
Lightweight Hardware Implementation of R-LWE Lattice-Based
Cryptography

Fan, S., Liu, W., Howe, J., Khalid, A., & O'Neill, M. (2018). Lightweight Hardware Implementation of R-LWE
Lattice-Based Cryptography. In IEEE Asia Pacific Conference on Circuits and Systems (APCCAS) 2018:
Proceedings Institute of Electrical and Electronics Engineers Inc..

Published in:
IEEE Asia Pacific Conference on Circuits and Systems (APCCAS) 2018: Proceedings

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Open Access
This research has been made openly available by Queen's academics and its Open Research team. We would love to hear how access to
this research benefits you. – Share your feedback with us: http://go.qub.ac.uk/oa-feedback

Download date:20. Jul. 2023

https://pure.qub.ac.uk/en/publications/c4802c96-f997-44d7-b087-1736574e3362

Lightweight Hardware Implementation of R-LWE
Lattice-Based Cryptography

Sailong Fan∗, Weiqiang Liu∗, James Howe†, Ayesha Khalid‡ and Maire O’Neill‡
∗Nanjing University of Aeronautics and Astronautics, Nanjing, China

†University of Bristol, Bristol, UK
‡Queen’s University Belfast, Belfast, UK

E-mail:{fansl4g, liuweiqiang}@nuaa.edu.cn, james.howe@bristol.ac.uk, {a.khalid, m.oneill}@qub.ac.uk

Abstract—Lattice based cryptography (LBC) is one of the
most promising post-quantum cryptographic candidates. Ring-
learning with errors (R-LWE) is an encryption scheme of LBC. In
this paper, a lightweight hardware implementation is presented
including key generation, encryption, and decryption. The R-
LWE encryption scheme consists of a Gaussian sampler and
polynomial multiplication. This paper uses cumulative distri-
bution table (CDT) as the Gaussian sampler and schoolbook
approach for the polynomial multiplication. The purpose of this
architecture is to achieve small area consumption with high
frequency. The hardware implementation results on the Xilinx
Kintex-7 FPGA shows that the design consumes 808 slices and
the frequency can be up to 288.35MHz.

Index Terms—lattice-based cryptography; Ring-learning with
errors; cumulative distribution table; polynomial multiplication;
FPGA

I. INTRODUCTION

In the increasingly prominent context of information secu-
rity, higher security encryption algorithms are required to pro-
tect personal information and privacy. With the breakthrough
of quantum computer, especially the invention of quantum
algorithm represented by Shor [1] in 1994, existing public-key
encryption algorithms based on large number decomposition
and discrete logarithm such as RSA [2] and elliptic curve
cryptography (ECC) [3] will be no longer secure. In order
to resist the attacks of quantum computer, post-quantum
cryptography (PQC) has been created. Amongst the potential
PQC algorithms, lattice-based cryptography (LBC) is one of
the most promising candidates. LBC algorithms are based a
hard problem of the short (or closest) vector problem (SVP or
CVP) in a lattice. This hard problem in LBC is believed to
be difficult for classical and quantum computers. Therefore,
even the practical quantum computer comes true, it can still
be robust enough to withstand an attack.

Ring-learning with errors (R-LWE) algorithm was proposed
by Lyubashevsky et al. [4]. It operates on the ring Zq[x]/(f),
where f is an irreducible polynomial and p is a prime. In most
cases, f = xn + 1 where n is a power of 2. R-LWE algorithm
uses polynomial multiplication, which leads to large key sizes
and signnificant hardware resources. However, compared to
RSA and ECC, it is compact.

In this paper, we aim to design a lightweight hardware
implementation of R-LWE, which uses a small amount of re-
sources but also guarantees security. For the Gaussian sampler,

the cumulative distribution table (CDT) method is used due
to its simplicity and lightweight feature. This method does
not use any RAM and has a fast speed. Before the Gaussian
sampler, we use M-sequence as the random number generator.
To implement the costly polynomial multiplication, we use
schoolbook multiplication instead of the number theoretic
transform (NTT). Rather than using the block RAM, the
proposed design is implemented with distributed RAM (i.e.,
LUTM), which can achieve high frequency and throughput.

The lightweight designs include implementations of R-LWE
for key generation, encryption, and decryption. The parameter
set used is (n, q, σ) = (256, 7681, 4.51) which is consistent
with [5] and attains the medium security levels.

The paper is organized as follows. Section II presents the
background of public-key scheme of R-LWE. Section III
presents the proposed hardware architecture for both of the
encryption and decryption of the R-LWE public key scheme.
Section IV gives the hardware results and compares with
previous designs. Section V concludes the paper.

II. BACKGROUND

Lattice-based cryptography has already been implemented
in a number of different situations, with schemes based on
the hardness of the learning with errors problem (LWE) and
the Ring-LWE (R-LWE) problem. Compared with LWE, R-
LWE algorithm improves the public and private key size and
improves efficiency. However, R-LWE algorithms also have
some disadvantages, such as complex operation of polynomial
multiplication. Pöppelmann and Güneysu proposed an efficient
polynomial multiplication based on NTT [6], and later they
provided the whole design of the R-LWE scheme with some
practical optimizations [7]. In addition, they investigate a low-
cost scenario with very limited resources [8], using different
values of parameter sets and using the Bernoulli sampler.

The R-LWE algorithm mainly consists of two operations,
that is, the Gaussian sampler and multiplication. Discrete
Gaussian distribution is considered over the integers with
standard deviation σ and mean µ = 0. In this work, the
Gaussian standard deviation σ = 4.51 is used. The Gaussian
probability distribution function is as follows:

f(x) =
1

(
√

2πσ)
exp

(
− (x− µ)2

2σ2

)
= 0.88457exp(−0.2458x2)

(1)

And the cumulative probability distribution equation is
F (x) =

∫ x

∞ f(t)dt. According to the probability theory, we
can have the results.
If X N(µ, σ2),

F (x) = P{X ≤ x} = P{(X − µ)/σ ≤ (x− µ)/σ}
= Φ((x− µ)/σ)

then,
F (1) = P{X ≤ 1} = Φ(1/σ) = 0.5871

F (2) = P{X ≤ 2} = Φ(2/σ) = 0.6700

F (3) = P{X ≤ 3} = Φ(3/σ) = 0.7486

etc.
Next, some uniform random numbers are needed to com-

pose the discrete Gaussian distribution number. The maximum
number of uniform random numbers determine the precision
of the Gaussian distribution.

Another complex operation is polynomial multiplication.
It’s the most time-consuming operation, resulting in slow
computation. The schoolbook algorithm can be written as
follows:

ab =

n−1∑
i=0

n−1∑
j=0

aibjx
i+j

mod(xn + 1) (2)

where a and b are the two inputs to the multiplier. This
calculation has a time complexity O(n2).

The public key encryption scheme of R-LWE includes
Key gen(), Enc(a,p,m) and Dec(c1, c2) and is defined as
shown in Table I:

TABLE I
THE PUBLIC KEY ENCRYPTION SCHEME OF R-LWE

Key gen() Generate r1, r2 ∈ Dσ and a ∈ U . Let p =
r1 − ar2. Then the public key is p and the
secret key is r2.

Enc(a,p,m) Generate e1, e2, e3 ∈ Dσ . Let m̄ =
ENCODE(m). Then the cipher text is c1 =
ae1 + e2, c2 = pe1 + e3 + m̄

Dec(c1, c2) The plaintext is DECODE(c = c1r2 + c2)

III. THE PROPOSED LIGHTWEIGHT HARDWARE
ARCHITECTURE OF THE R-LWE

In this section, the proposed lightweight hardware architec-
ture of R-LWE lattice-based encryption is presented. We use
a fast and low-cost Gaussian sampler based on CDT method
and a pipelined schoolbook polynomial multiplier.

A. Discrete Gaussian Sampling

For the discrete Gaussian sampler, the standard deviation
σ = 4.51(s = 11.31) and the mean µ = 0 is used. In this
design, we use a precomputed table (3140 bits) to sample the
data. 40 random bits are generated to compare with the table
and calculate the rank of the data in which maximum number
is 31.

The first step of the Gaussian sampler is generating the
random bits. Considering the good statistical properties of
M-sequence, we apply it to generate the required random
numbers. Then we need to find the order of the number,
comparing with those number in the precomputed data. In this
process, we can use method of bisection to increase the speed
of calculation. However, the number generated through this
method is too small and will be insecure. A better way to
solve this problem is to distribute the number to both sides
of x-axis and this covers both positive and negative sides of
the distribution as it is symmetrical. The details is described
in Algorithm 1.

Algorithm 1 Discrete Gaussian Sampling Based on CDT
Input: seed : 40-bit unsigned, q = 7681 modulus,

PMAT : precomputed gauss data
Output: gdata : 13-bit unsigned
1: rnd = m squence(seed);
2: min = 0; cur = 16; jmp = 16;
3: do
4: cur = min + jmp;
5: jmp = jmp � 1;
6: if(rnd ≥ PMAT(cur))
7: min = cur;
8: while(jmp == 0)
9: if(rnd[0])

10: gdata = cur;
11: else
12: gdata = q - cur;
13: return gdata;

Fig. 1 shows the hardware structure of discrete Gaussian
sampler. The primitive polynomial of M-sequence is f(x) =
x40 + x5 + x4 + x3 + 1. The hardware circuit brings one
Gaussian data per clock, hence a full Gaussian polynomial
can be produced after 256 clocks.

B. Polynomial Multiplication

We use schoolbook multiplication for the parameter set n =
256 and q = 7681. It can be implemented with just a multiplier
of 13 × 13 bits. The cost is much lower than NTT method.
Algorithm 2 shows the process of a 13 × 13 bit multiplier,
where addition and modular reduction are also required. It is
not easy to perform the modulo reduction. Barrett’s reduction
algorithm [9] can solve this problem, but this needs a small
modification. In [10], an algorithm was proposed to fit the
AVR micro controller. The variant of algorithm is shown in
Algorithm 2.

Gauss[0]

Gauss[1]

Gauss[2]

Gauss[3]

Gauss[4]

……

Gauss[30]

Gauss[31]

40-bit

M-Sequence

RNG

Comparator

40bits

Gauss[X]

40bits

R[0]

q=7681

X

13bits 13bits

Gauss_data

13bits

MUX

Bisection Method

Fig. 1. Hardware structure of the discrete Gaussian sampling.

Algorithm 2 Barrett’s Reduction Variant Algorithm
Input: x : 26-bit unsigned, q = 7681 modulus
Output: y : 13-bit unsigned
1: t = x[25:13] + x[25:17] + x[25:21];
2: tq = (t�13)+t-(t�9); //tq = t×q;
3: y = x - tq;
4: if(y ≥ q)
5: y = y - q;
6: if(y ≥ q)
7: y = y - q;
8: if(y ≥ q
9: y = y - q;

10: return y;

In this algorithm, x is the product of two numbers and
y is number modulo q. In Step 2, we observe that 7681 =
0x1e01 = 0x2000 − 0x0100 + 0x0001. Therefore, we can
simplify the multiplication of t × q to addition and shift
operations. Then, if the obtained result is not totally reduced,
additional subtractions are needed, where the maximum num-
ber of subtractions is 3.

Fig. 2 shows the hardware structure of modular reduction
with multiplication. It uses two additions, five subtractions and
shift operations.

x x[25:21]

x[25:17]

x[25:13]

t

y

q

q

q

26

13

t<<13

26

t<<9

26

26

26tq

13

Fig. 2. Hardware structure of the modular reduction.

C. Hardware Architectures of R-LWE

The R-LWE algorithms include three parts, key generation,
encryption, and decryption. In the key generation part, two
Gaussian distributed polynomials r1, r2 and a uniformly dis-
tributed polynomial a are produced. Polynomial a is sampled
directly from M-sequence. Polynomial multiplication and sub-
traction is used to obtain the public key p and the private key
r2. Polynomial subtraction can be performed by addition and
using a multiplexer. When the addition operation is finished,
there is a simple modulus operation with a comparator using
a multiplexer. Fig. 3 is the hardware architecture of key
generation part.

D Q

CLK

40 bits

m sequence

modulo

×

Multiplication

×

r1

r2

a

PMAT

Sampler

?

Subtraction

+

p

Key Generation

Fig. 3. Hardware architecture of key generation.

For encryption, Gaussian noise polynomials e1, e2, e3 are
required for the ciphertext calculation. Every addition needs
another multiplexer to ensure the result is below 7681. Mes-
sage m is hidden by c2. The polynomial c1 does not contain
any information of the message and it is just an assistant during
the decryption process. Fig. 4 shows the hardware architecture
of the encryption.

D Q

CLK

40 bits

m sequence e1

e2

e3

PMAT

Sampler

?

modulo

×

Multiplication

×

a

p

Flow ControlA
d
d
it

io
n

+

ae1

pe1

c2 c1

Addition

+

m

Encryption

Addition

+

Fig. 4. Hardware architecture of encryption.

TABLE II
RESULT OF PERFORMANCE AND RESOURCE CONSUMPTION

K7 (256,7681,4.51)
Resources Key gen Enc Dec

LUT 934 1098 609
FF 356 407 318

Slices 289 337 182
LUTM 195 281 215
BRAM 0 0 0

DSP 1 1 1
Freq. 288.35MHz

Cycles 66057 131604 65802
Op./s 4365.17 2191.04 4382.09

TABLE III
COMPARISON WITH OTHER R-LWE CRYPTOGRAPHY (K-7: KINTEX-7,

S-6: SPARTAN-6, V-6: VIRTEX-6, S-IV: STRATIX-IV).

Designs Part LUT FF BRAM DSP Freq
(MHz) OP/s

This
work
(K-7)

Key 934 356 0 1
288.35

4365
Enc 1098 407 0 1 2191
Dec 609 318 0 1 4382

[8]
(S-6)

Enc 360 290 2 1 128 934
Dec 162 136 1 1 179 2700

[7]
(V-6) Tol 4549 3624 12 1 262 14162

[11]
(S-IV)

Enc 28977 29290 234 22 235.40 107181
Dec 6761 7616 31 20 249.44 217864

Lastly, in the decryption, there is no need to generate
Gaussian values, which only need to calculate c = c1r2+c2.
Fig. 5 shows the hardware architecture of decryption.

modulo

×

Multiplication

×
Addition

+

c1

r2

c2

Fig. 5. Hardware architecture of decryption.

IV. RESULTS AND COMPARISON

We have implemented the proposed R-LWE encryption
scheme on Xilinx Kintex-7 FPGA (using Vivado 2016.4)
with parameter sets (256,7681,4.51). Table II presents the
performance and hardware cost. The design includes three
parts, which do not share any hardware, due to that the
key management, encryption and decryption core may not be
contained in the same device. Pipelining has been applied to
increase the frequency of design with registers. In addition, we
use LUT RAM (LUTM) instead of block memory, which can
save the memory resources and achieve higher frequency, but
costs extra LUT resources. Table III presents the comparison
with other R-LWE encryption implemented in hardware.

[8] uses the different parameter sets (256,4093,3.33) and
its frequency is not high but it is low-cost. [7] uses the

NTT algorithm as polynomial multiplication and reuse the
same multiplication module. [11] is a high throughput design
and high security with n = 512, which targets high speed.
Comparing with these R-LWE designs, the proposed design
does not use any RAM and has the highest frequency with
rather low hardware cost.

V. CONCLUSIONS AND FUTURE WORKS

In this work, a lightweight R-LWE hardware implemen-
tation is presented. The proposed design uses CDT as the
Gaussian sampler and a schoolbook multiplier for polynomial
multiplication. The design achieves the highest frequency with
rather low hardware cost, compared with previous works.
Future work will consider to reduce the bit width of Gaussian
samples, which will further save hardware resources.

REFERENCES

[1] P. W. Shor, “Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer,” SIAM J. Comput., vol. 26,
no. 5, 1997, pp. 1484–1509.

[2] E. Öksüzoglu and E. Savas, ”Parametric, Secure and Compact Im-
plementation of RSA on FPGA,” 2008 International Conference on
Reconfigurable Computing and FPGAs, Cancun, 2008, pp. 391-396.

[3] K. Sakiyama, M. Mentens, L. Batina, B. Preneel and I. Ver-
bauwhede, “Reconfigurable modular arithmetic logic unit supporting
high-performance RSA and ECC over GF(p),” International Journal of
Electronics, vol. 94, 2007, pp. 501-514.

[4] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and
learning with errors over rings,” in Proc. 29th Annu. Int. Conf. Theory
Appl. Cryptogr. Techn. (EUROCRYPT), 2010, pp. 1–23.

[5] R. Lindner and C. Peikert, “Better key sizes (and attacks) for LWE-based
encryption,” in Proc. Cryptogr. Track RSA Conf. (CT-RSA), 2011, pp.
319–339.

[6] T. Pöppelmann and T. Güneysu, “Towards efficient arithmetic for lattice-
based cryptography on reconfigurable hardware,” in Proc. 2nd Int. Conf.
Cryptol. Inf. Secur. Latin Amer. (LATINCRYPT), 2012, pp. 139–158.

[7] T. Pöppelmann and T. Güneysu, “Towards practical lattice-based public-
key encryption on reconfigurable hardware,” in Proc. 20th Int. Conf. Sel.
Areas Cryptogr. (SAC), 2013, pp. 68–85

[8] T. Pöppelmann and T. Güneysu, ”Area optimization of lightweight
lattice-based encryption on reconfigurable hardware,” 2014 IEEE In-
ternational Symposium on Circuits and Systems (ISCAS), Melbourne
VIC, 2014, pp. 2796-2799.

[9] P. Barrett. ”Implementing the Rivest Shamir and Adleman public key
encryption algorithm on a standard digital signal processor.” Conference
on the Theory and Application of Cryptographic Techniques Springer,
1986, pp.:311-323.

[10] Z. Liu, H. Seo, S S, Roy, J. Großschädl, H. Kim and I. Verbauwhede,
”Efficient Ring-LWE encryption on 8-Bit AVR processors,” in Proc. Int.
Workshop Cryptographic Hardware and Embedded Systems (CHES),
2015, pp. 663-682.

[11] C. P. Renterı́a-Mejı́a and J. Velasco-Medina, ”High-Throughput Ring-
LWE Cryptoprocessors,” in IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 25, no. 8, 2017, pp. 2332-2345.

	Introduction
	Background
	The Proposed Lightweight Hardware Architecture of the R-LWE
	Discrete Gaussian Sampling
	Polynomial Multiplication
	Hardware Architectures of R-LWE

	Results and Comparison
	Conclusions and Future Works
	References

