N)
Py Implementing the Draft RISC-V Scalar Cryptography Extensions

Thinh Pham
thinh.pham@bristol.ac.uk
University of Bristol, Department of
Computer Science
Bristol, United Kingdom

Ben Marshall
ben.marshall@bristol.ac.uk
University of Bristol, Department of
Computer Science
Bristol, United Kingdom

Daniel Page
daniel.page@bristol.ac.uk
University of Bristol, Department of
Computer Science
Bristol, United Kingdom

ABSTRACT

RISC-V is an increasingly popular, free and open Instruction Set Ar-
chitecture (ISA). Many standard extensions to RISC-V are currently
being designed and evaluated, including one for accelerating cryp-
tographic workloads. Unlike most incumbent ISAs which re-use
existing large SIMD state and data-paths to accelerate cryptographic
operations, RISC-V also adds support for smaller machines with
narrow 32 and 64-bit data-paths. For embedded, IoT class devices,
this significantly lowers the barrier to entry for secure and effi-
cient accelerated cryptography. In this paper, we describe (to our
knowledge) the first complete, free and open-source implementa-
tion of the draft 32-bit RISC-V Cryptography Extension. We detail
the performance benefits for several important algorithms, and as-
sociated hardware costs. Our experiences help to guide the ongoing
standardisation work and provide a platform for other researchers
to experiment with a complete and representative CPU system,
implementing the draft cryptography extension.

CCS CONCEPTS

« Security and privacy — Security in hardware; - Computer
systems organization — Embedded systems.

KEYWORDS
RISC-V, cryptography, ISE, implementation, CPU

ACM Reference Format:

Ben Marshall, Daniel Page, and Thinh Pham. 2020. Implementing the Draft
RISC-V Scalar Cryptography Extensions. In Hardware and Architectural
Support for Security and Privacy (HASP °20), October 17, 2020, Virtual, Greece.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3458903.3458904

1 INTRODUCTION

RISC-V is a (relatively) new Instruction Set Architecture (ISA),
which by design is, free and open for anyone to implement and
extend [17]. As a result of these features, coupled with the surround-
ing community and availability of supporting infrastructure such
as compilation tool-chains, a wide range of academic and industrial
RISC-V implementations exist.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HASP °20, October 17, 2020, Virtual, Greece

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8898-6/20/10...$15.00
https://doi.org/10.1145/3458903.3458904

In the context of low-end embedded or IoT-class devices, the
security of data during computation and communication is of crit-
ical importance. The delivery of security-related properties will
typically depend on some form of cryptographic technology. Such
technologies now span a rich set of functionality (i.e., beyond en-
cryption), and, in theory at least, can delivery robust guarantees
about the secrecy and authenticity of data and end-points. However,
the practical implementation of cryptographic technologies still
remains a significant challenge due to 1) the constraints low-end
devices operate under, which include latency, throughput, area,
memory footprint, and energy consumption, for example, and 2)
the diverse attack landscape low-end devices operate in.

To address such challenges, a broad range of implementation
strategies are available. At one end of the spectrum are pure soft-
ware solutions. The implied constraint on computation and storage
often means such a solution is unsuitable. For example, implement-
ing AES in software for a small 32-bit CPU may imply hundreds of
cycles per block encryption; improving this is difficult without the
memory footprint associated with pre-computation. At the other
end of the spectrum are pure hardware solutions. For low-end de-
vices, such solutions often involve including a dedicated accelerator
in a host system: see, e.g., the OpenTitan AES hardware IP'. While
efficient in terms of latency, disadvantages of this approach include
their low flexibility: such accelerators are usually fixed function,
making it difficult or impossible to use other operating modes, or
incorporate a specific countermeasure against a pertinent imple-
mentation attack. Where such an accelerator is not tightly-coupled
(i.e. it is a physically separate, memory-mapped device), two further
disadvantages may exist. First, the fact the accelerator is unable to
share logic with the core leads to high area. Even when measured
relative to the wider System on Chip (SoC), anything other than full
utilisation of the accelerator, which would be unlikely, multiplies
the associated overhead. Second, if the overhead of communication
with the accelerator cannot be amortised, e.g., when encrypting
short messages, this may dominate overall latency.

Positioned between pure software and pure hardware, hybrid so-
lutions such as Instruction Set Extensions (ISEs) offer a compromise.
In a general sense, an ISE is a special-purpose extension of a more
general-purpose base ISA: while adding functionality, they can of-
ten allow improvements wrt. area and utilisation vs. hardware only
alternatives, and latency and memory footprint vs. software only
alternatives. ISEs are a native concept in RISC-V, where a small base
ISA of only ~ 50 instructions is extended to suit different use-cases
via either standard or custom ISEs. Multiple proposals for standard
extensions are currently being worked on, one of which is the cryp-
tography extension (Crypto ISE). The current proposal (detailed

! https://docs.opentitan.org/hw/ip/aes/doc/

https://orcid.org/
https://orcid.org/
https://orcid.org/
https://doi.org/10.1145/3458903.3458904
https://doi.org/10.1145/3458903.3458904
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3458903.3458904&domain=pdf&date_stamp=2021-10-23

HASP 20, October 17, 2020, Virtual, Greece

in Section 2) is radically different to past ISAs in that it adds dedi-
cated support for accelerating cryptography to deeply embedded
32-bit CPUs, all the way to sever class machines with large vector
compute engines. It does this by adopting a tailored approach to
each class of CPU core, with separate specifications for small, scalar
cores and larger cores which implement the work-in-progress vector
extension [23].

Consider, for example, support for AES. First, note that a strongly
RISC-oriented design ethos (such as that of RISC-V) constrains the
ISE design by, e.g., limiting instructions to a 3-address (2 source,
1 destination) format. This would rule out the design used by
SPARC [9, Sections 7.3+7.4] because it employs a 4-address (3 source,
1 destination) alternative. Second, designs such as x86 [10, Section
12.13] or IBM Power [11] and ARMv8-A [15] are often retrofitted
onto the base ISE, (re)using existing architectural resources; com-
mon example is a SIMD or vector register file, which better matches
the word size required. RISC-V cannot rely only on this approach,
as it leaves low end devices out of scope, hence the tailored support
for difference classes of CPU.

Contributions. We describe the SCARV CPU and SoC platform:
A complete implementation of a 32-bit RISC-V system, built with
free and open-source tooling and designed to be a solid base which
other researchers can build upon. Using the SCARV CPU as a base,
we then describe (to our knowledge) the first complete, free and
open-source implementation of the 32-bit RISC-V Crypto ISE. We
provide evaluations of important cryptographic workloads using
the ISE and the associated implementation costs, with comparisons
to similar efforts and alternative solutions to cryptographic ac-
celeration. We also give a qualitative evaluation of the functional
verification effort needed to show the implementation is correct.
We hope to contribute to the standardisation process by providing
an implementation of the ISE which is completely open for scrutiny.

Organisation. Section 2 gives an overview of the RISC-V Crypto
ISE proposal, focusing on the scalar instructions. Section 3 describes
our base CPU and SoC platform. Section 4 details the implemen-
tation of the Crypto ISE, and the challenges of integrating it into
an existing CPU. Section 5 describes the software size and perfor-
mance improvements seen by including the ISE, and the associated
hardware overheads.

2 THE DRAFT RISC-V CRYPTO ISE

The RISC-V Crypto ISE is in the process of being standardised,
with draft releases [22] and work in progress code and infrastruc-
ture [21] available publicly on Github. For RISC-V in particular, the
standardisation process is important to prevent fragmentation of
the ISA, and to give a common platform for software developers to
target. Were it not for standardised approaches to cryptography ac-
celeration, it is likely that vendors would implement many different
and incompatible custom extensions.

In this work, we refer to v@.7.0 of the draft specification?. A
thorough description of the ISE may be found there. We provide

ZNote that we have undertaken this work because the specification has stabilised, and
is considered feature complete. The exact version number does not represent or imply
how ready it is.

Ben Marshall, Daniel Page and Thinh Pham

the following overview for completeness, and a listing of the im-
plemented instructions in Appendix A. The Crypto ISE is broken
into three main components.

2.1 Vector Instructions

The Vector component builds on the proposed RISC-V Vector Ex-
tension [23]. This component follows the longstanding tradition
of using pre-existing SIMD or vector registers to implement large
parts, or the entirety of certain cryptographic algorithms. For exam-
ple, there is an All-Rounds AES encryption instruction, which takes
a key and input state, and performs an entire AES block encryption
in one instruction.

This component of the Crypto ISE is aimed at large cores, and so
is not discussed further in this work, which focuses on embedded
class devices.

2.2 Scalar Instructions

The Scalar component is aimed at smaller, resource constrained de-
vices which do not implement the Vector Extension, but which still
benefit from accelerated cryptography. It defines new instructions
for the 32 and 64-bit base ISAs. Importantly, all of the instructions
in the scalar component meet the 2-source and 1-destination con-
straint for register accesses. The instructions may be split into two
main categories: generic instructions which are useful for cryptogra-
phy but not specific to it; and algorithm specific instructions, which
are very efficient, but useful only for their particular algorithm.

Parts of the official RISC-V Scalar Cryptography draft propos-
als have been contributed from or informed by the XCrypto [27]
project, which also explores accelerated Cryptography on RISC-V.
We view the official RISC-V Crypto ISE evaluated here as a much
improved, more focused and standardisation appropriate cousin
of the much larger and more experimental, research orientated
XCrypto.

2.2.1 Generic Instructions. The Crypto ISE contains several generic
instructions which are useful for low level cryptographic opera-
tions. Rotation is essential for many important block ciphers and
hash functions, particularly the SHA3 and CSHAKE functions [20]
which underpin several of the NIST Post-Quantum Cryptography
standardisation candidates. Bit permutation instructions are useful
components of many block ciphers, particularly for implementa-
tions of generic SBoxes. They are also useful for endianness con-
versions. Logical operations (and-not, or-not, exclusive nor) are
useful for implementing software-based masking countermeasures
for certain classes of side-channel. Carry-less multiplication is also
included, due to its importance in the Galois/Counter-Mode of
operation [19].

Importantly, all of these generic instructions are also found in
the draft Bitmanipulation extension. Indeed, ownership of these
instructions from a standardisation perspective lies with the RISC-V
Bitmanip Task Group. By sharing (or borrowing) instructions from
another extension, much work is saved in terms of specification,
implementation and verification. It also means that software de-
velopers writing cryptographic code can always rely on the same
critical instructions, rather than having to target potentially many
variations of the Bitmanip extension.

Implementing the Draft RISC-V Scalar Cryptography Extensions

sha256sigd rd, rsi:
rd <- ROR32(rs1,7) * ROR32(rs1,18) * SHR32(rs1, 3)

sha256sum@ rd, rsi:
rd <- ROR32(rs1,2) * ROR32(rs1,13) * ROR32(rs1,22)

Figure 1: Pseudocode for the sha256sum@/sig@ instructions.
The sha256sum1/sigl instructions are the same in form, but
with different shift and rotation constants.

2.2.2 Specialist Instructions: AES. There are two types of dedicated
AES instructions: for 32 and 64-bit data-paths. Based on an evalua-
tion in [26], the proposed design for 32-bit systems is based on [30].
It uses a “T-tables in hardware” approach, and requires only a single
SBox instantiation. This is often the most expensive part of AES
to implement in hardware, making the design much more suitable
for embedded systems. The proposal requires 16 dedicated AES
instructions per block encrypt/decrypt round, plus 4 load-word in-
structions to move the round keys into the general purpose registers.
Figure 3 shows the generic data-path for the AES instructions.

2.2.3 Specialist Instructions: SHA2. The lightweight SHA2 instruc-
tions implement the Sigma and Sum transformations, described
in [18, Sections 4.1.2, 4.1.3]. Example pseudocode for the instruc-
tions is shown in Figure 1.

For SHA256 these functions are implemented directly in a 32-bit
data-path. For SHA512 the functions operate on 64-bit elements, so
the functions are split across multiple instructions. Each instruction
sources two 32-bit registers (making a single 64-bit input) and
outputs either the high or low 32 bits of the result.

2.2.4 Specialist Instructions: SM3 and SM4. The SM3 instructions
implement the PO and P1 transformations of the SM3 hash func-
tion [6], and are analogous to the SHA2 instructions shown in
Figure 1 but with slightly different shift and rotation configura-
tions.

The SM4 instructions also use a “hardware T-table” based ap-
proach to accelerating the SM4 block cipher [7], wrapping up the
SBox and linear transformations in a single instruction. The simi-
larity of the data-paths for the SM4 and AES instructions leads to
some interesting implementation choices, which are explored in
Section 4.

2.3 Entropy Source

The rationale for the Entropy Source (ES) component of the Crypto
ISE is explored more completely in [31]. We provide a short sum-
mary here. The key principle of the ES instruction is to provide an
architectural interface to a source of entropy which can be used for
generating cryptographic secrets. While there is considerable guid-
ance to implementers in the specification, the core of the interface is
very simple, constituting a single instruction: pollentropy. When
executed, the instruction writes a single word to a GPR. The word
contains 16-bits of random data, and a 2-bit status code. The status
code indicates if the random data is valid or not. Three codes indi-
cate why the data might not be usable: WAIT indicates the ES is still
working to generate another data sample, BIST indicates the ES is
performing an internal self test and DEAD indicates a fatal problem

HASP 20, October 17, 2020, Virtual, Greece

with the ES, and that it cannot be used. The random data output of
pollentropy must be cryptographically conditioned before being
used. pollentropy may only be executed in Machine-Mode.

The exact nature of the ES and how it is implemented is up to the
designer to decide. A common choice might be a ring-oscillator. In
this work, we strictly deal with implementation of the pollentropy
instruction within the CPU, and do not discuss implementation of
the ES itself, referring instead to [31].

3 THE CPU PLATFORM

Here, we describe our base CPU and SoC platform for computer
architecture and side-channel security work. The RTL design, verifi-
cation environments and implementation flows are available under
an MIT License on Github [3, 4].

3.1 The SCARV CPU

Architecture. The SCARV CPU implements the 32-bit RISC-V
base ISA and the Multiply and Compressed Standard Extensions [13,
Chapters 7, 16]. The Multiply extension contains instructions for
integer multiplication, division and remainder. The Compressed
extension provides 16-bit variants of commonly used 32-bit base
ISA instructions. It aims at improving code size and density, which
is particularly important for embedded applications with limited
memory and storage space. It also supports vectored interrupts, and
the Machine-Mode section of the Privileged ISA specification [14].
From an architectural perspective, this makes it representative of
many embedded micro-controller and IoT class CPUs in terms of
features.

Micro-architecture. The micro-architecture of the SCARV CPU is
shown in Figure 2. It implements a 5-stage pipeline, split into Fetch,
Decode, Execute, Memory Access and Write-back. Operands are
read in the Decode stage, with forwarding paths from the Execute,
Memory and Write-back stages. The core has a 3-cycle load-to-use
hazard penalty. As a micro-controller, the core does not support
virtual memory and does not implement caches or dynamic branch
prediction.

Functional Verification. We have spent considerable effort on the
functional verification of the SCARV CPU. We re-use and extend the
open riscv-formal framework® to formally verify the correctness
of each instruction implementation, and the consistency of register
accesses. All of the formal verification uses the free and open-source
Yosys, SymbiYosys and Boolector tools. This makes it easy for other
researchers to check for functional correctness before building
on the SCARV CPU, without needing access to proprietary and
expensive EDA tooling.

3.2 The SCARYV SoC

The SCARV SoC is designed to provide the bare minimum of func-
tionality needed to implement a representative embedded class
CPU sub-system, without needing lots of complex software support
packages. It wraps the SCARV CPU with a 1Kb ROM, 64Kb of RAM,
some GPIO pins and a UART modem. The RAM size is configurable,
with the default 64Kb size chosen to support the Embench IoT suite
of benchmarks [29].

Shttps://github.com/SymbioticEDA/riscv-formal/

https://github.com/SymbioticEDA/riscv-formal/

HASP 20, October 17, 2020, Virtual, Greece

Instruction] Instruction
Memory Requests Memary Responses

........... » Instruction
B Feich

Fetch -> Decode

 Froggam couter] Ll Jﬂ‘«i
Instruction Operand
Decode »! Gathering «rﬂ:: |
' v .
Decode -> Execute s2_opr_a s52_opr_b
— 1
| /‘_ -\
GPRs
Specialist
ALU ot
v \
Execute -> Memury s3_opr_a 53_opr_b F
Data Memory [
Requests
¥ A
Memory -> Writeback 54 _opr_a s4_opr_b

Data Memory
Responses

I Control & Status Registers

Figure 2: A block diagram of the SCARV CPU, showing the
main execution pipeline and forwarding paths.

The SoC can be simulated using Verilator, a free and open Verilog
simulator, or implemented on an FPGA. No FPGA or vendor specific
code is used in the SoC (or CPU), but wrappers are provided to
easily support fixed function blocks like BRAMs. There is a complete
example project targeting the SASEBO-GIII [24], a side-channel
analysis platform using a Xilinx Kintex-7 FPGA, with pre-generated
bitfiles also available.

We plan to add support for the new OpenLANE ASIC implemen-
tation flow, an end-to-end synthesis, placement and routing flow
built using free and open-source EDA tooling.

4 CRYPTO ISE IMPLEMENTATION

Here we describe our implementation of Scalar and Entropy Source
components of the Crypto ISE, and its integration into the SCARV
CPU.

First, we split the Crypto ISE in to “ALU-like” instructions, and
specialist instruction. The ALU-like instructions were either generic
and useful outside the Crypto ISE, or which could be implemented
more efficiently when considered alongside existing instructions.
For example, the rotation instructions can be much more efficiently
implemented when integrated into the existing shift instruction
implementation.

We would also expect that the more generic instructions would
be used more frequently than the specialised instructions, which are
used very intensely in short bursts. By separating the specialised
instructions into their own functional unit, we can gate the inputs to

Ben Marshall, Daniel Page and Thinh Pham

Table 1: Segmenting the ALU-like and specialist instruc-
tions.

ALU-like instructions Specialist Instructions

grev/gorc, shfl, clmul, SHAZ2-256, SHA2-512,
pack, andn, orn AES,
xorn, xperm, Rotations SM3, SM4

those instructions to prevent unnecessary toggling. This is essential
in energy efficient designs.

Our final segmentation is shown in Table 1, with ALU-like in-
structions implemented as part of the existing integer ALU, and
specialist instructions grouped together in their own functional
unit.

4.1 ALU-like Instruction Implementation

The andn, orn and xorn instructions can be implemented very
easily with the base ISA and, or and xor instructions by inverting
the second operand as needed.

The rotation instructions (rol, ror and rori) may share most of
their logic with the base ISA shift instructions. Our implementation
uses a barrel shifter, where either: ones, zeros or a repetition of the
shifted operand is shifted in, based on whether we are doing an
arithmetic, logical or rotary shift.

The generic reverse instructions (grev, grevi, gorc) and per-
mutation instructions (xperm, shfl) are implemented as dedicated
logic, since they share none of their functionality with existing
instructions.

The carry-less multiply instruction was implemented as part
of the existing Multiplier, re-using the micro-architectural state
therein. It is essential that the carry-less multiply (and indeed, inte-
ger multiply) instructions are implemented in a constant time man-
ner. Any early-out mechanisms which introduce data-dependant
execution times introduce a timing side channel, which can be
exploited remotely.

4.2 Specialist Instruction Implementation

For the specialist instructions, we again segment into two groups:
the hash function instructions (SHA2, SM3) and the block cipher
instructions (AES, SM4).

The SHA2 and SM3 instructions are very similar in their design.
They both consist of operands which are rotated or shifted by
several constants. The rotated/shifted versions of the operands are
then xor’d together. The instructions are very lightweight, but with
little shared logic between them.

The AES and SM4 instructions share similar high-level data-
paths, as shown in Figure 3. A tradeoff between size and circuit
depth can hence be made by combining (or not) the two instruc-
tions into a single shared data-path. We examine the results of this
tradeoff in Section 5. The area of these instructions is dominated
by their SBox Implementations.

4.3 pollentropy Implementation

We implement the ES as a memory mapped peripheral. The pollentropy

instruction is then translated into a base ISA load word instruction,

Implementing the Draft RISC-V Scalar Cryptography Extensions

— RS1
| RS2 ||| BS |
¢ :
Byte Select =
¢E

SBox

|| sel |

Linear Transform

{az
Word Select «—
32 32

| |Left Rotate 8BS | |«——

S

RD

Figure 3: Data-paths of the AES and SM4 instructions. The
SBox and Linear Transformation blocks differ between the
instructions, but all other data-path aspects remain the
same.

to a pre-determined memory address. This greatly simplifies the
integration, and allows for clean separation between the CPU and
the ES, which is important for verification purposes.

Additionally, it allows for vendor specific access to the raw output
of the entropy source to be added via additional memory mapped
registers. Access to this raw output is required for various vali-
dation programs such as FIPS 140-3 [12] and AIS-31 [25]. After
post-manufacturing validation, such raw data access should be
disabled to prevent any possible security vulnerabilities.

This means that the additional logic for translating the pollentropy

instruction into a load word is included in the subsequent evaluation
section, but the actual ES is not. We consider this to be a totally
separate component, worthy of dedicated analysis, as found in [31].

5 EVALUATION

Here we evaluate the implementation cost of the Crypto ISE, using
the SCARV CPU as a base. We first look at the instruction functional
units in isolation, followed by the integration into the wider system.
We then evaluate the performance and code-size impacts of several
important cryptographic workloads, and briefly discuss the impacts
on verification infrastructure and effort.

To measure the implementation impact, we use Yosys (0.9-1706) [34]
to synthesise the circuit, targeting a generic CMOS logic library.
From this, we extract two metrics: the area of the synthesised cir-
cuit in NAND?2 equivalent cells, and the topological depth of the
circuit. We deliberately provide a more abstract evaluation, rather
than specific timing/frequency and area measurements which are
tied to a specific process design kit (PDK). This makes it easier for
researchers and professionals to replicate and compare our results,
without needing access to (often proprietary) PDKs, or expensive

HASP 20, October 17, 2020, Virtual, Greece

Table 2: Comparison of hardware module sizes when synthe-
sised for a generic CMOS cell library.

Baseline RV32IMC +Crypto ISE

Module Size Depth Size Depth
ALU 1362 34 4215 34
Multiplier 5634 47 5912 47
Specialist Instructions

— SHA256 N/A 737 5
— SHAS512 N/A 845 6
— SM3 N/A 474 3
— SM4 N/A 693 29
— AES N/A 1174 31
— AES + SM4 N/A 1429 36
CPU, Separate AES+SM4 33386 67 39929 69
CPU, Combined AES+SM4 “ “ 39250 69

Table 3: Comparison of hardware modules when imple-
mented on a Xilinx Kintex-7 FPGA, for a 50MHz target fre-
quency.

Design Slices LUTs FFs Timing Slack
Baseline RV32IMC 1221 3843 1808 10.302 ns
+ISE Separate AES+SM4 1817 5834 1813 8.929 ns
+ISE Combined AES+SM4 1787 5713 1813 8.913 ns

Table 4: Sizes of commercial AES and SHA2 accelerators, tar-
geting Xilinx Kintex-7 FPGAs and 0.13um CMOS ASIC.

Accelerat ASIC FPGA Throughput S
ceelerator Gates Slices ASIC/FPGA “°O"T°¢

AES-128 Enc + Dec <5K 94 100/270Mbps [1]

SHA1 + SHA-256 <9K 262 100/182Mbps [5]

EDA tooling. It also matches the methodology used to evaluate
the Bit-manipulation extension [2, Section 3.1], making our results
directly comparable.

5.1 Hardware Overheads

Each modified functional unit was first evaluated in isolation from
the main CPU. This allows a clearer picture of the instruction im-
plementation costs compared to the base ISA instructions, without
the costs being hidden by the size of the host CPU system. The
results are shown in Table 2.

The ALU has increased in size by 3X. This is unsurprising given
how small the base RISC-V ISA is. Notably, there is no effect on
the circuit depth. The Multiplier has grown very modestly, reflect-
ing how the carry-less addition at the core of carry-less multiply
is very cheap (an xor). This is despite our clmul implementation
using an unrolled strategy, and taking only 5 cycles to produce the
full result. Note that the integer multiplier also uses an unrolled
implementation strategy, though is less aggressive; taking 9 cycles

HASP 20, October 17, 2020, Virtual, Greece

to complete. In both cases, the unrolling depth is parameterised,
making tuning for area or latency very easy. We have not imple-
mented macro-op fusion* to allow a clmulh and clmul to be fused
into one instruction, though this is an obvious future optimisation.

For the Specialist Crypto ISE instructions, the additional area
is dominated by the AES and SM4 instruction implementations.
Implementing the AES and SM4 instructions using shared data-
paths is 0.76x the size, compared to implementing them separately,
at the cost of a larger circuit depth. The standalone AES module
is much larger than the SM4 module due to AES needing separate
SBoxes for encryption and decryption, while SM4 uses only a single
SBox for both encryption and decryption.

Overall, the area overhead for the CPU subsystem when targeting
a generic CMOS library is 1.20x and 1.18x for the separate and
combined AES/SM4 implementations respectively.

We also implemented the SCARV CPU on a Xilinx Kintex-7 FPGA
(xc7k160tfbg676-3) using Vivado 2019.2 with default synthesis
options. The results are shown in Table 3. All systems target the
same 50MHz operating frequency, with the available Timing Slack
showing the impact on critical path length. Slice overheads are 1.49x
and 1.46x for separate and combined AES/SM4 implementations
respectively. We expect the larger overheads on the FPGA are due
to the relative inflexibility of FPGA LUT primitives compared to
gate level circuit primitives in the CMOS library. For example, a
2-input function on the FPGA may still be implemented using a
4-input LUT, artificially increasing resource usage. Likewise, logic
slices may not be fully utilised, particularly in designs with lots of
un-structured logic like the AES and SM4 SBoxes.

Direct comparisons to past work are difficult, as it is rare to find
open-source evaluations of entire ISEs. We follow the example of
the Draft RISC-V Bitmanipulation extension, and compare the area
overhead of the Crypto ISE dedicated logic to the Rocket Core [16]
(The Rocket Core is another popular open source implementation of
RISC-V) Multiply/Divide unit (MDU), and a basic implementation of
the Bitmanipulation extension. The results are listed in Table 5. The
entire Crypto ISE is slightly larger than the Rocket Core Multiply
Divide unit. We note the similarity in size between the SCARV
CPU and Rocket MDUs. We note that the Crypto ISE contains
instructions which are also implemented in the Bitmanipulation
ZBB profile [2, Chapter 2, Page 3], namely the logic-and-invert
instructions, and the rotation instructions.

When comparing to commercial, fixed function cryptographic
accelerators, the Crypto ISE is an interesting compromise between
performance and area. Observing Table 4, we see that the CMOS
area overhead of the entire Crypto ISE is similar to the cost of
a single area-optimised AES-128 accelerator, and is considerably
smaller than a SHA accelerator. For embedded SoCs, which do not
have die space for dedicated cryptographic accelerators, we believe
that these results make a compelling case for the RISC-V Crypto
ISE as a lightweight and more flexible alternative.

5.2 Software

Table 6 and Table 7 shows the results of running several crypto-
graphic workloads targeting the baseline ISA, and the Crypto ISE.

4 Macro-op fusion is a technique for combining multiple ISA instructions into a single
micro-op executed by the CPU, resulting in a performance advantage. RISC-V proposes
to take advantage of this technique in many places, but it can be complex to do in
small, embedded CPUs with narrow fetch buffers.

Ben Marshall, Daniel Page and Thinh Pham

Table 5: Comparison of overheads between the Crypto ISE,
Draft RISC-V Bitmanip extension and the Rocket Core Mul-
tiply Divide Unit. Note that the component overheads of the
Crypto ISE do not sum to the total overhead figure. This is a
result of synthesising components in isolation, where cross-
module optimisations cannot be applied.

Module Size (NAND2 Gates)
Bitmanip (ZBB RV32) 2471
Rocket RV32 MulDiv 5167
Crypto ISE Total 5864
— Crypto ISE ALU Overhead 2853
— Crypto ISE MDU Overhead 278
— Crypto ISE Specialist 3485

Table 6: Comparison of software performance changes with
the base and extended instruction sets.

Baseline RV32IMC +Crypto ISE

Algorithm Instrs Cycles Instrs Cycles

AES128 Enc 1024 1665 241 296
SM4 Enc 1434 2025 290 496
SHA2-256 3758 4808 1682 2143
SM3 3858 4961 2170 2445
GHASH 3486 3919 111 376
ChaCha20 1714 2000 1068 1275

We include: block encryption functions for AES-128 [8] and SM4 [7];
the hashing of a single message block for SHA256 [18]; SM3 [6]
and GHASH [19]; and a single block permutation of the ChaCha20
stream cipher.

Clearly, the ISE drastically increases the software performance of
the considered algorithms. The GHASH operation receives a dispro-
portionate benefit from the carry-less multiply instructions. When
implemented in software, carry-less multiply is extremely slow,
particularly when the full 64-bit result is needed from multiplying
two 32-bit operands, as is the case here.

Comparing to past work optimising AES on ARM [32, Table 1,
Section 3.1], we can see the proposed lightweight RISC-V AESISE is
2.23X faster, with zero data memory accesses or stack usage, likely
resulting in a considerable energy saving. Likewise comparing
to past work on optimised AES for RISC-V [33, Table 1, Section
7.1], we see the ISE is 3x faster than a heavily optimised T-Tables
implementation on a RV32IMC micro-controller with caches.

We note that the Crypto ISE does not include any instructions
aimed at accelerating Public Key Cryptography. This is already well
supported by the base RISC-V ISA, and would not be affected by
the Crypto ISE, hence we exclude it from our analysis. Although
Public Key Cryptography is essential for embedded class cores
to establish communications or for secure boot, the volume and
frequency of Public Key operations is much smaller than Symmetric
Key operations for most use cases. E.g. the volume of symmetrically
encrypted data in a TLS session is much larger than that which is

Implementing the Draft RISC-V Scalar Cryptography Extensions

Table 7: Comparison of code size changes with the base and
extended instruction sets.

Baseline RV32IMC +Crypto ISE

Algorithm text .data .text .data
AES128 Enc 1014 4096 286 0
SM4 Enc 912 256 156 0
SHA2-256 4794 256 2368 256
SM3 6648 0 3832 0
GHASH 482 0 256 0
ChaCha20 694 0 464 0

used for key agreement or handshaking. Hence, we believe this is a
reasonable design choice for the proposed ISE.

5.3 Verification

Any ISE is useless if its functional correctness cannot be verified in
a timely manner; hence the verification effort needed to integrate
the RISC-V Crypto ISE into an existing core is a useful consideration
in any standardisation process.

We found that verifying the Crypto ISE integration was not
disproportionate to its size or the complexity of any instruction
specifications. Because we primarily use model-checking to verify
the SCARV CPU, we extended the existing riscv-formal trace
interface to add checkers for the new instructions. No new signals
needed to be traced out of the core, since all instructions adhere to
the 2-reads-1-write register access constraint. This made extending
our verification environment considerably easier.

Three classes of instruction caused some difficulties for the for-
mal verification environment: the carry-less multiply instructions,
the non-linear parts of the AES and SM4 instructions and the en-
tropy source instruction.

For the carry-less multiply and non-linear operations, the nature
of these operations is such that formal tools (specifically, bounded
model checking tools) struggle to handle them, which is a known
shortcoming. We worked around this by creating small directed
tests for known corner case inputs to these instructions, and forcing
the formal tools to timeout after a set interval to cover as much
of the state space as possible, and to check interactions with other
instructions. Such problems would not appear in a simulation based
verification strategy.

For the pollentropy instruction, the difficulty comes from the
inherently random write-back value. Functionally verifying the
instruction does not involve checking that quality of the random-
ness, only that the instruction executes and forwards its results
correctly. For formal verification flows such as ours, we believe it
is reasonable to leave the register write-back value un-specified,
but to check that whatever value it does return is written back and
forwarded to subsequent instructions correctly. Our decision to
implement the pollentropy instruction as a load word made the
verification much easier, as memory response values are at the
boundary of our verification interface. We simply had to check
the correct memory address was issued, and that privileged mode
restrictions on executing pollentropy were met.

We anticipate no difficulties integrating any of the Crypto ISE
instructions into a constrained random verification flow, such as a
UVM [28] base environment. This is fairly self evident from how

HASP 20, October 17, 2020, Virtual, Greece

the instructions do not introduce new state, do not interact with
the privileged architecture and all meet the 2-read-1-write register
file access constraint. In this sense, they are similar to the base
ISA instructions from the perspective of stimulus generation and
coverage closure.

In the case of the pollentropy instruction, any golden refer-
ence model would need to have the write-back value of the in-
struction hinted too it, which is a standard way of dealing with
non-deterministic behaviour in the functional verification of CPUs.

6 CONCLUSION & FUTURE WORK

We have implemented the Draft RISC-V Cryptography Extension for
Scalar 32-bit CPUs. We find that it delivers excellent performance
benefits to several important cryptographic workloads, with modest
area and latency overhead to the host core. As the only architecture
proposing dedicated cryptographic instructions for very small cores,
RISC-V is at a considerable advantage to legacy architectures as a
platform for secure IoT devices. Our free and open implementation
of the ISE proposals will help guide the standardisation process, and
give researchers a platform on which to conduct further research
using the RISC-V cryptographic ISE.

Future work in this area might include further optimising the im-
plementation, evaluating larger and more performance orientated
designs, or hardening algorithms using the ISE against side-channel
attack.

ACKNOWLEDGMENTS

We would like to thank the members of the RISC-V Cryptographic
Extensions Task Group for welcoming us into the RISC-V standard-
isation process.

This work has been supported in part by EPSRC via grant EP/R012288/1,

under the RISE (http://www.ukrise.org) programme.

REFERENCES

[1] [n.d.]. AES core - Xilinx, Altera, Microsemi, Lattice and ASIC - Helion Technology.
https://www.heliontech.com/aes_tiny.htm. Retrieved Sept 7th, 2020.

[2] [n.d.]. RISC-V Bit manipulation extension draft proposal. https://github.com/
riscv/riscv-bitmanip/blob/master/bitmanip-draft.pdf

[3] [n.d.]. SCARV CPU - and open source 32-bit RISC-V CPU for research. https:
//github.com/scarv/scarv-cpu. RISC-V Cryptography ISE Development Branch.

[4] [n.d.]. SCARV SoC - and open source RISC-V base SoC for research. https:
//github.com/scarv/scarv-soc. RISC-V Cryptography ISE Development Branch.

[5] [n.d.]. SHA-1, SHA-2, MD5 Tiny Hashing Cores for FPGA (Xilinx, Altera) - Helion
Technology. https://www.heliontech.com/tiny_hash.htm. Retrieved Sept 7th,
2020.

[6] [n.d.]. The SM3 Cryptographic Hash Function. https://tools.ietf.org/id/draft-
oscca-cfrg-sm3-02.html. Retrieved 12th March, 2020.

[7] [n.d.]. The SM4 Block Cipher Algorithm And Its Modes Of Operations. https:
//tools.ietf.org/id/draft-crypto-sm4-00.html. Retrieved 26th March, 2020.

[8] 2001. Advanced Encryption Standard (AES). National Institute of Standards
and Technology (NIST) Federal Information Processing Standard (FIPS) 197.
https://www.nist.gov/publications/advanced-encryption-standard-aes

[9] 2016. Oracle SPARC Architecture 2011. Technical Report D1.0.0. Ora-

cle Corp. https://www.oracle.com/technetwork/server-storage/sun-sparc-

enterprise/documentation/140521-ua2011-d096-p-ext-2306580.pdf.

2018. Intel 64 and IA-32 architectures — Software Developer’s Manual (Volume 1:

Basic Architecture). Technical Report 325383-067US. Intel Corp. http://software.

intel.com/en-us/articles/intel-sdm.

[11] 2018. Power ISA. Technical Report 2.07 B. IBM. https://ibm.ent.box.com/s/

jd5w15g2301s5b5dt375mshpq9c3lhdu.

2019. FIPS 140-3: Security Requirements For Cryptographic Modules. https:

//doi.org/10.6028/NIST.FIPS.140-3

2019. The RISC-V Instruction Set Manual. Technical Report Volume I: User-Level

ISA (Version 20190608-Base-Ratified). http://riscv.org/specifications/

=
=

[12

[13

http://www.ukrise.org
https://www.heliontech.com/aes_tiny.htm
https://github.com/riscv/riscv-bitmanip/blob/master/bitmanip-draft.pdf
https://github.com/riscv/riscv-bitmanip/blob/master/bitmanip-draft.pdf
https://github.com/scarv/scarv-cpu
https://github.com/scarv/scarv-cpu
https://github.com/scarv/scarv-soc
https://github.com/scarv/scarv-soc
https://www.heliontech.com/tiny_hash.htm
https://tools.ietf.org/id/draft-oscca-cfrg-sm3-02.html
https://tools.ietf.org/id/draft-oscca-cfrg-sm3-02.html
https://tools.ietf.org/id/draft-crypto-sm4-00.html
https://tools.ietf.org/id/draft-crypto-sm4-00.html
https://www.nist.gov/publications/advanced-encryption-standard-aes
https://www.oracle.com/technetwork/server-storage/sun-sparc-enterprise/documentation/140521-ua2011-d096-p-ext-2306580.pdf
https://www.oracle.com/technetwork/server-storage/sun-sparc-enterprise/documentation/140521-ua2011-d096-p-ext-2306580.pdf
http://software.intel.com/en-us/articles/intel-sdm
http://software.intel.com/en-us/articles/intel-sdm
https://ibm.ent.box.com/s/jd5w15gz301s5b5dt375mshpq9c3lh4u
https://ibm.ent.box.com/s/jd5w15gz301s5b5dt375mshpq9c3lh4u
https://doi.org/10.6028/NIST.FIPS.140-3
https://doi.org/10.6028/NIST.FIPS.140-3
http://riscv.org/specifications/

HASP 20, October 17, 2020, Virtual, Greece

[14]

[15

[16]

[17]

[18

[19]

[20

[21]

[22

[23]

[24

[25

[26

[27]
[28]

[29

[30]

[31

[32

[33]

[34]

A

2019. The RISC-V Instruction Set Manual. Technical Report Volume II: Priv-
ileged Architecture (Version 20190608-Priv-MSU-Ratified). http://riscv.org/
specifications/

ARM 2020. Arm Architecture Reference Manual: Armv8, for Armv8-A architecture
profile (DDI0487F.a ed.). ARM. https://static.docs.arm.com/ddi0487/fa/DDI0487F
a_armv8_arm.pdf.

Krste Asanovic, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David Bian-
colin, Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser, Adam Izraele-
vitz, et al. 2016. The rocket chip generator. EECS Department, University of
California, Berkeley, Tech. Rep. UCB/EECS-2016-17 (2016).

K. Asanovi¢ and D.A. Patterson. 2014. Instruction Sets Should Be Free: The Case
For RISC-V. Technical Report UCB/EECS-2014-146. http://www.eecs.berkeley.
edu/Pubs/TechRpts/2014/EECS-2014-146.html.

Quynh H. Dang. 2015. Secure Hash Standard. Number NIST FIPS 180-4. https:
//doi.org/10.6028/NIST.FIPS.180-4

Morris] Dworkin. 2007. Sp 800-38d. recommendation for block cipher modes of
operation: Galois/counter mode (gcm) and gmac. National Institute of Standards &
Technology.

Morris J Dworkin. 2015. SHA-3 standard: Permutation-based hash and extendable-
output functions. Technical Report. National Institute of Standards and Technol-
ogy. https://doi.org/10.6028/NIST.FIPS.202

RISC-V Cryptography Task Group. [n.d.]. RISC-V Cryptographic Extension
Proposals Github Repository. https://github.com/riscv/riscv-crypto.

RISC-V Cryptography Task Group. [n.d.]. RISC-V Scalar Cryptographic Extension
Draft Proposal v0.7.0. Technical Report. https://github.com/riscv/riscv-crypto/
releases/v0.7.0.

RISC-V Vector Extension Task Group. [n.d.]. RISC-V Vector Extension Github
Repository. https://github.com/riscv/riscv-v-spec.

Y. Hori, T. Katashita, A. Sasaki, and A. Satoh. 2012. SASEBO-GIII: A hardware
security evaluation board equipped with a 28-nm FPGA. In IEEE Global Conference
on Consumer Electronics. 657-660.

Wolfgang Killmann and Werner Schindler. 2011. AIS-31 test suites. A Proposal
for: Functionality classes for random number generators.

Ben Marshall, G. Richard Newell, Dan Page, Markku-Juhani O. Saarinen, and
Claire Wolf. [n.d.]. The design of scalar AES Instruction Set Extensions for RISC-V.
IACR Transactions on Cryptographic Hardware and Embedded Systems 2021, 1
([n.d.]). To appear.

Ben Marshall, Daniel Page, and Thinh Pham. 2019. XCrypto: a cryptographic ISE
for RISC-V. Technical Report. Tech. rep. 1.0. 0. 2019.

Ashok B Mehta. 2018. UVM (Universal Verification Methodology). In ASIC/SoC
Functional Design Verification. Springer, 17-64.

David Patterson, Jeremy Bennett, Palmer Dabbelt, Cesare Garlati, G. S. Mad-
husudan, and Trevor Mudge. [n.d.]. Embench: Open Benchmarks for Embedded
Platforms. https://github.com/embench/embench-iot.

Markku-Juhani O. Saarinen. 2020. A Lightweight ISA Extension for AES and SM4.
In First International Workshop on Secure RISC-V Architecture Design Exploration
(SECRISC-V°20). IEEE. https://arxiv.org/abs/2002.07041

Markku-Juhani O. Saarinen, G. Richard Newell, and Ben Marshall. 2020. Building
a Modern TRNG: An Entropy Source Interface for RISC-V. In 4th Workshop on
Attacks and Solutions in Hardware Security (ASHES 20), November 13, 2020, Virtual
Event, USA. ACM. https://doi.org/10.1145/3411504.3421212

Peter Schwabe and Ko Stoffelen. 2017. All the AES You Need on Cortex-M3 and
M4. In Selected Areas in Cryptography — SAC 2016, Roberto Avanzi and Howard
Heys (Eds.). Springer International Publishing, Cham, 180-194.

Ko Stoffelen. 2019. Efficient Cryptography on the RISC-V Architecture. In Progress
in Cryptology — LATINCRYPT 2019, Peter Schwabe and Nicolas Thériault (Eds.).
Springer International Publishing, Cham, 323-340.

Claire Wolf. [n.d.]. Yosys Open SYnthesis Suite. http://www.clifford.at/yosys/.

INSTRUCTION SET LISTING

Here, we give a very brief listing of all instructions implemented as
part of the 32-bit RISC-V Scalar Cryptography ISE, v@.7.0. Their
complete functional descriptions can be found in [22]. We would
have included complete semantics for each instruction if they could
fit, but prefer to point to the official draft specification.

32-bit Rotations

ror rd, rs1, rs2
rol rd, rsl1, rs2
rori rd, rs1, imm

Permutation Instructions

Ben Marshall, Daniel Page and Thinh Pham

grev rd, rsl1, rs2
grevi rd, rs1, imm
gorc rd, rs1, rs2
shfl rd, rs1, rs2
unshfl rd, rsl1, rs2
shfli rd, rs1, imm
unshfli rd, rs1, imm
xperm.n rd, rs1, rs2
xperm.b rd, rsl, rs2

Carry-less Multiply

clmul rd, rsl, rs2
clmulh rd, rs1, rs2
clmulr rd, rsl1, rs2

Logic-and-Negate

andn rd, rsl1, rs2
orn rd, rs1, rs2
xorn rd, rs1, rs2

Byte/halfword packing

pack rd, rs1, rs2
packu rd, rsl, rs2
packh rd, rs1, rs2

Scalar 32-bit AES instructions

aes32es rd, rs1, rs2
aes32esm rd, rs1, rs2
aes32ds rd, rsl1, rs2
aes32dsm rd, rsl, rs2

Scalar 32-bit SHA-256 instructions

sha256sum@ rd, rsi
sha256sum1 rd, rsi
sha256sig0@ rd, rsi
sha256sigl rd, rsi

Scalar 32-bit hi/lo SHA-512 instructions

sha512sumor rd, rsl, rs2
sha512sumir rd, rs1, rs2
sha512sig0l rd, rsl1, rs2
sha512sigbh rd, rsl, rs2
sha512sigll rd, rs1, rs2
sha512siglh rd, rsl1, rs2

Scalar 32-bit SM3 instructions.
sm3p@ rd, rsi
sm3p1 rd, rsi

Scalar 32-bit SM4 instructions.
sm4ed rd, rs1, rs2
sm4ks rd, rs1, rs2

Entropy Source Instruction.
pollentropy rd, imm

http://riscv.org/specifications/
http://riscv.org/specifications/
https://static.docs.arm.com/ddi0487/fa/DDI0487F_a_armv8_arm.pdf
https://static.docs.arm.com/ddi0487/fa/DDI0487F_a_armv8_arm.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-146.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-146.html
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.202
https://github.com/riscv/riscv-crypto
https://github.com/riscv/riscv-crypto/releases/v0.7.0
https://github.com/riscv/riscv-crypto/releases/v0.7.0
https://github.com/riscv/riscv-v-spec
https://github.com/embench/embench-iot
https://arxiv.org/abs/2002.07041
https://doi.org/10.1145/3411504.3421212
http://www.clifford.at/yosys/

	Abstract
	1 Introduction
	2 The Draft RISC-V Crypto ISE
	2.1 Vector Instructions
	2.2 Scalar Instructions
	2.3 Entropy Source

	3 The CPU Platform
	3.1 The SCARV CPU
	3.2 The SCARV SoC

	4 Crypto ISE Implementation
	4.1 ALU-like Instruction Implementation
	4.2 Specialist Instruction Implementation
	4.3 pollentropy Implementation

	5 Evaluation
	5.1 Hardware Overheads
	5.2 Software
	5.3 Verification

	6 Conclusion & Future Work
	Acknowledgments
	References
	A Instruction Set Listing

