
Short Paper: Making Contactless EMV Robust Against
Rogue Readers Colluding With Relay Attackers

Tom Chothia1, Ioana Boureanu2, and Liqun Chen2

1 School of Computer Science, University of Birmingham, UK
2 Department of Computer Science, University of Surrey, UK

Abstract. It is possible to relay signals between a contactless EMV card and a
shop’s EMV reader and so make a fraudulent payment without the card-owner’s
knowledge. Existing countermeasures rely on proximity checking: the reader will
measure round trip times in message-exchanges, and rejects replies that take
longer than expected (which suggests they have been relayed). However, it is
the reader that would receive the illicit payment from any relayed transaction, so
a rogue reader has little incentive to enforce the required checks. Furthermore,
cases of malware targeting point-of-sales systems are common. We propose three
novel proximity-checking protocols that use a trusted platform module (TPM) to
ensure that the reader performs the time measurements correctly. After running
one of our proposed protocols, the bank can be sure that the card and reader were
in close proximity, even if the reader tries to subvert the protocol. Our first pro-
tocol makes changes to the cards and readers, our second protocol modifies the
readers and the banking backend, and our third protocol allows the detection of
relay attacks, after they have happened, with only changes to the readers.

1 Introduction

Wireless and particularly contactless systems, such as the EMV (Europay, Mastercard
and Visa) payment protocol, are vulnerable to relay attacks. That is, an adversary can
stand near a victim (e.g., a bankcard) and relay signals from that device to a second
attacker found near the authentication-verifying party (e.g., a payment terminal). This
type of attack has already been used to steal cars3. As relayed messages take longer
to travel then direct messages, proximity-checking or distance-bounding (DB) proto-
cols [1] measure the round trip time (RTT) it takes for some authenticating party, called
prover, to answer challenges sent by an authentication-verifying party, called verifier.
If the RTT is within a given bound, then there is a low likelihood that a relay attack
occurred. As such, the contactless version of the EMV protocol has recently been en-
hanced with such a relay-counteraction mechanism [5] (see Figure 2), in the style of a
previously proposed DB protocol [4].

As with other DB protocols, these newly proposed EMV protocols assume that the
reader is honest. However, this threat-model conflicts with the setting of EMV. I.e, in
the current EMV protocols, the entity tasked with enforcing the proximity checks is
also the one that stands to benefit if these checks are ignored: an EMV reader has an
incentive to be dishonest as it will receive the payments from any (relayed) transaction.
EMV readers have also been the target of malware (see e.g. [7]), which could also over-
ride the RTT-measuring software. This suggests that one should assume that the EMV

3 See e.g. http://www.bbc.com/news/av/uk-42132804/relay-crime-theft-caught-on-camera



Prevents
collusive

relay attacks

Provides
audit-able
evidence

Reader
may be
offline

Changes
to card

Changes
to EMV
reader

Changes to
bank system

backend

Checks
carried
out by

Protocol PayCCR X X X Yes Yes No card
Protocol PayBCR X X × No Yes Yes bank

Protocol PayBCRv2 × X X No Yes No auditor

Fig. 1: A summary of the protocols presented in this paper

reader could collude with relay attackers in mounting fraudulent payments. Moreover,
the current relay-counteracting EMV protocols [4, 5] do not provide any evidence that
the protocols were run correctly. So even if a complaint by a card-holder is made, it
would not be possible to audit the EMV reader and see whether the distance-bounding
checks had been performed. In this paper, we address these shortcomings. Concretely,
our contributions are as follows:

I. We define the notion of collusive relay attacks to mean relay attacks in which the
authentication-verifying party (EMV reader) can collude with a MiM relayer to mount
a relay attack against an authentication and payment scheme, and we define an attacker
model and security definition for this new type of attack.

II. We present three new EMV protocols that defend against such a malicious reader.
A summary of these protocols is given in Figure 1. A complicating factor is that bank
cards have no accurate clock (their power is drawn from the reader). Therefore, the card
cannot distance-bound the reader. The complex EMV infrastructure also makes distance
bounding between the bank and the card impractical. Our solutions show how adding a
TPM as a hardware root of trust to the reader can solve these issues.

III. We discuss our design choices, and provide a high-level argument w.r.t. the
security-guarantee of the new EMV protocols we propose.

2 Background & Foundational Aspects

Contactless EMV. Past work [4] has showed an effective relay attack against EMV
protocols, and suggested a version of contactless EMV called PaySafe that stops relay
attacks. Following this, the main idea of the PaySafe protocol was added to the Master-
Card specification (EMV contactless specifications v3.1 [5]) and yielded MasterCard’s
Relay Resistant Protocol (RRP). This protocol is shown in Figure 2.

As with all EMV protocols, the card includes: (1) a private key PvC ; (2) a sym-
metric key KM that it shares with the bank; (3) a certificate chain CertPvCA

(PubC)
for the card’s public key PubC . The reader has the public key PubCA of the Certifi-
cate Authority, and so can extract and verify the card’s public key. RRP starts with a
setup phase (not shown in Figure 2), in which the reader asks the card what protocols
it supports and selects one to run. The card and reader then generate single-use random
numbers NC and UN , respectively. The reader then sends an “EXCHANGE RELAY
RESISTANCE DATA” command to the card, which contains the nonce UN . The card
immediately replies with its own nonce, and the reader times this round trip time. The
card also provides timing information, which tells the reader how long this exchange
should take. The reader compares the time taken with the timing information on the



Reader Card
PubCA,UN ∈R {0, 1}32 KM , NC ∈R {0, 1}32

PvC,CertPvCA(PubC)
RELAY DATA UN−−−−−−−−−−−−−−−−−−→

T imed l
NC ,Timing information(ti)←−−−−−−−−−−−−−−−−−−

READRECORD−−−−−−−−−−−−−−−−−−→
CertPvB(PubC),...←−−−−−−−−−−−−−−−−−−−

GENERATE AC,Data−−−−−−−−−−−−−−−−−−−→ KS=EncKM
(ATC),

AC=MACKs
(ATC ,Data,UN ,..),

SDAD,AC←−−−−−−−−−−−−−−−−−− SDAD=SignPrivC (AC ,NC,ti,... )

Fig. 2: MasterCard’s Relay-Protected EMV
card. If the time taken was too long, the reader stops the transaction as a suspected re-
lay attack. Otherwise, the reader requests that the card generates a “cryptogram” (a.k.a.
AC ). The card uses the unique keyKM , which it shares with the bank, to encrypt its ap-
plication transaction counter ATC (which equals the number of times the card has been
used). This encryption equates to a session-key denoted KS . The cryptogram AC is a
MAC keyed withKS of data including the ATC , the nonce UN , and the transaction in-
formation. As the reader cannot check the AC , the card generates the “Signed Dynamic
Application Data (SDAD)”: the card’s signature on a message including UN , amount,
currency, ATC , NC . The reader checks the SDAD before accepting the payment.

On TPMs. The Trusted Platform Module (TPM 2.0) is a hardware root of trust (see
https://trustedcomputinggroup.org). It provides two measure of time:
one is “Clock” (see page 205 of [8]) and the other is “Time” (see page 176 of [8]).
Time is a 64-bit milliseconds count from when the TPM was powered up. Clock
shows the real time; this is set when the TPM is created and must be “accurate even
if there is no reliable external clock” [8]. The TPM2 GetTime() command takes
the handle for a signature scheme and some input, and it returns a signature over
TPM-AttestedTime=(Clock, Time) and the input. As such, TPM2 GetTime()
can produce a signed version of a timestamped nonce, with attested time-information.

Attacks onto TPM-AttestedTime are mainly relevant w.r.t. the TPM Clock
(see 36.3 and 36.6 [8]), as this has a non-volatile dimension, unlike Time. Notably, if
the TPM is powered down, the Clock value is correct when the TPM reboots. The
threats w.r.t. Clock documented by TCG, are as follows: (a) if adversaries can ma-
nipulate external software and local clocks like the CMOS clock on PC platforms, but
if the TPM is not physically attacked, then the Clock’s accuracy (w.r.t. a small devia-
tion from real time) is assumed to remain within “acceptable tolerance” (see page 206
of [8]); (b) the Clock value can only be deviated forward, i.e., it cannot be rewound.

3 System Setup, Threat Model & Security Requirements

Protocol Entities. Past distance-bounding work has involved a “prover” who demon-
strates to a “verifier” that it is close (and possibly authenticates too). Our framework is
different to this past work on DB. Rather than the two entities of the classic DB model,
we have four entities in our setting: a “card” that interacts with an “EMV reader” in a



DB-fashion, the EMV reader will have an onboard hardware root of trust (a “TPM”),
and the reader will send evidence for the transaction to the “bank system backend”.

General Infrastructure & PKI. Our protocols use EMV’s existing Public Key
Infrastructure (PKI), augmented to support TPMs inside the readers. We assume that
Certificate Authorities (CAs) have issued certificates on the TPMs’ endorsement keys,
that the banks and cards have access to the right key-chains/certificate-chains to verify
all certificates and, notably, first extract the TPMs endorsement keys. These endorse-
ment keys are then use to verify other certificates sent by the TPM, e.g., certificating
the public counterpart of a TPM’s signing key. In this way, the bank and cards can, for
instance, verify signatures issued by the TPM via a full chain-of-trust, up to the CAs.

Our Participants’ & Communication Model. Between any card and any reader,
we assume that all messages (irrespective of their bit-length) travel at an a-priori fixed
constant speed. As such, there is a linear relation between measures of time and mea-
sures of distance in the protocol. We also assume that cards and readers can run several
concurrent executions of the protocols. Such honest communication is possible if the
card and the reader are no further than an a-priori fixed distance from one another.

Computation Model. Previous DB models have assumed a single, static RTT bound
for all devices. However, our protocols (and MasterCard’s RRP) use a card specific time
bound. To help us formalise this we make the following two definitions:

Definition 1 (Proximity-checking Phase). The proximity-checking phase of a proto-
col is an exchange of challenges and responses, which is timed by the challenger.

Definition 2 (Card Time-Bounding Functions td(cardID) and t(cardID)). We call
t(cardID) a time-bounding function; it maps a card identified by cardID to the time,
in time units, taken for that card to perform the computational part of the timed phase.

We call td(cardID) a d-time-bounding function; it defines the duration of the proximity-
checking phase when executed by a card identified by cardID and physically found at
a distance no larger than d from the reader. We write just td, when cardID is implicit.

Typically, td(cardID) = t(cardID)+“time for all messages of the proximity-checking
phase to travel distance (2×d)”. We now define DB protocols with variable time limits.

Definition 3 (Contactless EMV Protocol with Proximity-checking Phase of Distance-
Bound d). A contactless EMV protocol with proximity-checking phase of distance-
bound d (or, for short, contactless EMV protocol with distance-bound d) is an EMV
protocol between the entities card, EMV reader and bank system backend, where there
is a proximity-checking phase. The protocol has additional parameters defined by the
time-bounding function t(cardID) and the d-time-bounding function td(cardID), for
each cardID. The reader side of the protocol may make use of a TPM. One of the
entities checks that the time recorded for the proximity-checking phase is inline with
td(cardID). If this is not the case, the protocol finishes unsuccessfully.

Definition 4 (Correct Execution). Consider a contactless EMV protocol with proximity-
checking phase of distance-bound d. If all entities in the system follow the protocol and
the distance between the card and the EMV reader is no larger than d, then the pro-
tocol finishes successfully and a correct cryptogram AC for a payment will be issued
by the card, and it will be eventually accepted by the bank.



Our Attacker Model. Combining DB [3, 6] and EMV models [2], we assume an
attacker that also completely controls a number of cards, including all their key material.
The attacker can act and use the corrupted card’s keys at any location. Unlike in previous
DB models [6], the attacker can know the readers’ key/secret material and can control
the software on the readers to make it perform arbitrary actions.

We assume that the TPM is as secure as is claimed in its specification, see page 3,
Section 2. That is, 1. our attacker cannot tamper with the initial setup of the TPM’s
Clock; 2. our attacker cannot mount any physical attack on the TPM’s time-reporting
TPM-AttestedTime=(Clock,Time); 3. our attacker can deviate the TPM’s Clock
only by making it go forward w.r.t. to the real time by a negligible fraction.

We assume that the attacker cannot make the messages travel faster than the constant
speed they travel at between a card and a reader.

We assume all cryptographic primitives used in the EMV protocol are secure w.r.t.
their respective threat-models, e.g., signatures are unforgeable etc.

Our Security Requirements. The main aim of our attacker is to trick the bank
system backend to accept an AC generated by a card that was not in close proximity
with a reader. We formalise this as:

Definition 5 (Resistance to Collusive Relaying). A contactless EMV protocol of distance-
bound d is resistant to collusive-relaying if, for any attacker in the threat and commu-
nication model above, for any payment AC that the bank system backend accepts from
a card that is not controlled by the attacker, the card must have been within distance d
of the reader for the time bounding phase that lead to the generation of the AC .

4 EMV Protocols Resistant to Collusive-Relaying

4.1 PayCCR: A Protocol Compatible with the Current Banking Backend

Our first protocol, PayCCR, is shown in Figure 3. It modifies the EMV protocol on the
card and the EMV reader’s side, yet the bank system backend remains unchanged from
the current standard. As with MasterCard’s RRP protocol, the time bound td(cardID)
to be enforced for the proximity-checking phase is embedded in each card. Below, we
write this bound as td. This time bound is chosen when the card is created, based on its
processing speed, to ensure that the card and EMV reader are less than d distance from
each other. The full protocol starts off with a standard EMV set up phase, in which the
payment app is selected. The reader starts the proximity-checking stage of the protocol
by sending the card a certificate chain for the TPM’s public part of the signing key.

The EMV reader will then send a nonce NR to the TPM to be timestamped. The
TPM receives this bitstring NR passed to the TPM2 GetT ime command, the TPM
timestamps it with TPM-AttestedTime, and using the randomised signing algo-
rithm ECDSA produces the signature σ1. Then, the EMV reader forwards σ1 to the
card. This should be done by the reader as fast as possible, i.e., as each bit is received
from the TPM it should be forwarded to the NFC interface. We allow the nonces to be
split into bytes and the time stamping and nonce exchange to be repeated four times,
once per byte. The average of the four time differences would be compared with td.



TPM Reader Card

td, KM , PrivC , CertB(PubC)
Cert(PubSignTPM ),
NC ∈R {0, 1}32

PubCA

NR ∈R {0, 1}32
PrivSignTPM ,. . .

TPM2 GetTime(NR)

t1 := TPM-AttestedTime;
σ1 = SignTPM (t1,NR)

t1, σ1 σ1

NCTPM2 GetTime(NC )timed

t2 := TPM-AttestedTime;
σ2 = SignTPM (t2, NC)

t2, σ2 t2,σ2,t1,NR

Cert(PubSignTPM )

Certs

GEN AC, data, . . .

Check signatures & values in σ1 & σ2,
Check t2 − t1 < td and check Certs
KS = EncKM

(ATC )
AC=MACKs (ATC ,data,σ1,..)
SDAD= SignPrivC (AC,NR, td,NC ,..)

SDAD , AC

Check SDAD
To Bank: AC ,. . .

Fig. 3: PayCCR: Protection against Collusive-Relay and No Changes to the Bank’s Backend

The nonce NC is pre-generated, thus making the reply time fast. The TPM times-
tamps NC (producing σ2), and the reader sends the signature σ2 to the card. The card
sends its certificates to the EMV reader, which then asks the card to generate the AC
to complete a payment. Before generating the AC the card checks the TPM certificate
provided by the EMV reader, verifies the signatures on the timestamps σ1 & σ2, and as-
certains that the time bound is less than its allowed maximum value td. If these checks
pass, then the card generates an AC and SDAD , which are sent to bank via the reader,
and checked by the bank as normal. If any of the card’s checks fail, then the card sends
a declined message to the reader and aborts.

Discussion. This protocol, and the others herein, make two main assumptions:
1. that a time bound td for each card can be apriori set;



Bank TPM Reader Card

td,KM , PrivC
CertPrivCA(PubB)
CertPrivB(PubC)
NC ∈R {0, 1}32

PubCA, NR ∈R {0, 1}32PrivSignTPMCert(PubSignTPM ),
KM

TPM2 GetTime(NR)

t1 := TPM-AttestedTime;
σ1 = SignTPM (t1,NR)

t1, σ1 σ1

NC , tdTPM2 GetTime(NC )timed

t2 := TPM-AttestedTime;
σ2 = SignTPM (t2, NC)

t2, σ2 READ RECORD

Certs

GEN AC, data, . . .

KS = EncKM
(ATC)

AC=MACKs (ATC,data,σ1,..)
SDAD= SignPrivC (AC,NC ,
td, σ1,. . . )

SDAD , AC

Check SDAD
AC, t1, t2, σ1, σ2, td, SDAD , Certs,. . .

Check t1 in σ1, t2 in σ2

Check σ1, σ2 &NC , NR, td in SDAD
Check AC, Check t2 − t1 ≤ td

Fig. 4: PayBCR: Contactless EMV Protection with No Changes to the Card

2. that the readers’ computation time in the proximity-checking phase is minimal. I.e.,
dishonest reader cannot receive and or proximity-checking-phase messages faster than
an honest reader, except for an insignificant amount.

We detail on the second assumption above. The assumption implies that the TPM
and NFC APIs used must run as fast as possible. Even so, a dishonest reader may gain
some advantage by running at a faster clock speed than an honest reader. However, as
the only effective timed action undertaken by the reader is forwarding bits from the
TPM interface to the NFC interface, an overclocked reader can only gain an advantage
in the order of nanoseconds (referred to in assumption 2 as an “insignificant amount”).
Such an advantage would translate into a theoretical relay attack (including w.r.t. our
definition), however –in practice– it would be a relay over a distance larger than the
bound only by a few centimetres. We could tighten Def. 5 to exclude such practically
irrelevant attacks. Instead, we choose to just discard it out right, on grounds of it being
insignificant. In the Conclusions section, we discuss other ways of deterring/detecting
readers running in an overclocked mode in the proximity-checking phase.



4.2 PayBCR: A Collusive-Relay Resistant Protocol Compatible with RRP Cards

Our second protocol, PayBCR, does not modify the card’s side w.r.t. the current RRP
protocol [5]. PayBCR achieves this in three steps: (1) it uses a timestamped signature
from the TPM instead of what is now the reader’s nonce in the EMV protocol v3.1; (2)
the TPM timestamps the card nonce; (3) both timestamps are passed to the bank along
with the AC, and the bank can check the difference between the timestamps to ensure
the card and EMV reader where close. Additionally, the timing information ti on the
current RRP cards is used as our time bound td. As with RRP, storing the time bound
on the card and signing it avoids the bank having to maintain a look up table of all
card’s time bounds. The full protocol is shown in Figure 4. The EMV reader sends its
nonceNR to the TPM to be time stamped. The signature σ1 from the TPM is sent to the
card instead of the first nonce UN in the current RRP. To keep the protocol compliant
with the current contactless EMV protocol in Figure 2, this bitstring we send to the card
should be shorter, this is achieved by truncating σ1.

Like in the current relay-protecting EMV protocol, the card replies with its nonce
NC . The card’s nonce is immediately sent to the TPM to be timestamped. The protocol
continues in nearly the same way as the current relay-protecting EMV protocol. The
SDAD now signs the AC , the timing information and σ1 (in place of UN ), this along
with the card’s time-bound td, σ1, σ2, t1 and t2 and the AC are sent to the bank.
The bank will check that the TPM’s signed timestamps match the nonce values used
in the AC, the timing information is correctly signed, and the time difference between
the nonces is less than this time bound. Other details, not in Figure 4, are either as in
protocol PayCCR or are self-explanatory.

PayBCRv2: As a variant of our PayBCR, we can have the EMV readers store the
TPM’s signed timestamps σ1 & σ2, and the time values t1 & t2, the SDAD and card
certificates, and not send them to the bank system backend, i.e., the protocol would be
backwards compatible with both the current standards for the bank system backend and
cards; only changes to the EMV readers are required.

Such a variant would entail that a collusive-relay attack could not be stopped in real
time. Rather this version of the protocol would be suited for when a card owner raises
a complaint, or for the bank to detect possible fraud a-posteriori. At such a point, the
EMV reader would be audited and all of the transactions would be checked.

Discussion. This protocol variant would be much easier to introduce than those dis-
cussed above, EMV reader manufacturers could add this protection unilaterally, with-
out needing to make any changes to the current EMV specifications or the bank system
backend. Making changes to the specifications for cards would be a slow process re-
quiring input from many stakeholders, and making changes to the bank system backend
would be expensive, due to the dedicated hardware banks generally use. Therefore, this
protocol variant has a clear advantage over the others. The disadvantage of this protocol
variant is that collusive-relay attacks could still be carried out and only detected during
an audit. However, this is in keeping with much of the rest of the EMV security model
that allows some fraud and aims to detect, roll back or refund it after the event. Our
protocol would make any malicious interference by the EMV reader in the proximity-
checking phase detectable, meaning that the bank could refuse payments to the reader,



if the audit information was missing or did not check out, so removing all motivation
for this attack. Therefore, while the protections provided by the PayBCRv2 protocol
are the weakest, it is perhaps the most practical to introduce.

5 High-level Security Assessment

Our protocols do not alter any security property of the current contactless EMV; the
authentication properties of our protocols follow from the basic EMV protocol. As in
EMV, the freshness from the card and the reader stop replay attacks. The AC is gener-
ated based on a key shared only between the card and the bank, so the bank can be sure
that this came from a card; the reader gets similar guarantees from the signed SDAD .

Assume protocol PayCCR is run in the presence of an arbitrary attacker in our
model, and an AC is sent out by a card not controlled by the attacker. In PayCCR if
the bank system backend accepted an AC then:
1. The backend checks the AC based on the card key. So, the AC must have come

from that card (which is not controlled by the attacker), therefore this card will have
executed its algorithm, i.e., performed the required checks.

2. The card checks the certificate for the TPM’s signing key. Therefore, the card can
be sure of the timestamps signed by the TPM.

3. Since the card checks that σ1 includes the timestamp t1, the card can be sure that
the σ1 message originated at the EMV reader’s TPM at time t1.

4. The card will only broadcast NC after it has received σ1.
5. The card checks that σ2 includes its nonce NC and the time t2, therefore it can be

sure that the reader received the nonce NC before time t2.
6. Together (3), (4) and (5) ensure that the RTT of the messages σ1 and NC was at

least t2 − t1 and that these messages went between the card and the TPM.
7. The card knows its time-bound td. So, checking that t2 − t1 < td ensures that the

card was within distance d of the reader, which gives us resistance to collusive-
relaying (Def. 5).

We now place ourselves in the setting where the protocol PayBCR is run in the
presence of an arbitrary attacker in our model and an AC is sent out by a card not
controlled by the attacker. For our second protocol, PayBCR, recall that the checks are
carried out by the bank system backend, therefore the following reasoning applies:
1. Checking that σ1 and NC are in the SDAD ensures that the reader/attacker sent σ1

to the card, and that the card thereafter used the nonce NC .
2. As σ1 is a high-entropy, randomised signature, checking that σ1 signs t1 means that
σ1 was generated at time t1 and cannot have been sent to the card before this.

3. By looking at the timestamps in σ1 and in σ2, and at the fact that σ2 also signs NC ,
the bank system backend will know that NC was only broadcast by the card after
t1 (and in fact after σ1 was received) and before t2. The bank system backend also
checks this against SDAD , which signs NC , σ1.

4. Together (2), (3) and (4) guarantee that the round trip time between the card and
the EMV reader’s TPM was less than t2 − t1.

5. Checking that td is in the SDAD ensures that the correct time-bound for the specific
card is used in the checks.

6. Checking that t2 − t1 < td together with (5) and (6) ensures that the distance
between the card and the reader was within distance d of each other.



6 Conclusions

Previous proposals to protect EMV transactions from relay attacks depend on the EMV
reader to make some timing checks/measurements. However, it is the reader that will
receive the payments from any relayed transactions. So, (rogue) readers have no incen-
tive to comply with the checks and prevent relaying. In this paper, we showed how –by
using a TPM– rogue readers can be stopped from subverting the relay-detecting checks.
Concretely, we presented three protocols with different levels of compatibility with the
current EMV framework. We also put forward an attacker model (in line with using
TPMs as roots of trust, considering dishonest EMV readers, etc.) and a new security
definition that protects against reader-assisted relaying in EMV protocols.

In one line of future work, we wish to develop a new, fully-fledged symbolic formal-
ism and a provably-secure model that can be used to prove the correctness and security
of this new type of distance-bounding and EMV protocols.

Moreover, we plan to implement our protocols to show that our proposed use of
the TPM can lead to a workable EMV protocol with such protections against strong
relaying. Initial measurements show that the standard deviation in computing TPM sig-
natures is promisingly low, e.g., around 0.6ms. For PayCCR, we will measure the time
it takes for ubiquitous smart-cards to verify different randomised signatures.

We will investigate the second assumption of our design i.e., that reader’s compu-
tations in the proximity-checking phase is “minimal” (on page 7). This is required to
stop an overclocked reader gaining a practical advantage. A step further to investigate
is to certify the read/write speed of the readers via a TPM (i.e., using TPM GetQuote
or other host-attestation methods); this type of method can add security guarantees but
it would clearly require further checks by the bank.

Acknowledgment: We thank all anonymous reviewers, as well as Urs Hengartner
for helpful comments, which improved the paper. Also, Ioana Boureanu thanks Anda
Anda for interesting discussions on this topic.

References

1. S. Brands and D. Chaum. Distance-bounding protocols. In EUROCRYPT ’93, 1994.
2. C. Brzuska, N. P. Smart, B. Warinschi, and G. J. Watson. An analysis of the EMV channel

establishment protocol. In Conference on Computer & communications security, 2013.
3. T. Chothia, J. de Ruiter, and B. Smyth. Modelling and analysis of a hierarchy of distance

bounding attacks. In USENIX Security’18: 27th USENIX Security Symposium, 2018.
4. T. Chothia, F. D. Garcia, J. de Ruiter, J. van den Breekel, and M. Thompson. Relay cost

bounding for contactless EMV payments. In Financial Cryptography (FC), LNCS, 2015.
5. EMVCo. Book C-2 kernel 2 specification v2.7. EMV contactless specifications for payment

system, Feb, 2018.
6. I. Boureanu, A. Mitrokotsa, and S. Vaudenay. Practical and Provably Secure Distance-

Bounding. Journal of Computer Security, 23(2):229–257, 2015.
7. X. Shu, K. Tian, A. Ciambrone, and D. Yao. Breaking the target: An analysis of target data

breach and lessons learned. CoRR, abs/1701.04940, 2017.
8. Trusted Computing Group. Trusted Platform Module Library Family 2.0, Specification - Part

1: Architecture, Revision 1.38 and Part 3: Commands, Revision 1.38, 2016.


