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ABSTRACT

Since FPGAs are now available in datacenters to accelerate ap-
plications, providing FPGA hardware security is a high priority.
FPGA security is becoming more serious with the transition to
FPGA-as-a-Service where users can upload their own bitstreams.
Full control over FPGA hardware through the bitstream enables
attacks to weaken an FPGA-based system. These include physically
damaging the FPGA equipment and leaking of sensitive informa-
tion such as the secret keys of crypto algorithms. While there is no
known attacks in the commercial settings so far, it is not so much a
question of if but more of when? The tutorial will show concrete
attacks applicable on datacenter FPGAs.

The goal of this tutorial is to prepare the FPGA community to
impending security issues in order to pave way for a proactive
security. First, we will give a tour through the FPGA hardware
security jungle surveying practical attacks and potential threats.
We will reinforce this with live demos of denial of service attacks.
Less than 10% of the logic resources on an FPGA can draw enough
dynamic power to crash a datacenter FPGA card. In the second part
of the tutorial, we will show different mitigations that are either
vendor supported or proposed by the academic community. In
summary, the tutorial will communicate that while FPGA hardware
security is complicated to bring about, there are acceptable solutions
for known FPGA security problems.
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1 INTRODUCTION

Traditionally, FPGA industry had the position that hardware secu-
rity of an FPGA was primary about protecting designs in terms of
intellectual property (IP) in configuration data (i.e. the configuration
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bitstream) against cloning/overbuilding, reverse engineering, tam-
pering, and spoofing, as summarized in [24]. This view has changed
with FPGAs are now being integrated into data centers and cloud
computing infrastructures at large scale [4, 10, 19]. One principle
commonly used in cloud computing is resource pooling which allows
sharing resources across different tenants such that overall utiliza-
tion of cloud hardware resources gets improved. Resource pooling
is currently not offered by any major FPGA cloud service provider,
but multi-tenant scenarios are expected to provide better utilization
and consequently better overall power efficiency at lower cost as
compared to the current one-user-per-fabric scheme [25]. It should
also be mentioned that the commonly used scenario consisting of a
shell (i.e., the static system infrastructure that a data center FPGA
provides to allow a user circuit communicating with the server) and
the user accelerator design can already be considered multi-tenant.
This is because the shell and a tenant are implemented individually
and it needs protection mechanisms to ensure the system integrity
of both (shell and user accelerator). For instance, a user accelerator
should not be able to gain access to the shell, which in turn may
compromise other parts of the cloud infrastructure.

The tutorial continues as follows: the next section provides a
survey on FPGA hardware security, followed in Section 3 with a
tutorial on how to research optimized ring oscillators for power
hammering and for side-channel attacks. This section serves as
a template to create other kinds of malicious circuits. Section 4
provides a tutorial on installing and using the open-source FPGA
bitstream virus scanner FPGADEFENDER. Some virus scan results
are finally provided in Section 5.

2 HARDWARE THREATS FOR DATACENTER
FPGAS

Due to their deep low-level programmability, FPGAs comprise new
threat models far beyond of what is commonly known from con-
ventional CPU/GPU systems. For instance, modules running on
an FPGA may include circuits being able to measure system states
at high accuracy which may open physical side-channels to leak
sensitive data from other users [5, 21]. These kind of attacks are not
available in known software threat models, but had been shown
for FPGAs.

In the reminder of this section, we take a brief literature re-
view on potential threats against multi-tenant FPGAs which can
be categorized into:

(1) attacks on the system availability (DoS-like attacks)
(2) attacks on the user confidentiality (via physical side-channel
analysis)
This section will also provide published state-of-the-art counter-
measures.
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Figure 1: Denial-of-service-like (DoS-like) threat model. A
user may try to shutdown an FPGA service in a data center
by sending malicious circuits such that legitimate requests
from other users cannot use the FPGA resources. Short-
circuits and power hammering designs can be utilized for
such attacks on the system availability. This kind of attack
may potentially age or damage the equipment.

2.1 Attacks on the system availability

Denial-of-service-like (DoS-like) attacks are used to bring down
active infrastructures and/or to compromise states in other system
components which stay outside the scope of an attacking module, as
illustrated in Figure 1. At the electrical level, two means for DoS-like
attacks had been utilized: short-circuits and power hammering.

Short-circuits on modern FPGAs have been demonstrated in [1]
within the multiplexers inside a switch matrix using a manipulated
configuration bitstream resulting in a huge current increase (with
several mA extra current for a single multiplexer). While the FPGA
vendor tools ensure that generated bitstream are short-circuit free,
an attacker can create shorts relatively easily. In fact, in [8], short-
circuits had been used for obfuscating power traces from an AES
core to make power analysis attacks much harder to perform.

Power hammering is another mechanism to carry out DoS-like
attacks. All current power hammering attacks [7] are based on
fast toggling circuits in order to draw a substantial amount of
dynamic power. We will show in Section 3 that it is possible to
implement ring oscillators running in the GHz frequency domain
with a corresponding dynamic power footprint. In [7], a grid of
ring oscillators was activated at an adjustable rate (to stimulate
resonance effects in the power supply regulation circuit). With this,
several FPGA platforms such as Xilinx Virtex 6, Kintex 7, and Zyng-
7000 FPGAs had been crashed (and in some cases requiring power-
cycling for bringing up boards back into service). In this tutorial,
we will examine the potential for power hammering in more detail
in Section 4. Although ring-oscillators are usually flagged with a
warning by the vendor design tool flows and hence, not allowed
to be deployed on any cloud or data center infrastructure, a recent
research [6] has reported new ring-oscillator designs which can
bypass such Design Rule Checking (DRC). A simple trick to bypass
DRC is implementing a ring oscillator passing through an enabled
transparent latch. With this, ROs could be deployed, for example,
on Amazon F1 instances.
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Figure 2: An illustration of the eavesdropping threat model
of user confidentiality in a multi-tenant computing environ-
ment.

Although all current power hammering attacks are leveraging
self-oscilating circuits, glitch amplification can potentially be uti-
lized for this purpose as shown in Figure 3.

2.2 Attacks on the user confidentiality

Side-channel attacks on FPGAs can be either active (e.g., timing
fault injection) or passive (e.g., power analysis, crosstalk coupling,
electromagnetic analysis, and thermal channel leakage [16]). In
[14], timing faults have been injected through a large number of
ring oscillators to cause voltage drops followed by analyzing the
resulting faulty cipher text using Differential Fault Analysis (DFA)
for successfully revealing the secret key of a crypto-core. The idea
of most timing fault injection attacks is to temporarily create a huge
power demand (e.g., by starting a large number of ring oscillators).
This will reduce the FPGAs supply voltage and may in turn slow
down a path in a victim circuit such that it may fail timing.
Power analysis attacks have been demonstrated to leak the se-
cret key of a cryptographic function that was running on the same
FPGA [21], running on a CPU embedded on the same FPGA die [27],
and running on a different FPGA on the same FPGA board [22].
All these attacks have in common that they use ring-oscillators to
measure key-dependent fluctuations on the voltage. In addition to
sensing voltage, self-oscillators can be used to monitor crosstalk
effects [5, 6, 20]. In these studies, it was found that a long wire
carrying a logical 1 will slow down a ring-oscillator that is imple-
mented using an adjacent wire. Therefore, by taking advantage
of the sensitivity of self-oscillators, attackers can leak the current
state of a signal which is a concern in shared FPGA infrastructures.

2.3 State-of-the-art countermeasures

The main schemes to prevent side-channel power analysis attacks
are based on masking and hiding strategies. In the masking strategy,
an implementation of a cryptographic algorithm is transformed to
another (typically larger) variant which is functionally equivalent,
but where the new circuit is able to remain secure although the
attacker can observe some details of the operation through a side-
channel, as proposed in [11]. This makes power analysis attacks
much harder as the data leaked has also to be correlated with the
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Figure 3: Illustration of a glitch generator. The glitch signal
can be used to drive a large network of wires and combina-
torial logic to drain excessive power.

implementation changing scheme used inside the secured core. On
the other hand, the hiding strategy aims at lowering the Signal
Noise Ratio (SNR) during the operation by either adding more
sources of noise or lessening the strength of the signal, as suggested
in [3, 8, 12, 26].

Ring-oscillators can be used to monitor the healthiness of an
FPGA fabric [28] and can also detect voltage drop attacks (e.g.,
power hammering, power analysis) [18, 29]. A recent work has sug-
gested to use ring-oscillators not only to monitor a power analysis
attack but also to response against the attack by triggering more
power noise [13].

In a recent related work [15], LUT-based ring-oscillator designs
are detected directly from configuration bitstreams. While that
work fundamentally showed that oscillator circuits can be detected
from bitstreams, it was only shown for basic LUT-based oscillators.
This leaves an attacker the chance to deploy alternative oscillator
designs (e.g., based on glitch amplification). Furthermore [15] was
implemented on a Lattice FPGA and those FPGAs are relatively
small for building a multi-tenancy system. However, the vast major-
ity of systems that would benefit from an FPGA virus scanner are
based on modern FPGA architectures that are substantially more
complex (e.g., fracturable LUTs, complex DSP blocks with ALU
functionality, complex clock networks, a hierarchical routing fabric,
etc.).

The following section will show how we use GOAHEAD to re-
search the threat potential of ring-oscillators, while in Section 4
we show how viruses! can be detected with our new tool FPGADE-
FENDER.

3 OPTIMIZING AND EVALUATING RING
OSCILLATOR DESIGNS FOR POWER
HAMMERING AND SPEED

For power hammering, an attacker obviously wants to maximize the
amount of power a malicious circuit can waste per unit resources.
For a side-channel attack respectively, the highest sensitivity is
the most important objective, which correlates to the speed of an
oscillator. In this section, we will use the tool GOAHEAD to design
and tune ring oscillators to waste as much power as possible or to
run as fast as possible. We use a setup on an Ultra96 Board where
we precisely measured supply power. We use a Time-to-Digital
Converter, as illustrated in Figure 4, to measure the actual clock
frequency of an oscillator. The FPGA on the Ultra96 board uses the

! This tutorial uses the term virus scanning in its figurative meaning for detecting all
kinds of malicious threats rather than in its original meaning of infecting a program
with malicious code to spread out in a virus-like manner.
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same manufacturing process and the same UltraScale+ FPGA fabric
architecture than what is provided in current Xilinx datacenter
FPGA boards, like the popular Alveo U200/250 FPGA boards. The
best design found for Ultra96 will then be tested at scale on an
Alveo U200 board.

3.1 Time-to-Digital Converters on Xilinx
UltraScale FPGAs

Ring oscillators on an FPGA can run in the GHz regime which is
substantially faster than any user logic design can normally sus-
tain. This makes the use of simple counters prohibitive to measure
fastest possible oscillators. We therefore used a Time-to-Digital
Converter (TDC) to measure speeds of oscillators. TDCs basically
use propagation delay to measure a wave form. The idea of TDCs
is to use different propagation delays from the probe to a set of
flip-flops such that the parallel sampled flip-flops reveal the state of
the probe at different points in time. See Figure 4 for an illustration
on the operation of a TDC.

FPGA
wictim attacker

Figure 4: Illustration of a Time-to-Digital Converter (TDC).
The speed of the ring oscillator is measured by a chain of
flip-flops that sample a delay line in parallel.

The flip-flop sample clock speed can be selected mostly arbitrary
(we used 100 MHz) as the variance in propagation delay is the key
property that determines the characteristics of a TDC. Tradition-
ally, TDCs had been implemented using carry chains to implement
the delay chain. However, Xilinx UltraScale+ FPGAs do not have
traditional carry chains, but use carry-look-ahead (CLA) circuits
instead. For implementing a TDC on Xilinx UltraScale+ FPGAs,
we consequently use local routing for the delay chain. Using this
strategy, it is not important to find the fastest path (which we are
normally interested in when implementing a module for perfor-
mance), but instead finding paths that reach the different flops such
that we form a TDC delay chain that has a linear characteristic (i.e.
the variance in time between any pair of two consecutive flip-flops
should be about the same) and high resolution (i.e. the absolute
delay between any pair of two consecutive flip-flops should be
small). This physical implementation problem is non-trivial and
not directly supported by the Xilinx vendor tools.

We solved that problem using the path search function in the
tool GOAHEAD [2]. GOAHEAD is a tool originally designed for imple-
menting partially reconfigurable FPGAs. In its latest version, it uses
Xilinx Vivado to report a device description that includes the entire
architecture graph (including all possible switch matrix settings) as
well as a detailed timing model. This device description is parsed
in by GoAHEAD which allows this tool to report latencies for any
path found from any arbitrary primitive port or a port inside a
switch matrix. To automate processes in GOAHEAD, the tool sup-
ports TCL scripts. The TCL script in Figure 5 provides an example
for searching for all possible paths stating from startPort on tile
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startTile to reach a set of flip-flops specified in flopPins located
on targetTile.

[V S

zet startTile CLEL R X0Y1

startPort CLE CLE L SITE 0_DMUX

set
zet targetTile CLEL R XO0YQ

et prefix CLE CLE L SITE 0O_

zet flopPins [list AQ AQZ BQ BR2 CQ CQ2
DO DQ2 EQ EQ2 FQ FQ2 GQ GQ2Z HQ HQ2]

1 ™ tn

o owWom

L
[FUI %

for {set i 0} {$i < [llsngth $flopPins]}
14 {ingr i}
{ =et targetPort S{prefix}

[lindex $flopPins $i]

1 & tn

PathSearchOnFPGR
SearchMode=BF5
Forward=True

o wWom

EeepPathsIndependet=False
BlockUsedPorts=False
CutputMode=CHAIN
Startlocation=%startTile
StartPorc=8startPortc
TargetLocation=%targetTile

[T I T R

[PV %

| ]

TargetPort=5targetPort
MaxSolutions=5

MaxDepth=10

PrintBanner=True

# latencies in the order SLOW_MIN,
# SLOW MRX, FAST MIN, FAST MRX)
PrintLatency=true, false, false, false
FileName=OutputFile.fxt
Append=True

[V I L R T

CreateBackupFile=True;

1 @ tn

{5 T TR ¥ TR T T TR ¥ T % Y S N . I % B % N % I % T
FR T s

H
Figure 5: GOAHEAD TCL script example to find paths from
one primitive pin to a set of flip-flops.

The results of the script is a set of paths found by a breadth-first
search sorted for each path in the for-loop of the script by the
number of hops (which correlates to the routing resources used),
as shown in Figure 6. Please note that the names used in GOAHEAD
correspond to exactly the same naming scheme used by Xilinx in
their Vivado tool suite. This holds for names used in scripts as well
as for names used in results. Most importantly, GOAHEAD annotates
the latency for each path. As can be seen in Figure 6, GOAHEAD
reports the time as it gets incremented along the path. With the
PrintLatency switch in the GOAHEAD PathSearchOnFPGA func-
tion, a user can select between any SLOW_MIN, SLOW_MAX, FAST_MIN,
or FAST_MAX timing corner to be considered in the timing analysis.

For building the TDC delay chain, the result paths are sorted by
their latency (i.e. the latency reported for the last hop in each path)
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-- From CLEL R XOY1.CLE CLE L SITE 0 DMUX
-- to CLEL R X0Y0.CLE CLE L SITE 0_2Q

CLEL R _XO0Y1.CLE CLE L SITE 0 DMUX (Latency: 0) ->
INT_X0Y1.LOGIC OUTS E5 (Latency: 0) ->

INT X0Y1.INT NODE SDQ 1 INT OUT1 (Latency: ) ->
INT X0Y1.S51 E BEGl (Latency: ) ->
INT_X0Y0.S5S1_E_END1 (Latency: y ->
INT_X0Y0.INODE E_9 FT1 (Latency: ) ->
INT_X0Y0.BOUNCE_E 0 _FT1 (Latency: y ->

CLEL R X0Y0.CLE CLE L SITE 0 AX (Latency: ) ->
CLEL R _X0Y¥0.CLE CLE L SITE 0 &Q (Latency: )
CLEL R _XO0Y1.CLE CLE L SITE 0 DMUX (Latency: ) ->
INT_X0Y1.LOGIC OUTS E5 (Latency: y ->

INT X0Y1.INT NODE SDQ 1 INT OUT1 (Latency: ) ->
INT X0Y1.S51 E BEGl (Latency: ) ->
INT_X0Y0.S5S1_E_END1 (Latency: y ->

INT_X0Y0.INT NODE_IMUX 30 INT OUT1 (Latency: ) ->
INT_X0Y0.BYPASS E1 (Latency: ) ->

CLEL R X0Y¥0.CLE CLE L SITE 0 BX (Latency: ) ->
CLEL R _XO0Y0.CLE CLE L SITE 0 AQ (Latency: )

-- From CLEL R X0Y1.CLE CLE L SITE

-- to CLEL R_X0Y0.CLE_CLE_L SITE 0_

CLEL & XOY1.CLE CLE L SITE 0 DMUX (Latency: 0) ->
INT_X0Y1.LOGIC OUTS E5 (Latency: 0) -»
INT_X0Y1.INT NODE 5D 1 INT OUT1 (Latency: ) —>
INT_X0Y1.551_E BEGl (Latency: y ->

INT _X0Y0.SS1_E END1 (Latency: ) ->

INT X0Y0.INODE E 9 FT1 (Latency: y ->
INT_X0Y0.BOUNCE E 0 FT1 (Latency: y o=

CLEL & XO0Y0.CLE CLE L SITE 0 BX (Latency: ) ->

CLEL R_XO0Y¥0.CLE CLE L_SITE_C_AQ2 (Latency: )

Figure 6: Output created by the TCL script in Figure 5.

and we manually chose a set of paths that result in good linearity
(= £10ps) and a reasonably fine resolution (= 70ps). With Nyrgy
samples in a TDC for the measured high values and Ny oy being
the number of low samples, the speed of a RO is:

1
fro ~
tdelay X (NHIGH + NLOW)

(1)

And with a =~ 70ps resolution, this allows measuring RO speeds up
to about 7GHzZ. In order to get even more accurate resolution, we
are reporting all values as the median of at least 10 000 runs.

3.2 Optimizing Ring Oscillators for Power
Hammering and Speed

With having an FPGA system instrumented for accurate measure-
ment of power and frequency measurement (through our TDCs),
we explored and evaluated various FPGA ring-oscillator designs for

2We would like to highlight that a relatively cheap FPGA board allows experimenting
at such high speeds.
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CLEL R X0Y0.CLE CLE L SITE 0 A O (Latency: 0) ->

INT XO0Y0.LOGIC OUTS EO0 (Latency: 0) -»>

INT XOYO.INT WNODE IMUX O INT OUIO (Latency: ) -=
INT_XO0Y0.IMUX E22 (Latency: y —>

CLEL_R X0YD.CLE _CLE_L_SITE 0_A4 (Latency: Yy >
CLEL R X0YOD.CLE CLE L SITE 0 & O (Latency: )
CLEL R X0Y0.CLE CLE L SITE 0 A O (Latency: ) =
INT XO0YO0.LOGIC OUTS EO0 (Latency: ) —=

INT XOYO.INT WNODE IMUX O INT OUIO (Latency: ) -=
INT XOYO.BEYPASS E3 (Latency: =

INT_XOYO.INT NODE IMUX_ 10 INT_OUT1 (Latency: y ->
INT XO0Y0.IMUX E26 (Latency: )y >

CLEL R X0YOD.CLE CLE L SITE 0 A5 (Latency: ) -
CLEL R X0Y0.CLE CLE L SITE 0 A O (Latency: )

Figure 7: Output created by a GOAHEAD path search using
the same port for begin and target (for finding ring oscillator
variants).

their suitability for power hammering and for side-channel attacks
(i.e., fastest oscillator speed). We used the GOAHEAD tool to find
all possible ring oscillator designs. This uses again the GOAHEAD
PathSearchOnFPGA command (which we used for designing the
TDC in the previous section) by simply specifying the output of
the LUT intended for the ring oscillator implementation for both
the beginPort and the targetPort. An output of such a search
is shown in Figure 7. For each LUT, the path search will sort the
result paths found in an order reporting the paths with the least
number of hops first. These paths are typically the fastest ones and
the reported latency serves as a sanity check. We used a GOAHEAD
script (in the same way used for finding the TDC delay path) to
find all fastest ring-oscillator designs over all LUTs in a CLB. We
then implemented those paths for 2000 LUTs on the Ultra96 board
and measured speed and power consumption.

Our experiments found the fastest oscillator speed being 5.8GHz
and an increase in power of 4.2W for the most malicious oscilla-
tor design found (see Figure 9). The experiments with the poorest
results achieved only 1.1GHz speed and 1.7W waste power. This
means that a single LUT has a waste power potential of 2.1mW
when considering the most malicious oscillator design.

To put this into perspective: an Alveo U200 data center card fea-
turing a VU9P FPGA providing 1.182 million LUTs would have
a waste power potential of over 2kW using the optimized power
ring oscillator design. Consequently even a fraction of that logic
would by far exceed the thermal and electrical specifications of any
FPGA/FPGA board.

3.3 Xilinx Alveo U200 Power Hammering
Experiment

We deployed the optimized ring-oscillator design from the previous

paragraph on an Alveo U200 data center card. This board has the

same specifications than the FPGA boards available with Amazon’s
F1 instances. We deployed 384000 ROs (~ 32% of the available LUTs,

15

FPGA °20, February 23-25, 2020, Seaside, CA, USA

[ . b)

Figure 8: Enhanced ROs grid for power hammering:
a) schematic; b) implementation with 384000 ROs.

as shown in Figure 8) and gradually enabled them to evaluate the
critical point when the board crashes. Surprisingly, when reaching
only 15% of the total LUTs resources (1182240 LUT6 primitives), it
causes a strong drop in internal core voltage VCCINT and even-
tually crashing the board when VCCINT reached 0.74V. At that
point, we already exceeded the 225W maximum power budged
of the board. Figure 10 and Figure 11 show the power consump-
tion, internal FPGA core voltage VCCINT, and core temperature
in relation to the activated ROs. Please note that the power was
measured on the power supply grid with the help of an Ampere
meter (True RMS). The used power supply was a Silverstone Strider
600W Modular SFX 80+ Gold Power Supply. The figures illustrate
how dangerous malicious circuits could be in a data center setup.
Therefore, it is necessary to prevent loading any bitstream onto an
FPGA board that may include such malicious circuits.

3.4 Further GOAHEAD Use Cases

So far, we showed how the timing-driven path search in GOAHEAD
can be used to find and optimize ring-oscillators. There are several
other use cases that can benefit from this ability, in particular in
the field of hardware security. For instance, in Figure 3 we showed
how different routing latencies can cause glitches. This however,
depends on the exact routing delays and by balancing latencies for
all paths to the XOR gate shown in the example in Figure 3, glitches
can actually be canceled out. This is relevant for implementing DPA-
resistant circuits of cryptographic algorithms that often heavily
use XORs. In such applications, balancing routing latencies may
dramatically reduce power signatures that can be measured by a
potential attacker (see also Figure 2).

Vice versa, carefully imbalanced routing can be used for ampli-
fying glitches (as needed for power-hammering). Other use cases
include the design of asynchronous circuits and wave pipelining
that rely on the implementation of exact (routing) latencies to func-
tion correctly.

In many cases, only a few signals are critical and they can be
easily found by a path search in GOAHEAD together with a rank-
ing of the results by latency. The paths selected can be directly
implemented in the Xilinx Vivado tool through guided routing
constraints (using the TCL command set property ROUTE). All
remaining routing can then be added by Vivado automatically. By
default, GOAHEAD uses a breadth-first search which means that the
search essentially enumerates the entire search space. In practice,
this is often acceptable because the depth of the search is rather
limited (typically less than 10 hops in practical systems) and the
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Figure 9: ROs Frequency versus Waste Power Gain (measured for 2000 ROs) for all 8 LUT6 primitives inside a CLB for all
corresponding different cases that implement the fastest possible loop from output O6 to an input of the same LUT (resulting

in 8 X 6 = 48 individual experiments).
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adjacency of switch matrices is rather sparse. For longer paths, the
GOAHEAD path search also supports a variant of A*.

4 FPGA VIRUS-SCANNING WITH
FPGADEFENDER

Having examined the threat of ring-oscillators in previous sections,
we are now looking closer into threat mitigation strategies. We will
now introduce the tool FPGADEFENDER which detects malicious
constructs in bitstreams such that a system can reject a threat before
it could even materialize on an FPGA.
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Figure 11: Power Consumption and Temperature versus

LUTs Utilization on Alveo U200.

4.1 Overview

FPGADEFENDER® is built entirely in Python which provides a bun-
dle of supportive packages such as NetworkX [9] to represent and
analyze an implementation graph from a bitstream. As a first step,
an implementation graph is created by a netlist generator which con-
tains node and edge information. This graph reassembles the netlist
encoded inside the bitstream. The netlist generator is implemented
as an enhancement to the tool Brtman®. The implementation graph
is encoded in JSON format as shown in Figure 13.

3 Available online at: https://github.com/KasparMatas/FPGAVirusScanner.git
4BrrMan [17] is available under: https:/github.com/khoapham/bitman.git
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static system (shell)

partial partial partial
region 1 region 2 region 3
FPGA

configuration manager

(BitMan) netlist G,
architecture virus pos./neg.
graph G, signatures filters

Figure 12: Envisioned system with a virus scanner for detect-
ing malicious configuration bitstreams.

virus scanner
(FPGADefender)

bitstream netlist generator

L

{

"begin": {
"tile": {'mame": "DSP", "x": 18, "y": 160},
"name": "DSP_DSP48_1_ACOUT_B24"},

"end": {
"tile": {"name": "DSP", "x": 18, "y": 165},
"name": "DSP_DSP48_0_ACIN_B24_PIN"},

"attributes": []

+

{

"begin": {
"tile": {"name": "INT", "x": 3, "y": 74},
"name": "INT_MODE_IMUX_1_INT_OUT@"},

"end": {
"tile": {"name": "INT", "x": 3, "y": 74},
"name": "IMUX_E4"},

attributes": []

}1

Figure 13: A snippet of a single edge of the implementation
graph.

After parsing the implementation graph, scanning options are
parsed to provide inputs for the virus detector engine as well as
filters. FPGADEFENDER allows specifying a positive filter to describe
configurations that must exist in the original bitstream (e.g., a spe-
cific connection through which a partially reconfigurable module
communicates with the surrounding shell infrastructure). Corre-
spondingly, a negative filter allows describing primitives and rout-
ing resources that are prohibited in a bitstream. In detail, the scan-
ning process executes the following set of virus detector engines:

e Combinational cycle detector: Detect combinatorial cycles.
This includes detecting cycles that use transparent latches
in order to prevent the attack revealed in [23].

o Attribute detector: Detect asynchronous design elements
such as using latches.

e Port detector: Detect prohibited ports. For example, this
allows it to detect if a partial module tries leaking to a port
not belonging to its allocated partial region.

e Path detector: Detect prohibited paths. For example, detect if
a partial module tries accessing a static route that is crossing
a partial region (note that we explicitly allow static routes
which are commonly used in complex designs).

e Antenna detector: Detect dangling paths. This is in most
cases rather a warning that a module may have an interface
wire not properly connected.
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e Short circuit detector: Detect short circuits caused by bit-
stream manipulation. In general, we detect any bitstream
encoding that is invalid for routing. In Xilinx UltraScale+
FPGAs, this means in practice that all switch matrix multi-
plexers have to be one-hot encoded.

e Fanout detector: Detect and report maximum fanout. This
is an indicator for a malicious design as power-hammering
needs some kind of high fan-out control in order to activate
a larger number of ROs. However, this is just an indicator as
an attacker could easily hide high fan-out signals. This is an
interesting field for further research.

A score is given in each scanning stage and summed up to deliver a
total score. Currently, FPGADEFENDER is leaving the evaluation of
the scores and the report to the user. However, our virus scanner
performs already all the heavy-lifting scanning work. Based on
the reported result, the configuration manager will ultimately be
able to decide whether a bitstream is safe to be deployed or not, as
shown in Figure 12.

4.2 How to use FPGADEFENDER

FPGADEFENDER is a command-line program for scanning imple-
mented FPGA designs (i.e. bitstreams) for malicious circuits and
constructs. This section will describe installing and using FPGADE-
FENDER as well as showing some scan examples. All of the examples
below use the short option flags. For more details about the options
use the —-help flag.

Given design in file input_design.json, a scan can be per-
formed on the command line using:
-1

virusscanner input_design.json —c config.

ini —o output. txt

The above command runs FPGADEFENDER on the implemented
graph given by the input_design. json file based on the options
setin the config. ini file and outputs the results to the output. txt
file.

The config file is used to configure FPGADEFENDER and the
tools it uses. The configuration file is parsed using the Python’s
ConfigParser package and therefore it consists of sections and
options. The configuration file should have the following items
specified:

e virus_signatures: Names of the virus signature packages to
be executed
— Specific virus_signature options described in the next sec-
tion
e connection_attributes: Optional section for adding attributes
to connections
— attributes_file: Path to the CSV file describing which con-
nections get which attributes.
e removables
— connections_file - Path to a text file describing which
connections should be removed from the implementation
graph before the scans.

The different available virus signatures can be set up in the
config file by adding the name of the virus signature class under
the virus_signatures section, as shown in Table 1.
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e Signature options
e Positive filter lists
e Connection attribute adding
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}

execute virus scanning

Y
Result represented
in text file

Figure 14: FPGADEFENDER flowchart.

Virus detector engines:

e Combinational loop detector
e Attribute detector

e Port detector

e Path detector

e Antenna detector

e Short circuit detector

e Unspecified path detector

e Fanout detector

Table 1: Virus signatures in FPGADEFENDER.

Signature

Options

Description

Ring oscillator

CombinatorialLoopDetector

ring_oscillator_detection -

This detects loops in the given

detection ignored_attributes_file implementation
Disallowed port node_detection - Can detect disallowed port usages, like
. PortDetector . . . . .
detection disallowed_nodes_file snooping on neighbouring designs
path_detection -
Disallowed path disallowed_begin_nodes_file & Can detect disallowed path usages like
. PathDetector . .
detection disal- paths next to leaky long wires
lowed_destination_nodes_file
hort_detection - This detect tput ith 1tipl d
Short circuit detection | ShortCircuitDetector snort_de ec. on . s ce ec.s outputs with mu 1P € 1‘1se
short_location_file inputs which can cause short circuits
antenna_detection -
. - Can detect undesired dangling input
Antenna detection | AntennaDetector allowed_input_antennas_file & v gHng mpu

allowed_output_antennas_file

and output wires

Unspecified path
detection

UnspecifiedPathDetector

unspecified_path_detection -
specified_begin_nodes_file &
specified_end_nodes_file &

specified_routing_nodes_file

Can detect paths which start or end at
specified ports but use disallowed
routing ports. The detected paths will
be from the end ports which don’t start
at the specified start ports

fan_out_begin_nodes_file -

Can detect all nodes which are

Fan-out detection | FanOutDetector fan_out_begin_nodes_file & connected to too many end nodes. The
fan_out_end nodes_file threshold is set to 100 currently
tect all ith the attribut
Attribute detection | AttributeDetector - Can detect all nodes wi ¢ attribute

To build the executable, firstly a requirements file has to be set
for the venv environment variable. With this, we can run:

pip

install —r requirements. txt

pyinstaller virusscanner/__main_

"LATCH"

_-by

virusscanner —F ——hidden—import=

virusscanner . parsing.signatures.
ring_oscillator_detection

This will install the executables using the PyInstaller tool got
from pip. When building the executable, we have to make sure to
add the virus scanner packages given in the config file as hidden
imports, as shown in the following example:
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To add more than one signature, the . spec file can be modified.

5 SCAN RESULTS

We ran FPGADEFENDER on a benchmark of malicious bitstreams
and this section presents briefly the results. As a sanity check, we
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also ran scans on bitstreams that do not contain malicious circuits
and FPGADEFENDER had not reported any issue, except for one case:
a true random number generator that actually uses ring-oscillators
as a source of randomness. In detail we provide the following re-
ports:

e Combinatorial loop and transparent latch detection are re-
ported in Figure 15. The file lists a couple of cycles detected.
Each cycle starts with a status line stating the specific class
of ring-oscillator. FPGADEFENDER supports detecting ROs
through LUTs, cascading multiplexers (MUX7/MUX8 in Xil-
inx notation), CLA carry logic, DSP blocks and latches. After
this the entire first cycle of each class is reported. This can
be identified by the first and last entry of each cycle pointing
to the same node.

o Short-circuits are reported in Figure 16. This section reports
first the number of short circuit situations found and then
list for the first detected switch matrix multiplexer the input
ports activated. Each switch matrix multiplexer can only
connect to no port (if not used) or to at most one of its
available inputs.

o Latches are reported in Figure 17. This section reports latches
used in cycles but also all other latches which are not mali-
cious, but which indicates that the bitstream was not imple-
mented following good RTL design principles.

e Antennas are reported in Figure 18. The report lists the last
port of an antenna which allows investigating the antenna
issue using the Vivado tool suite.

e Fan-outs are reported in Figure 19. The fan-out report lists
the nets with the highest fan-out in the design. The number
of nets reported is specified in the config file.

6 CONCLUSIONS AND DISCUSSION

In this tutorial we provided a small survey on recent FPGA hard-
ware security research and we revealed that in particular ring-
oscillators impose a real world threat. With this, we described how
the academic tool GoAhead can be used to build a Time-to-Digital
Converter for UltraScale+ FPGAs which was used for evaluating
a larger number of ring-oscillator designs. This resulted in one
design that has the enormous waste power potential of over 2kW
on an Alveo U200 data center card and experiments on that board
resulted in a power-induced crash using just 15% of the available
LUT resources of the available VU9P FPGA. In the reminder of this
tutorial, we showed how the open-source tool FPGADEFENDER can
detect (probably all kinds of) ring oscillator designs for mitigating
this threat.

The huge waste power potentials point out that hardware Tro-
jans and other malicious circuits are a real threat and only very
little logic is required to crash a system. We like to stress that this
is not a vendor-specific problem and the threats discussed in this
tutorial apply to any FPGA from any vendor. However, we also
showed that malicious circuits can be detected automatically and
that this is even possible at the bitstream level. We believe that se-
curity through some level of virus scanning is inevitably needed as
part of an FPGA ecosystem. We also believe that such security tools
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1 # OQutput for "Mali @4 LUTs
CombinatorialLoopDetector: 2

Found the following cycles:
INT_X1Y126 IMUX_W22 —>
CLEM_X1Y126 CLE_CLE_M_SITE_O_Ad —>
CLEM_X1Y126 CLE_CLE_M_SITE @ A 0 -»
INT_X1¥126 LOGIC_OUTS_W® -=>
INT_X1Y126 INT_NODE_IMUX_32_INT_OUTO ->
INT_X1Y126 IMUX_wW22

CombinatorialLoopDetector
Found the following cycles:
INT_X3Y76 INT_INT_SDQ_62_INT_OUTL ->

INT_X3Y76 INT_NODE_GLOBAL_4_INT_OUTD -=
INT_X3Y76 INT_NODE_IMUX_41_INT_OUTL ->
INT_X3Y76 BYPASS W4 —>
INT_X3Y76 INODE_W_1_FT1 -=
INT_X3Y76 BOUNCE W_0_FTL ->
CLEM_X3Y76 CLE_CLE_M_SITE_D_AX ->
CLEM_X3Y76 CLE_CLE_M_SITE_@_BMUX ->
INT_X3Y76 LOGIC_OUTS_W17 -=
INT_X3Y76 INT_NODE_SDQ_71_INT_OUT1 ->
INT_X3Y76 INT_INT SDQ_62 INT _OUTL

CombinatorialLoopDetector
Found the following cycles
INT_X11¥79 BYPASS_W4 ->
INT_X11Y79 INT_NODE_IMUX_43_INT_OUTOD -
INT_X11¥79 IMUX_Wi8 —>
CLEM_X11Y79 CLE_CLE_M_SITE_@_A6 —>
CLEM_X11Y79 CLE_CLE_M_SITE_@_AMUX ->
INT_X11Y¥79 LOGIC_OUTS_W21 ->
INT_X11Y79 INT_NODE_SDQ_76_INT_OUTO -=
INT_X11Y79 INT_INT_SDQ_62_INT_OUT1 ->
INT_X11Y79 INT_NODE_GLOBAL 4 INT_OUT® ->
INT_X11Y79 INT_NODE_IMUX_41_INT_OUTL ->
INT_X11Y¥79 BYPASS_W4

CombinatorialloopDetector
Found the following cycles:
INT_X3Y36 INT_NODE_IMUX_13_INT_OUTO -»
INT_X3Y36 IMUX_E34 ->

DSP_X3Y35 DSP_DSP48_1 (12 =

DSP_X3Y35 DSP_DSP48_1_FAKE_PREG -=
DSP_X3Y35 DSP_DSP48_1 XOROUTZ -=
INT_INTF_R_X3Y38 LOGIC_OUTS_R11 -=
INT_INTF_R_X3Y38 LOGIC OUTS L11 ->
INT_X3Y38 LOGIC_OUTS_E11 -=

INT_X3Y38 INT_NODE_SDQ_15_INT_OUT1 ->
INT_X3Y38 552_E_BEG3 -=

INT_X3Y36 S52_E_END3 ->

INT_X3Y36 INT_NODE_IMUX_13 INT_QUTO

CombinatorialLoopDetector
Found the following cycles:

INT_X16Y99 IMUX_W21 —>

CLEM_X16Y99 CLE_CLE_M_SITE @ D6 —=>
CLEM_X16Y99 CLE_CLE_M_SITE_0_DQ ->
INT_X16Y99 LOGIC_QUTS_W10 ->
INT_X16Y99 INT_NODE_IMUX_38_INT_OUT1 ->
INT_X16Y99 IMUX_W21

Figure 15: Report sample for combinatorial loop detection.

ShortCircuitDetector: 1.0
INT_X3Y1 EE12_BEGO® has the following inputs which can cause a short:

INT_X3Y1 NN12_ENDO

INT_X3Y1 EE12_BLN_7_FT1

INT_X3Y1 NN4_E_BLN_7_FT1

INT_X3Y1 EE4_W_END@

INT_X3Y1 EE4_E _END@

INT_X3Y1 NN12_END1

INT_X3Y1 NN4_W_BLN_7_FT1

INT_X3Y1 EE12_ENDO

Figure 16: Report sample for short-circuit detection.
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CombinatoriallLoopDetector:
Found the following cycles:
INT_X16Y99 IMUX_W21 ->
CLEM_X16Y99 CLE_CLE_M_SITE_®_D6 ->
CLEM_X16Y99 CLE_CLE_M_SITE_®_DQ ->
INT_X16Y99 LOGIC_OUTS_W1@ ->
INT_X16Y99 INT_NODE_IMUX_38_INT_OUT1 ->
INT_X16Y99 IMUX_W21

AttributeDetector: 2000.0
CLEM_X16Y99 CLE_CLE_M_SITE_@_DQ

1 latches are used!

Figure 17: Report sample for transparent latch detection.

# Output for "antennas.jsor Antenna repo

AntennaDetector:

Found the following dangling output ports:
INT_X1Y® INT_NODE_IMUX_15_ INT OUT1

Figure 18: Report sample for antenna detection.

# Output for "elegant_short.5

FanOutDetector:

CLEL_R_X2Y51 CLE_CLE_L_SITE_®_E_0 has a fan-out of: 97
CLEM_X4Y38 CLE_CLE_M_SITE_0_AQ2 has a fan-out of
CLEM_X4Y38 CLE_CLE_M_SITE_0_BQ has a fan-out of:
CLEM_X4Y38 CLE_CLE_M_SITE_0_CQ has a fan-out of:
CLEL_R_X14Y10 CLE_CLE_L_SITE_O_H_O0 has a fan-out of
CLEM_X13Y14 CLE_CLE_M_SITE_®_AQ has a fan-out of
CLEM_X9Y1 CLE_CLE_M_SITE_0_C_0 has a fan-out of:
CLEM_X6Y68 CLE_CLE_M_SITE_0_F_D has a fan-out of: 9

Figure 19: Report sample for fan-out detection.

can reliably solve any security issue and that even multi-tenancy in
datacenters is well possible. For industry, the best way to address
security challenges is by opening architectures, bitstreams, and
tools in order to give the research community best possibilities to
develop mitigation strategies.

With this tutorial, we want to create awareness for FPGA security
and stimulate research to ensure that FPGA security will be treated
in a proactive manner.
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