
3118 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 10, OCTOBER 2020

High Performance Modular Multiplication for SIDH
Weiqiang Liu , Senior Member, IEEE, Ziying Ni, Jian Ni, Ciara Rafferty, Member, IEEE,

and Máire O’Neill, Senior Member, IEEE

Abstract—The latest research indicates that quantum computers will
be realized in the near future. In theory, the computation speed of a
quantum computer is much faster than current computers, which will
pose a serious threat to current cryptosystems. Post-quantum cryptogra-
phy (PQC) is a class of cryptography based on underlying mathematical
problems that are considered infeasible to crack even with access to a
quantum computer. The supersingular isogeny Diffie–Hellman (SIDH)
key exchange protocol is a new post-quantum cryptosystem, which offers
advantages in reduced secret key length and attack resistance. SIDH is
the basis of the supersingular isogeny key encapsulation (SIKE) protocol,
which is in the second round of the U.S. National Institute of Standards
and Technology (NIST) PQC standardization process. In this article, we
propose a new modular multiplication algorithm and a new interleaved
hardware architecture for SIDH. Performance results for the proposed
modular multiplier using four parameter sets for the prime, p that corre-
spond to the SIKE Round 2 parameter sets show significant advantages
in speed.

Index Terms—FPGA, modular multiplication, post-quantum
cryptography (PQC), supersingular isogeny Diffie–Hellman
(SIDH).

I. INTRODUCTION

The computational performance of a quantum computer is expected
to be much higher than that of a traditional computer. In 1994,
Shor [1] proposed a fast decomposition method for large numbers
based on a quantum computer, whose complexity is O(log N), and
the larger the number, the better the performance of Shor’s algorithm.
Later in 1996, Grover [2] proposed a quantum algorithm that can be
used to search an unsorted database faster than a traditional computer
[quadratic speedup O(N/2) time rather than O(N)]. In recent years
much effort has gone into the development of quantum computers by
industry, and in 2019, Google developed a new 54-qubit processor,
which is 9 orders of magnitude faster than the fastest supercom-
puter [3]. Thus, it is predictable that quantum computers will become
practical in the near future.

Traditional encryption methods, such as RSA [4] based on the
large number factorization problem, and elliptic curve cryptography
(ECC) [5], based on the discrete logarithm problem, will be easily

Manuscript received April 23, 2019; revised September 18, 2019; accepted
December 10, 2019. Date of publication December 17, 2019; date of current
version September 18, 2020. This work was supported in part by the National
Natural Science Foundation of China under Grant 61871216, in part by the
Fundamental Research Funds for the Central Universities China under Grant
NE2019102, and in part by the Six Talent Peaks Project in Jiangsu Province
under Grant 2018XYDXX-009. This article was recommended by Associate
Editor Y. Makris. (Corresponding author: Weiqiang Liu.)

Weiqiang Liu, Ziying Ni, and Jian Ni are with the College of Electronic and
Information Engineering, Nanjing University of Aeronautics and Astronautics,
Nanjing 211106, China (e-mail: liuweiqiang@nuaa.edu.cn; nzy@nuaa.edu.cn;
nijian@nuaa.edu.cn).

Ciara Rafferty and Máire O’Neill are with the Centre for Secure Information
Technologies, Queens University Belfast, Belfast BT3 9DT, U.K. (e-mail:
c.m.raffertyg@qub.ac.uk; m.oneill@ecit.qub.ac.uk).

Digital Object Identifier 10.1109/TCAD.2019.2960330

broken by quantum computers, which will have an important impact
on current communications and network security.

Post-quantum cryptography (PQC) [6] is a form of public-key
cryptography with high complexity, and includes encryption, digi-
tal signatures, and key encapsulation mechanisms. PQC contains a
variety of algorithms based on different hard problems [7], such as
lattice-based cryptography, multivariate quadratic cryptography, hash-
based signatures, and code-based cryptography. The supersingular
isogeny Diffie–Hellman (SIDH) [8] key exchange protocol is the most
recently proposed PQC scheme. SIDH is based on the theory of point
addition and point doubling in ECC, combined with the theory of iso-
genies in elliptic curves. Two curves E/K and E′/K are isogenous
over K if there exists a morphism φ : E → E′ with coefficients in
K mapping the neutral element of E to the neutral element of E′.
Therefore, SIDH is more complex than ECC, and is believed to be
resistant to attacks by quantum computers [9]. In addition, SIDH is
characterized by relatively small key sizes compared with other PQC
schemes. SIDH is the basis of the supersingular isogeny key encap-
sulation (SIKE) protocol [10], which is a candidate in the NIST PQC
standardization process. However, as SIDH was proposed more than
a decade after other PQC cryptosystems, there is still much work
needed to understand its practical capability.

In 2011, Jao and De Feo [8] proposed the SIDH algorithm and
implemented it for the first time in software. They used a 768-
bit modulus to satisfy 128-bit security and the result is two orders
of magnitude faster than isogeny-based cryptosystems over ordinary
curves. In 2016, Costello et al. [9] proposed a fast software imple-
mentation for SIDH, whose computing speed is 2.5 times faster than
the original software implementations. In the same year, the first
hardware implementation of SIDH on Virtex-7 FPGA was presented
in [11]. The implementation is 50% faster than the fastest known
software implementation. Most recently, in 2019, Koziel et al. [12]
improved the Montgomery multiplier with an optimized radix, which
is faster than the previous designs.

In SIDH, the modulus p = leA
a leB

b · f ± 1, where la and lb are
two small prime numbers, and f is a small number, so that p con-
forms to the form of a prime number. In general, log2 leA

a is required
to be approximately log2 leB

b to ensure that either side of A and
B is equally difficult for attackers. The modulus plays an impor-
tant role in public key cryptography schemes. Karmakar et al. [13]
proposed a fast modulus multiplication method for the modulus in
this special field. Liu et al. [14] improved the modular multiplica-
tion algorithm over [13] by proposing a new algorithm. Bos and
Friedberger [15] compared several modular multiplication methods
for SIDH mathematically, but did not provide hardware results.

This article proposes a new modular multiplication algorithm
named high-performance finite field multiplication (HFFM) for the
special field Fp, p = f · 2a · leB

b − 1, which is suitable for a larger
modulus range. In addition, to reduce the overall computation time, a
new multipipelined interleaved architecture running on FPGA is also
proposed.

The rest of this article is organized as follows. Section II reviews
the special field modulus multiplication method. Section III proposes
the new HFFM algorithm and its hardware architecture. Section IV

0278-0070 c© 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 20,2023 at 09:08:20 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-8398-8648

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 3119

presents the results of the hardware implementation and compares
it with the existing hardware implementations. Section V concludes
this article.

II. REVIEW OF FINITE FIELD MULTIPLICATION FOR SIDH

The Barrett reduction [16] is introduced first, which is used
in the following algorithms. Barrett reduction consists of several
multiplications and shift operations instead of the division operation.
As a result, it is efficient for hardware implementation. The trans-
formation of division in a mod b is shown in (1), where x = 2k/b,
k = log2 a. For more details on Barrett reduction, please refer to [16]

1

b
=

(
2k

)
/b

b · 2k/b
=

(
2k

)
/b

2k
≈ x

2k
. (1)

One of the moduli in the SIDH public key exchange protocol is
p = f · 2a3b − 1, where f is a very small positive integer, such
as 1, 2, etc. Based on this form of special field, [13] proves that a
good performance can be achieved using Barrett reduction directly
and proposed a fast modulus multiplication method named efficient
finite field multiplication (EFFM) through mathematical transforma-
tion. Assume p = 2 · 2a · 3b − 1 and that both a and b are even
numbers, and the radix R = 2a/2 · 3b/2. Therefore, the number A in
this field can be expressed as follows:

A = a1 · R2 + a2 · R + a3, a1 ∈ {0, 1}, a2, a3 ∈ [0, R). (2)

B in this field also satisfies the structure of (2), and the product C
can be expressed as follows:

C = a1b1 · R4 + (a1b2 + a2b1) · R3 + (a1b3 + a2b2 + a3b1) · R2

+ (a2b3 + a3b2) · R + a3b3. (3)

As 2 · R2 = p + 1, we can get R2 ≡ 2−1(mod p). R2 and R4 in
(3) can be replaced with 2−1(mod p) and 2−2(mod p), respectively,
which can be precomputed and stored directly in the hardware to
save computation time. Through the above transformation, (3) can be
converted into (4) and C can be expressed as C = c1 ·R2 +c2 ·R+c3

C = (a1b3 + a2b2 + a3b1)(mod 2) · R2

+ (�(a1b2 + a2b1)/2	 + (a2b3 + a3b2)) · R

+
(

2−2(mod p)a1b1 + (a1b2 + a2b1)(mod 2)
)

· R/2

+ �(a1b3 + a3b1 + a2b2/2)	 + a3b3. (4)

As c2 and c3 are beyond the range of [0, R), a final division opera-
tion is required. Karmakar et al. [13] proposed the use of the Barrett
division algorithm based on the special structure of the modulus and
Barrett reduction. 2a/2 is a factor of R and the multiplication and
division of 2 in the digital circuit only need shift operation. Thus,
we can extract 2a/2 from the divisor and divide 3b/2 only. Since b is
a fixed integer, the Barrett reduction can be used. The above method
can shorten the bit width of the dividend by a quarter. After the above
process, the result of the Barrett division may be greater than p, so
a subtraction is required for this case.

The values of a1 and b1 in (2) can only be 0 or 1, and dividing
the number in this field into three parts for calculation is not the
best choice. Liu et al. [14] proposed the improved EFFM (FFM1)
algorithm to optimize (4). Suppose A in this special field still satisfies
(2), as (p − A)(p − B)(mod p) = A · B(mod p), if A is greater than
R2, then A′ can be found using

A′ = p − A (a1 = 1). (5)

Equation (6) is the expression expanded by A′, where a′
i = R −

1 − ai, i = 2, 3

A′ = a′
2 · R + a′

3, a′
2, a′

3 ∈ [0, R). (6)

Then, the product C′ of A′ and B′ is expressed as (7). Moreover, it
is not guaranteed that the two multiplicands A and B are greater than
R2 at the same time, and the final results may need to be modified.
The modified process is shown in

C′ = a′
2b′

2 · R2 + (
a′

2b′
3 + a′

3b′
2
) · R + a′

3b′
3

= (
a′

2b′
2(mod 2)

) · R2 + (
a′

2b′
3 + a′

3b′
2
) · R

+ (
a′

3b′
3 + ⌊

a′
2b′

2/2
⌋)

= c′
1 · R2 + c′

2 · R + c′
3 (7)

A · B(mod p) = A′ · B′(mod p) · (−1)a1⊕b1 . (8)

In addition, c′
2 and c′

3 in (7) may be greater than R, and hence,
may need to be reduced by Barrett division.

In order to solve the problem that only a small range of moduli
can be used in the FFM1 algorithm, Liu et al. [14] proposed another
finite field multiplication (FFM2) algorithm. The FFM2 algorithm no
longer divides operands A and B. f , a, and b are no longer required to
meet the above conditions as in FFM1. In addition, FFM2 algorithm
using p = 2a3b · f + 1 and p = 2a3b · f − 1 are studied separately.

Assume that p = 2a3b · f − 1, in this case, we can get

f · 2a3b = p + 1. (9)

Then, the product C mod p can be expressed as follows:

C ≡ q · (p + 1) + r ≡ qp + q + r ≡ (q + r) mod p. (10)

From (10), we know that when p is f · 2a3b − 1, we can first find
the quotient and remainder of C to f ·2a3b, and then add the quotient
and remainder to get the result. However, the sum of the quotient and
remainder may be greater than the modulus p; so the result needs to
be modified. In (11), r is the remainder and q is the quotient. By
deduction, we have

0 ≤ r + q < 2p. (11)

As it can be seen from (11), in this case, a subtraction may be
required in the final stage to modify the final result. Similarly, when
p = f · 2a3b + 1, we have

C ≡ q · (p − 1) + r ≡ qp − q + r ≡ (r − q) mod p. (12)

By deduction, we have

− p ≤ r − q ≤ p. (13)

When the difference is less than 0, we have to add p to the final
result. For more details on the FFM1 and FFM2 algorithm, please
refer to [11].

III. HFFM MULTIPLICATION ALGORITHM AND ITS HARDWARE

ARCHITECTURE

A. HFFM Algorithm for SIDH

The dividing and conquering method of the EFFM and FFM1 algo-
rithms is an effective idea, and (10) can simplify the computation.
Inspired by this, if a/2 is used to preprocess the operands, only one
Barrett reduction is required. Therefore, we choose f · lbb as a radix.
For f · lbb, the values of f and b will be chosen to make sure that p
is a prime.

Thus, the HFFM algorithm is proposed as follows. If p = f · 2a ·
lbb − 1, then f is a very small positive integer, and a and b do not
need to be even. The number A in this special field can be expressed
as follows:

A = a1 · f · lbb + a2, a1 ∈ [
0, 2a)

, a2 ∈
[
0, lbb

)
. (14)

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 20,2023 at 09:08:20 UTC from IEEE Xplore. Restrictions apply.

3120 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 10, OCTOBER 2020

Fig. 1. Decomposition in the HFFM algorithm. (H: the first half of the
operand, L: the second half of the operand).

B in this field can also be written in the same expression as (14).
Therefore, the product C of A and B can be expressed as follows:

C = a1b1 ·
(

f · lbb

)2 + (a1b2 + a2b1) · f · lbb + a2b2. (15)

As a1b2 + a2b1 is less than 2p and the product of 2a and f · lbb
is (p + 1), a1b2 + a2b1 is split in half by 2a. Set m1 = �(a1b2 +
a2b1)/2a	, which is the first half of a1b2 + a2b1, and set m2 =
(a1b2 + a2b1)(mod 2a), which is the second half of a1b2 + a2b1.
Then (a1b2 + a2b1) · f · lbb is converted into

(a1b2 + a2b1) · f · lbb = (
m1 · 2a + m2

)
f · lbb

= m1 · 2a
(

f · lbb

)
+ m2 · f · lbb

= m1 · (p + 1) + m2 · f · lbb
= m1 + m2 · f · lbb
= ⌊

(a1b2 + a2b1)/2a⌋

+ (a1b2 + a2b1)
(
mod 2a) · f · lbb. (16)

Equation (16) breaks (a1b2 + a2b1) · f · lbb into two parts. One part
takes 1 as the radix and the other part takes f · lbb as the radix. The
bit width of each part is only about half of p. Similarly, since a1b1
is less than 2p, we split it into two terms by 2a. After the first split,
it will produce a radix of (f · lbb)2. As the bit width of f · lbb and
(a1b1)(mod 2a) are both about half of p, the product can be divided
by 2a as above. Therefore, a1b1 · (f · lbb)2 is converted as follows:

a1b1

(
f · lbb

)2

= ⌊
(a1b1)/2a⌋(

f · lbb

)
+ (a1b1)

(
mod 2a)(

f · lbb

)2

= ⌊
(a1b1)/2a⌋(

f · lbb

)
+

⌊(
(a1b1)

(
mod 2a)(

f · lbb

)
/2a

)⌋

+
((

(a1b1)
(
mod 2a) ·

(
f · lbb

))(
mod 2a)) ·

(
f · lbb

)
. (17)

Equation (15) is finally expressed as follows:

C = c1 ·
(

f · lbb

)
+ c2

=
(
(a1b2 + a2b1)

(
mod 2a) + ⌊

(a1b1)/2a⌋

+
((

(a1b1)
(
mod 2a) ·

(
f · lbb

))(
mod 2a)))

·
(

f · lbb

)

+
(

a2b2 + ⌊
(a1b2 + a2b1)/2a⌋

+
⌊(

(a1b1)
(
mod 2a)(

f · lbb

)
/2a

)⌋)
. (18)

The above decomposition process is shown in Fig. 1. In addition,
in the initial stage of the algorithm, the Karatsuba algorithm can be
used to calculate a1b2 + a2b1 to save one multiplication. c2 in (18)
may be larger than f · lbb; so Barrett reduction is used to ensure c2
falls in [0, f · lbb). To further save multiplication operations, we only

Algorithm 1 HFFM Multiplication With Special Field

1: input : A = a1flb
b + a2; B = b1flb

b + b2
2: output : C = c1flb

b + c2
3: compute a1b1, (a1 + a2)(b1 + b2), a2b2, a1b2 + a2b1 =

(a1 + a2)(b1 + b2) − a1b1 − a2b2, r1 = a1b1 mod 2a, q1 =
�a1b1/2a	, r1flb

b;
4: c2 = a2b2 + �(a2b1 + a1b2)/2a	;
5: c2 = c2 + �r1flb

b/2a	;
6: c1 = q1 + (a2b1 + a1b2) mod 2a;
7: c1 = c1 + r1flb

b mod 2a;
8: Barrett Reduction(c2)⇒ c2 = r, c1 = p + q;
9: c1 = c1 mod 2a; c2 = c2 + �c1/2a	.

Fig. 2. Proposed new architecture for N · N multiplication in eight cycles.

calculate the first half of the dividend in the Barrett reduction, which
may produce a result of Barrett reduction that is more than 2 · f ·
lbb, and one extra subtraction is required. After that, the results of
adding the quotient and c1 may also be greater than 2a. Therefore,
a shift operation may be required. In (15), splitting a1b2 + a2b1 is
not necessary; however, it shortens the coefficient bit width of f · lbb.
The proposed HFFM algorithm is shown in Algorithm 1.

Similar to the FFM1 algorithm, the HFFM algorithm divides the
multiplier into two segments. However, the new algorithm uses f · lbb
to segment operands and uses multiple shifting operations instead
of partial division. As a result, the number of multiplications and
additions in the HFFM algorithm are less than that of the FFM1 and
FFM2 algorithms. The multiplication in the HFFM algorithm is also
more friendly for pipelined hardware implementation. Compared with
FFM2, if under the same modulus, the HFFM algorithm performs the
same operation with only half of the bit width.

B. New Hardware Architecture for the Proposed HFFM Algorithm

We also propose a new interleaved hardware architecture to
increase the operating frequency and reduce the computation time
of the SIDH modular multiplication. In this architecture, there are 9
N/6-bit multipliers, 3 N/3-bit carry-save adders (CSAs), 1 (N/3+1)-
bit CSA, 4 (N/3+1)-bit adders, and 2 N-bit adders. The whole design
is controlled by a finite state machine (FSM).

As observed from previous designs, the large multiplier limits the
operating frequency. Further splitting up the multiplication units can
further increase the frequency. For this design, we choose the modulus
p = 2a · lbb · f − 1, and K = a which is used for the shift operation,
N′ = max(digit(2a), digit(lbb · f)). Complete N′ to the point that it
is divisible by 6 to get N. It takes 8 cycles to complete an N · N
multiplication, which is divided into two stages. As shown in Fig. 2,

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 20,2023 at 09:08:20 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 3121

TABLE I
COMPARISON OF DIFFERENT HARDWARE ARCHITECTURES AND ALGORITHMS OF MODULAR MULTIPLICATION FOR SIDH ON VIRTEX-7 FPGA

(F: FREQUENCY, MULT.: THE FIRST TWO MODULAR MULTIPLICATIONS)

Fig. 3. Steps of N · N multiplications of the proposed modular multiplier.

it takes 4 cycles for the first stage to complete a multiplication of
N/2 · N/2.

In the first cycle of the first stage, we use 9 N/6 · N/6 multipliers
to calculate the partial products. In the second cycle, the results from
the first cycle are stored in a register. In addition, we calculate the
sum of the lowest three partial products using an adder and a CSA,
then store the N/6-bit sum and pass the (N/6 + 1)-bit carry to the
next cycle. In order to reduce the delay of the third cycle, a CSA is
used to perform preliminary operations on the middle three partial
products. In the third cycle, a CSA and (N/3+1)-bit adders are used
to obtain the addition result of the last six partial products. After that,
the (N/6+1)-bit carry and two partial products are sent to a CSA for
calculation. In the fourth cycle, we use two (N/3+1)-bit adders to get
the most significant (5N/6)-bit of the N/2 ·N/2 multiplication result.

If the data pipeline passes the 4 cycles in the first stage, then the
next cycle after the first N/2·N/2 multiplication operation is complete
will get the result of the second N/2 · N/2 multiplication. In order
to use an adder with a smaller number, the partial product of N · N
is calculated in the order from the least significant part to the most
significant part. Therefore, for the 4 cycles of the second stage, an N-
bit adder is used, and the adder gets the N-bit addition result in every
clock cycle. If the second half of the result no longer participates in
the operation, it will be stored in the register in advance. Fig. 2 shows
the calculation of an N · N multiplication in 8 cycles.

However, the last multiplication [((a1b1) mod 2a)(f ·lbb)] is depen-
dant on the result of a1b1, while the other multiplications are indepen-
dent of each other. For multiple N · N multiplications, the pipelined
architecture can also be used. A four-stage pipeline architecture is
proposed for use here, which can save 12 cycles.

Since only the first N-bit of the dividend is calculated when per-
forming the first step of the Barrett reduction, the reduction result
may be greater than 2 times f · lbb. As it is an odd number (extract a
multiple of 2 in f and add it to a), the lowest significant bit (LSB) of
the inversion of f · lbb is changed from 0 to 1 to get its complement.
For the same reason, the complement of 2f · lbb is inverted by f · lbb

first, and the LSB is replaced by 1 and then it is shifted one bit to
the left. In addition, we only need to subtract the lower (b + 1) bits
of c2. The modular multiplication is complete.

It can be seen that all blocks of the proposed modular multiplier
are not working at the same time, which causes low computa-
tional efficiency. There is a lengthy waiting time between the initial
stage of the modular multiplier and the multiplication required by
Barrett reduction; therefore, we consider interleaving the two modu-
lar multiplications. The specific steps of the operation are shown in
Fig. 3.

We call each four cycles a layer. As we can see from Fig. 3, the
interleaved multiplier calculates the four partial products required for
the first modular multiplication at layers 0–4, and then calculates four
partial products required for the second modular multiplication at lay-
ers 5–8. At the same time, we calculate c1 and c2 of the first modular
multiplication. Then the two multiplications in Barrett reduction are
calculated in turn. There is only one cycle in the 10th layer and 13th
layer because the operand of the next multiplication has not yet been
calculated and needs to be extended by one cycle. Since the next
two modular multiplications can be calculated at the beginning of
each 0 layer, the iteration period is also shortened. At this time, the
multiplier requires 66 cycles for the first two modular multiplications,
and a multiplication iteration is completed every 54 cycles.

IV. RESULTS AND COMPARISON

To offer a fair comparison with previous work, the proposed hard-
ware modular multiplier architecture is implemented on a Virtex-7
xc7vx690tffg1157-3 device, and compiled with Xilinx Vivado 2018.2.
The modulus p = 2387·3242−1 and four parameter sets corresponding
to the NIST Round 2 SIKE parameter sets are used.

The FPGA implementation results for the five parameter sets are
listed in Table I. The proposed modular multiplier design is com-
pared with the latest design [12] for parameter sets SIKEp503 and
SIKEp751, while it is compared with the systolic array Montgomery
multiplier from [12] for SIKEp434 and SIKEp610. Since there is no
implementation for reference and every block in the systolic array
Montgomery multiplier are the same, we select the highest frequency
of SIKEp503 and SIKEp751 in [12] to estimate the frequency of the
systolic array Montgomery multiplier of SIKEp434 and SIKEp610.
We also compare with [14] for P771. In order to save DSP resources,
we use 16 N/8 multipliers in the SIKEp503, which reduces DSPs
from 81 to 64.

From Table I, all of the proposed HFFM designs are faster than
the previous designs. Compared with the optimized Montgomery
multiplier in [12], the proposed design can still achieve 11–18%
speed improvement and compared with the conventional Montgomery
multiplier, the proposed design achieves a 22–29% speed improve-
ment. As can be seen from the table, In the case of SIKEp434 and

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 20,2023 at 09:08:20 UTC from IEEE Xplore. Restrictions apply.

3122 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 10, OCTOBER 2020

SIKEp503, the proposed design uses less DSP resources. Since a DSP
can calculate a 17 × 17 unsigned multiplication [12] and can be con-
verted into 345LUTs in Multiplier 12.0 of Vivado, the resources we
used in SIKEp434 are similar to the previous design. The proposed
design with SIKEp503 uses less resources. In addition, the proposed
design for prime, P771, is nearly two times faster than the previous
reported equivalent design.

V. CONCLUSION

In this article, a new high performance modular multiplication
algorithm named HFFM for the specific fields in SIDH is proposed.
This algorithm saves multiplications and additions compared with
the previous algorithms. In addition, we propose a new interleaved
multiplication architecture that allows two multiplications to be inter-
leaved, which significantly saves computation time. Compared with
previous work, the proposed multipliers are much faster. In addi-
tion, the proposed multiplier for the SIKEp503 parameter set uses
even less hardware resources. Overall, it is evident that the proposed
multipliers can be used to achieve high speed SIKE implementations
in hardware.

REFERENCES

[1] P. W. Shor, “Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer,” SIAM J. Sci. Stat. Comput.,
vol. 26, no. 5, pp. 1484–1509, 1994.

[2] L. K. Grover, “A fast quantum mechanical algorithm for database
search,” in Proc. 28th ACM Symp. Theory Comput., 1996, pp. 212–219.

[3] F. Arute et al., “Quantum supremacy using a programmable supercon-
ducting processor,” Nature, vol. 574, pp. 505–510, Oct. 2019.

[4] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining dig-
ital signatures and public-key cryptosystems,” Commun. ACM, vol. 21,
no. 2, pp. 120–126, 1978.

[5] V. S. Miller, “Use of elliptic curves in cryptography,” in Proc. 7th Annu.
Int. Cryptol. Conf. Adv. Cryptol., vol. 218, 1985, pp. 417–426.

[6] D. J. Bernstein, “Introduction to post-quantum cryptography,” in Post-
Quantum Cryptography. Berlin, Germany: Springer, 2009, pp. 1–14.

[7] L. Chen et al., “NIST: Report on post-quantum cryptography,” Nat. Inst.
Stand. Technol., Gaithersburg, MD, USA, Rep. NISTIR 8105, 2016.

[8] D. Jao and L. De Feo, “Towards quantum-resistant cryptosystems from
supersingular elliptic curve isogenies,” in Proc. 1st Int. Conf. Post
Quantum Cryptography, 2011, pp. 19–34.

[9] C. Costello, P. Longa, and M. Naehrig, “Efficient algorithms for super-
singular isogeny Diffie-Hellman,” in Proc. 36th Annu. Int. Cryptol. Conf.
Adv. Cryptol., vol. 9814, 2016, pp. 572–601.

[10] D. Jao et al., Supersingular Isogeny Key Encapsulation NIST Post
Quantum Standardization Project, Gaithersburg, MD, USA, 2017.

[11] B. Koziel, R. Azarderakhsh, M. M. Kermani, and D. Jao, “Post-quantum
cryptography on FPGA based on isogenies on elliptic curves,” IEEE
Trans. Circuits Syst. I, Reg. Papers, vol. 64, no. 1, pp. 86–99, Jan. 2017.

[12] B. Koziel, A.-B. Ackie, R. E. Khatib, R. Azarderakhsh, and
M. Mozaffari-Kermani, “SIKE’d up: Fast and secure hardware
architectures for supersingular isogeny key encapsulation,” IACR
Cryptol. ePrint Archive, Rep. 2019/711, 2019. [Online]. Available:
https://eprint.iacr.org/2019/711

[13] A. Karmakar, S. S. Roy, F. Vercauteren, and I. Verbauwhede, “Efficient
finite field multiplication for isogeny based post quantum cryptography,”
in Proc. 10th Int. Workshop Arithmetic Finite Fields, 2016, pp. 193–207.

[14] W. Liu, J. Ni, Z. Liu, C. Liu, and M. O’Neill, “Optimized modular
multiplication for supersingular isogeny Diffie-Hellman,” IEEE Trans.
Comput., vol. 68, no. 8, pp. 1249–1255, Aug. 2019.

[15] J. W. Bos and S. J. Friedberger, “Arithmetic considerations for isogeny-
based cryptography,” IEEE Trans. Comput., vol. 68, no. 7, pp. 979–990,
Jul. 2019.

[16] P. Barrett, “Implementing the Rivest Shamir and Adleman public key
encryption algorithm on a standard digital signal processor,” in Proc. 7th
Annu. Int. Cryptol. Conf. Adv. Cryptol., vol. 263, 1987, pp. 311–323.

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 20,2023 at 09:08:20 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

