximating the times tk for the answers rk in Section 3.1.1.

To describe the rest of the implementation (i.e., the
verification phase), we first need to develop on an aspect
linked to pre-attack measurement 6, as well as the APDU-
based communications2 and their treatment in NFC under
Android. Namely, initially, we implemented the (rest of)
attack exactly as per Section 3.1.1: i.e., in the verification
phase, the dishonest prover would send C as it received
it. However, despite the fact that we fine-tuned the sending
of early responses with waiting times, we noticed that the
attack resulted in errC 6=0. Upon inspection, it transpired
that sending some answers early results in the prover’s list
of receiver challenges be no longer in order. This made
us revisit the waiting time between consecutive early sends:
we further fine-tuned the waiting time in between two

2APDU (Application Protocol Data Unit) is the “atomic” mes-
sage sent/received between a reader and a card as per ISO 7816.

consecutive early sendings at the 5ms mark. Also, helped
by the fact that the indexes of the answers sent early are al-
ways the same (i.e., indexes k∈S, predetermined by xk=0),
we determined how the challenges’ list was unordered.
Moreover, our pre-attack measurement 6 turned useful.
The standard implementation does allow enough time for
us to have our dishonest P∗ to reorder the list of challenges
it receives and thus send out the verification-phase ector
C such that errC=0, as per Section 3.1.1.

Similarly, as per Section 3.1.1, we did try a real-time
adaptation of the time tk to send out an early rk based on
the time tarrivalck−1

arrival of the previous challenge ck−1,
but –due to the way in which the Android APDU service
“stacks” challenges– this proved ineffective.

5.1.2. The “Perfect DB-Timing” Attack

This is the DF in Section 3.1.2. Before the DB phase,
dishonest prover P∗ builds a table with answers r j for
the rounds j ∈ S, as well as for a fixed, guessed value
for the challenges ci for i> 1 and i 6∈ S. Then, there are
two possible cases: (1) P∗ calculates an approximation
the time tend-o f -init-phase from the end of the initialisation
phase to the start of the DB phase, and based on this he
starts sending his answers early, or (2) P∗ waits for the
first challenge to arrive and sends all his answers thereafter.
The latter is the so-called “alternative” of the second attack
in Section 3.1.2. We implemented both cases, but our
experiments report on the first.

W.r.t. sending the answers early, we added a wait of
5ms before pre-emption; again, this is akin to computing
the times tk to emit early answers rk in Section 3.1.1.
An interesting note is the following: if we send the
pre-computed response table at once, without the wait
in between answers, then the APDU service in Android
works in our favour3. I.e., for a prover that is not too
distant from the verifier (as to not cause NFC timeouts),
the NFC responses are “stacked” by the APDU service
and treated by the verifier in the right order.

5.2 Experiments

We aimed to see the limits of the relatively simple DF
attacks in Section 3, by using just standard NFC imple-
mentations, i.e., no amplification by special antennas, no
modification of the NFC stack, etc. So, in this case, the first
thing that matters is the distance at which the two phones
can be from each other and still communicate via NFC;
this is determined by the power of NFC antenna in smart-
phones. Limited by this and our constraints (i.e., no extra
amplification), in our experiments the dishonest prover is
not technically “far-away”, as the tag and reader need to be
at a maximum of 2cm apart (less than the ISO/IEC 14443
bound of 10cm) for an NFC connection to be established.

3This may not work if 2 devices are further apart than
in our setup; see the “Experiments” section. Similarly, the
approximation tend-o f -init-phase may be improper.

Due to the above, in fact our implementation of
the attacks and our measurements only extrapolate how
much distance could be gained via these DFs, i.e., are not
performed with a distant prover. In other words, we are
closer to studying distance-lowering attacks than mounting
“fully-fleged” DFs.

In our experiments, we write a log to register the
results of each attack of a series of runs, as well as the
timings that each run produces. For this, we add code
on the verifier side that measures the duration of the DB
phase (in nanoseconds). No other modification besides this
logging is done to the verifier. The verifier can run multiple
executions uninterrupted. So, we set the verifier run 10
executions per batch, and we ran 20 batches. We used the
same parameters as in (Gambs et al., 2016): n=32, err=3,
errT =70500000ns. Some results are given in Tables 2, 3.

No Attack Imperfect DB-Timing DF Perfect DB-Timing DF
Avg. DB-phase 425.18 ms 312.80 ms 292.58 ms

Avg. errc 0 0 3
Avg. errr 0 0 0
Avg. errt 0 5 0

Table 2: Measurements Averaged over 200 Iterations

Min Max Mean
No attack 315.08 591.39 425.18

Imperfect DB-Timing DF 254.4 447.87 312.80
Perfect DB-Timing DF 252.53 401.84 292.58

Table 3: Full-Runs’ Durations (in ms, avg. over 200 iterations)

The “perfect DB-timing” DF shows a higher number
of low execution times. Meanwhile, the “imperfect
DB-timing” DF has a higher variance in times since the
prover has to wait for a certain number challenges before
being able to respond.

5.3 Discussions

The success of the prover depends on the total err param-
eter. An accepted err of 10% is common (Boureanu and
Vaudenay, 2015), and err fixed at 3 in the implementation.
Hence, according to our experiments, in a third of the cases
the dishonest prover would be accepted. Also, when the
illicit prover passes, the “Perfect DB-Timing” DF displayed
a 31% reduction in execution time and the “Imperfect DB-
Timing” DF exhibited a 26% reduction. If we also look at
the gain in time, this could translate in DFs over thousands
of kilometres. Of course, if an amplification antenna were
used and thus NFC timing/framing aspects would become
more difficult to tune, it is not guaranteed that the rate of
increasing the distance compared to the distance-bound
would be maintained at around 30%. Also, this would
likely not translate to “pure” NFC communication, which
do not need to interface with Android. Moreover, if errT
was smaller, then the success rate would also drop. Also,
these results are for a fixed key and a full assessment for DF
in SwK should be averaged over uniformly sampled keys
on the prover’s side. We leave this for future experiments.

The “perfect DB-timing” DF appears more suited
for use further away from a verifier, due to the reduced
execution times, and the ability to perfectly send back

responses without timing errors. Though, this is at the
expense of yielding response errors. “Imperfect DB-timing”
DF results in no challenge or response errors, but the
dishonest prover needs to be closer to the verifier, because
in some rounds, a wait is required before the prover can
respond. There is a chance of the verifier timing out when
waiting for a response if the prover is too far away. All
these also indicate, once more, than the error-tolerance
parameters in DB need to be carefully chosen and possibly
not compound into a single error factor.

6 Conclusions

Most distance-frauds (DFs) attacks are white-box: i.e.,
they require a dishonest modify its implementation. We
singled out feasible, “weak” white-box DFs: a dishonest
prover will not subvert cryptographic primitives in the
attack. We implemented two such DFs and tested their
feasibility on mobile phones, with no extra hardware
resources, showing that with a DF-attacker can make it look
like they are here and there at the same time! Much work
remains to be done to use, e.g., amplification antennas in
stronger versions of these attacks, run over large distances.

REFERENCES

Avoine, G., Bingöl, M., Kardas, S., Lauradoux, C., and
Martin, B. (2011). A Framework for Analyzing
RFID Distance Bounding Protocols. Journal of
Computer Security, 19(2):289–317.

Avoine, G., Bingöl, M. A., and Boureanu, I. e. (2018).
Security of distance-bounding: A survey. ACM
Comput. Surv., 51(5):94:1–94:33.

Boureanu, I., Gerault, D., and Lafourcade, P. (2018).
Implementation-level corruptions in distance bound-
ing. Cryptology ePrint Archive, Report 2018/1243.
https://eprint.iacr.org/2018/1243.

Boureanu, I., Mitrokotsa, A., and Vaudenay, S. (2012). On
the pseudorandom function assumption in (secure)
distance-bounding protocols. In LATINCRYPT, pages
100–120. Springer.

Boureanu, I. and Vaudenay, S. (2015). Challenges in dis-
tance bounding. IEEE Security Privacy, 13(1):41–48.

Brands, S. and Chaum, D. (1993). Distance-Bounding
Protocols. In Proc. of EUROCRYPT’93, pages
344–359, Lofthus, Norway.

Chothia, T., Boureanu, I., and Chen, L. (2019). Making con-
tactless EMV payments robust against rogue readers
colluding with relay attackers. In Financial Crypto.

Gambs, S., Lassance, C. E. R. K., and Onete, C. (2016).
The Not-so-Distant Future: Distance-Bounding
Protocols on Smartphones. In CARDIS, pages
209–224. Springer.

Kim, C. H., Avoine, G., Koeune, F., Standaert, F., and
Pereira, O. (2008). The Swiss-Knife RFID Distance
Bounding Protocol. In ICISC, LNCS. Springer.

