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Abstract—Recent progress in quantum physics shows that quantum computers

may be a reality in the not too distant future. Post-quantum cryptography (PQC)

refers to cryptographic schemes that are based on hard problems which are

believed to be resistant to attacks from quantum computers. The supersingular

isogeny Diffie-Hellman (SIDH) key exchange protocol shows promising security

properties among various post-quantum cryptosystems that have been proposed.

In this paper, we propose two efficient modular multiplication algorithms with

special primes that can be used in SIDH key exchange protocol. Hardware

architectures for the two proposed algorithms are also proposed. The hardware

implementations are provided and compared with the original modular

multiplication algorithm. The results show that the proposed finite field multiplier is

over 6.79 times faster than the original multiplier in hardware. Moreover, the SIDH

hardware/software codesign implementation using the proposed FFM2 hardware

is over 31 percent faster than the best SIDH software implementation.

Index Terms—Post-quantum cryptography, supersingular isogeny Diffie-Hellman

(SIDH), modular multiplication

Ç

1 INTRODUCTION

THE computing capability of quantum computers is significantly
higher than classical computers. It is found that a 30-qubit quan-
tum computer would have the same processing power as a conven-
tional computer processing commands at 10 teraflops per second
[1]. In 1994, Shor [2] proposed an algorithm that can be used to
quickly factorise large numbers, which shows exponential speedup
of the computation. Later in 1996, Grover’s algorithm [3] is pro-
posed to search an unsorted database with quadratic speedup over
a conventional computer(in OðN2 Þ time rather than OðNÞ). Recent
progress in the design and development of quantum computers
shows that real quantum computers may be available in the not
too distant future [4].

As a result, commonly used public-key cryptographic algo-
rithms, such as RSA [5] and Elliptic curve cryptography (ECC)
[6], which rely on integer factorization and the discrete log prob-
lem that are used in all of today’s communications and internet
security will be vulnerable to attacks from quantum computers.
Post-quantum cryptographic (PQC) [7], or quantum-safe schemes,
which refer to conventional non-quantum cryptographic algo-
rithms that are secure today but should remain secure even after
practical quantum computing is a reality, have been shown to be

just as practical as classical RSA and ECC schemes [8]. Recently,
NIST [9] and ETSI [10] have held workshops to discuss the impor-
tance of quantum-safe cryptography. NIST are currently hosting a
standardisation process to select new post-quantum cryptographic
signature and encryption schemes [11].

Much research is now being conducted into PQC. Among
the various post-quantum techniques, the latest supersingular
isogeny Diffie-Hellman (SIDH) key exchange protocol scheme
[12] shows promising security properties. The SIDH key
exchange scheme offers significantly smaller key sizes than
other post quantum key exchange and encryption counterparts
such as the commonly cited lattice-based [13], [14], code-based
[15], hash-based [16] and multivariate quadratic [17] cryptogra-
phy. As SIDH is more than a decade younger than the other
types of PQC schemes, little research has been conducted into
evaluating its practicality. The supersingular isogeny key
encapsulation (SIKE) protocol which is based on SIDH has
been submitted to the NIST post-quantum cryptography pro-
cess in November 2017 [18].

In 2011, Jao and Feo presented software implementation results
showing that their proposed SIDH key-exchange protocols are over
two orders of magnitude faster than classical isogeny-based crypto-
systems over ordinary curves. Later Azarderakhs et al. implemented
the same SIDHprotocol onPC (x86-64) andARM (ARMv7) platforms
[19]. Their implementation is between 18-26 percent faster depending
on the security level. In 2016, Costello et al. presented a high-speed
implementation of SIDH, which ismore than 2.5 times faster than the
previous SIDH software results [20]. The first hardware implementa-
tion of SIDH was recently proposed, targeting a Virtex-7 Field Pro-
grammable Gate Array (FPGA) [21], and is 1.5 times faster than the
best software implementation for the 512-bit SIDH scheme.

In the recent studies [22], [23], it is found that the Montgomery
reduction for the primes of special structure used in isogeny based
cryptography is not optimal. There are special moduli can be used
for faster implementations. In SIDH, the prime, p, is in the form,
p ¼ f � 2a3b � 1, where f is a small number. Similar to other public
key cryptosystems, the modular multiplication plays a very impor-
tant role. In [24], Karmakar et al. proposed an efficient finite field
multiplication (EFFM) algorithm, in which the prime field has a
special structure.

In this paper, we improve upon EFFM [24] and propose two
new algorithms. The first algorithm proposed, referred to as the
improved EFFM (FFM1), improved upon the original EFFM by
reducing the number of operands. The second new finite field mul-
tiplication (FFM2) algorithm proposed is very different from the
original EFFM and the FFM1, and allows for larger operand sizes
while reducing the number of operations. Both proposed algo-
rithms speed up the computation significantly. Hardware architec-
tures for both proposed algorithms are also proposed. The
hardware implementation results are provided and compared
with implementations of original EFFM algorithm. This paper is an
extension of previous research by the authors in [25]. It improves
on [25] as follows:

1) Amore detailed description of the two proposed algorithms
is givenwith a brief review of Barrett Division;

2) A newmodularmultiplication algorithm (FFM2) is proposed;
3) A hardware architecture for the FFM2 algorithm is proposed;
4) The hardware results of the FFM2 algorithm are provided

and compared with original EFFM algorithm and the
FFM1 algorithm in [25]. The hardware results show that
the FFM2 algorithm is the fastest;

5) A complete SIDH hardware/software (HW/SW) codesign
result using the proposed FFM2 is provided and compared
with the best SIDH software implementation.
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The rest of the paper is organized as follows. Section 2 reviews the
original EFFM algorithm with the special primes, the Barrett reduc-
tion algorithm and the Barrett Division algorithm. The two proposed
algorithms are presented in details in Sections 3 and 4, respectively,
where hardware architectures are also provided. Section 5 presents
hardware implementation results for both the proposed modular
multiplication algorithms, and provides a comparisonwith the previ-
ously proposed EFFM algorithm. A SIDH HW/SW codesign using
the proposed FFM2 is also provided in this section. Section 6 con-
cludes the paper.

2 REVIEW

2.1 Efficient Finite Field Multiplication (EFFM) Algorithm
for SIDH

One of the main computational bottlenecks in SIDH is computing
arithmetic modulo p ¼ f � 2a3b � 1, where the value of f is fixed to
2 and b is even. a and b for the prime p are chosen in such a way
that 2a � 3b. For instance, the prime p ¼ 2 � 23863242 � 1 is 771 bits in
[12] to guarantee 128-bit post-quantum security. [24] proposes an
algorithm using a special structure of the prime to optimize the
modular multiplication and reduction. This algorithm is briefly
reviewed in this section.

Assume that p ¼ 2 � 2a3b � 1, where a and b are even. By using
a radix R ¼ 2a=23b=2, a field element A 2 Fp can be represented as
follows:

A ¼ a1 �R2 þ a2 � Rþ a3; a1 2 0; 1f g; a2; a3 2 0; R½ Þ: (1)

The field elements are converted once at the start and once at the
end of the algorithm in the above representation from the radix R.
Suppose there are two numbers A and B in the representation of
Eq. (1). Bymultiplying themwe can get the productC as follows:

C ¼ a1b1 �R4 þ ða1b2 þ a2b1Þ � R3

þða1b3 þ a2b2 þ a3b1Þ �R2

þða2b3 þ a3b2Þ �Rþ a3b3:

(2)

As 2a3b ¼ 2�1ðmod pÞ, R2 and R4 can be replaced by 2�1ðmod pÞ
and 2�2ðmod pÞ, respectively, or 0, which can be precomputed for a
fixed prime. Therefore, we can get Eq. (3), where 4 multiplication
operations are required: a2b2, a2b3, a3b2 and a3b3. The other prod-
ucts multiplied by either a1 or b1 can be computed by simply select-
ing the correct result. Therefore, C can be rewritten as C ¼ c1 �R2þ
c2 � Rþ c3. As c2 and c3 are in the range of 0; R2½ Þ, they need to be
further reduced by improved Barrett reduction.

C ¼ ða1b3 þ a2b2 þ a3b1Þðmod 2Þ � R2

þð ða1b2 þ a2b1Þ=2b c þ ða2b3 þ a3b2ÞÞ � R
þð2�2ðmod pÞa1b1 þ ðða1b2 þ a2b1Þðmod 2ÞÞ � R2þ ða1b3 þ a3b1 þ a2b2=2Þb c þ a3b3Þ

: (3)

The original EFFM algorithm is shown in Algorithm 1, where
the Barrett Division is the improved Barrett reduction used in [24].

Algorithm 1. The EFFM Algorithm [24]

Input: A;B 2 Fp, A ¼ a1 �R2 þ a2 �Rþ a3 and B ¼ b1 �R2þ
b2 �Rþ b3, 2

�2ðmod pÞ is precalculated.
Output: C ¼ A �Bðmod pÞ ¼ c1 �R2 þ c2 �Rþ c3;

ðR ¼ 2a=23b=2Þ:
1 c1 ¼ 0; c2 ¼ 0; c3 ¼ 0
2 c3 ¼ a1b1 � 2�2ðmod pÞ þ a3b3
3 c2 ¼ a2b3 þ a3b2
4 t ¼ a1b2 þ a2b1; c2 ¼ c2 þ t=2b c; c3 ¼ c3 þ t½0� � R2 ;
5 t ¼ a1b3 þ a2b2 þ a3b1; c3 ¼ c3 þ t=2b c; c1 ¼ t 0½ �;
6 Barrett Divisionðc3Þ ) c3 ¼ r; c2 ¼ c2 þ r;
7 Barrett Divisionðc2Þ ) c2 ¼ r; c1 ¼ c1 þ r;
8 c3 ¼ c3 þ c1=2b c; c1 ¼ c1 0½ �;

2.2 Barrett Reduction

According to Euclids division lemma, it is known that there exists q
and r such that a ¼ q � bþ r; r 2 0; b½ Þ for any two positive integers a
and b. Therefore, we have a ¼ rðmod bÞ. In order to get such a q and
r, one division is required. However, division is a very expensive
operation, which is more complex and much slower than multipli-
cation. Thus, to speed up the division, it can be converted to a mul-
tiplication by Barrett reduction [26], i.e., �1=b. Furthermore, 1=b
can also be expressed as follows:

1

b
¼ 2k=b

b � 2k=b ¼
2k=b

2k
� x

2k
: (4)

Generally, the value x is taken as x ¼ 2k=b
� �

. However, an error
(denoted as e) is produced from the approximation of 1=b, which
equals 1=b� x=2k. To make sure the final result is correct, q must
be smaller than 1. This condition can be met when k ¼ log2 a. The
whole process is shown in Algorithm 2.

Algorithm 2. The Barrett Reduction Algorithm [26]

Input: Two numbers a and b, parameter k, x ¼ 2k=b
� �

Output: aðmod bÞ
1 q ¼ ða� xÞ � k
2 r ¼ a� q � b
3 if r5b then
4 r ¼ r� b
5 end
6 return r;

2.3 Barrett Division

An efficient division algorithm was proposed in [24]. The algorithm
can divide a number ci 2 ½0; 2a3bÞ by 2a=23b=2 and calculate the quo-
tient q and remainder r in an efficient way. As division by two is a
simple right shift operation, the division can be performed by
2a=23b=2 according to the following steps:
Step1: Extract the a=2 least significant bits of ci and store them in a

variable r1;
Step2: Right shift ci by a=2 bits to obtain c

0
i;

Step3 Divide c
0
i by 3b=2 to get the quotient q and remainder r2.

Therefore, ci can be rewritten as follows:

ci ¼ q � 2a=23b=2 þ ðr22a=2 þ r1Þ ¼ q � 2a=23b=2 þ r: (5)

The division by 3b=2 in Step 3 is more complex than the division
by 2a=2. As b is a fixed integer, it is possible to speed up the division
by performing multiplication similar to the Barrett reduction tech-
nique, as shown in Algorithm 3. Therefore, this efficient division
algorithm is referred to as the Barrett Division in this paper.

Once the quotients and remainders are obtained, it is easy to repre-
sent c ¼ c1 � 2a3b þ c2 � 2a=23b=2 þ c3 with desired finite field element.

Algorithm 3. The Barrett Division Algorithm [24]

Input: 2 numbers Q 2 ½0; 2a3bÞ and P ¼ 2a=23b=2 and
log2P � 2log2Q. P

0 ¼ P=2a=2 precomputed x ¼ 2k=P
0
, k is as

described in Section 2.2
Output: q and r such that Q ¼ q � P þ r

1: t ¼ Q=2a=2
� �

; s ¼ Qðmod pÞ;
2: q ¼ t� x � k;
3: r ¼ t� P

0 � q;
4: r ¼ r� 2a=2 þ s;
5: if r > P then
6: r ¼ r� P ;
7: q ¼ q � 1;
8: end
9: return q; r
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3 THE FFM1 ALGORITHM AND ITS HARDWARE

ARCHITECTURE

Improving upon [24], it is found that the modular multiplication
with the special field can be further simplified based on the fact
that:

ðp�AÞðp�BÞ ¼ A � Bðmod pÞ: (6)

The improvement is further explained in detail in the following
subsections.

3.1 The FFM1 Algorithm

AssumeA 2 Fp, which is in the form of Eq. (1). Thenwe get a number
A0 2 Fp as follows:

A0 ¼ A; a1 ¼ 0
A0 ¼ p�A; a1 ¼ 1

�
: (7)

When a1 ¼ 1, A can be written as A ¼ R2 þ a2Rþ a3 with a
radix R ¼ 2a=23b=2, and p can be written as p ¼ R2 þ R� 1ð Þ�
Rþ R� 1ð Þ, so we have:

a
0
i ¼ R� 1� ai; i 2 2; 3f g: (8)

Therefore, A0 can be represented in the following form:

A0 ¼ a
0
2 � Rþ a

0
3; a

0
2; a

0
3 2 0; R½ Þ: (9)

Suppose two numbers A and B are in the form of Eq. (1). A0 and
B0 are in the form of Eq. (7). Due to the fact that Eq. (6) holds, the
following relationship between A �Bðmod pÞ and A0 �B0ðmod pÞ
can be obtained as follows:

A � Bðmod pÞ ¼ A0 �B0ðmod pÞ � ð�1Þa1	b1 : (10)

The transforming process of the operands is shown in the Fig. 1.
According to Eq. (10), we can get the result of A � Bðmod pÞ by

computing A0 � B0ðmod pÞ, which saves about 5 additions. The

product of A0 and B0 can be expressed as follows:

A0 � B0 ¼ a
0
2b

0
2 � R2 þ ða0

2b
0
3 þ a

0
3b

0
2Þ � Rþ a

0
3b

0
3: (11)

A0 �B0 ¼ ða0
2b

0
2ðmod 2ÞÞ �R2 þ ða0

2b
0
3 þ a

0
3b

0
2Þ �R

þða0
3b

0
3 þ a

0
2b

0
2=2

j k
Þ

¼ c
0
1 �R2 þ c

0
2 � Rþ c

0
3:

(12)

Rewriting Eq. (11) by replacing the coefficients, we can get
Eq. (12). As c

0
2 and c

0
3 can be larger than R, they need to be further

reduced by the Barrett reduction as described in Section 2.2. The
proposed algorithm is presented in Algorithm 4.

Algorithm 4. The FFM1 Algorithm

Input: A0; B0 2 Fp;A ¼ a
0
2 �Rþ a

0
3 and B ¼ b

0
2 �Rþ b

0
3

Output: C0 ¼ A0 �B0ðmod pÞ ¼ c
0
1 �R2 þ c

0
2 �Rþ c

0
3;

ðR ¼ 2a=23b=2Þ:
1 c

0
1 ¼ 0; c

0
2 ¼ 0; c

0
3 ¼ 0;

2 c
0
1 ¼ a

0
2b

0
2 0½ �;

3 c
0
3 ¼ a

0
3b

0
3 þ a

0
2b

0
2=2

j k
;

4 Barrett Divisionðc03Þ ) c
0
3 ¼ r; c

0
2 ¼ c

0
2 þ r;

5 Barrett Divisionðc02Þ ) c
0
2 ¼ r; c

0
1 ¼ c

0
1 þ r;

6 c
0
3 ¼ c

0
3 þ c

0
1=2

j k
; c

0
1 ¼ c

0
1 0½ �;

The difference between the original EFFM [24] and the FFM1 is as
follows. The two algorithms both need to compute 4 multiplications:

a2 � b2; a2 � b3; a3 � b2 and a3 � b3 in the EFFM and a
0
2 � b

0
2; a

0
2�

b
0
3; a

0
3 � b

0
2 and a

0
3 � b

0
3 in the proposed algorithm. However, the

EFFM has 5 multiplication terms to get a1 � b1 � 2�2ðmod pÞ; a1�
b2; a1 � b3; b1 � a2 and b1 � a3; while our improved one can get

a
0
2; a

0
3; b

0
2 and b

0
3 by at most 4 subtractions. Before the Barrett reduc-

tion, the EFFM algorithm has 6 to 9 additions/subtractions, 2 right-
shifts to calculate the coefficients c1; c2 and c3; while the proposed
algorithm only needs 2 additions and 1 right-shift to get c

0
1; c

0
2 and c

0
3.

The EFFM needs to precalculate and store 2�2ðmod pÞ using 21 regis-
ters while the proposed algorithm only needs 16 registers. Most
importantly, the terms with R2 have been removed in the proposed
algorithm, which saves on the number of operations significantly. A
detailed comparison with the hardware implementations is further
discussed in Section 5.

3.2 The Proposed Hardware Architecture for FFM1

We also propose a hardware architecture of the improved modular
multiplication with the special field, which is shown in Fig. 2. In
this architecture, there is one N/2-bit multiplier, one 5N/2-bit
adder and one 2N-bit subtractor. An adder and subtraction that
support large word lengths are used to reduce the number of clock
cycles. The whole modular multiplication process is controlled by
a finite state machine (FSM).

The operands are stored in pipeline registers that are inserted
between arithmetic units to further increase the performance. The

Fig. 1. The transforming process of the operands, where the radix is: R ¼ 2a=23b=2.

Fig. 2. The proposed hardware architecture for FFM1.

Fig. 3. The pipeline structure of a full multiplication.
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inputs of the multiplier, adder and subtractor are selected by
MUXs, which are controlled by the FSM.

The process of a full binary multiplication is shown in Fig. 3.
Two N/2-bit operands are multiplied by the N/2-bit multiplier,
and then partial products are accumulated by the 5N/2-bit adder.

There are three kinds of multiplications in the algorithm, which
have different input sizes, namely, N �N=2, N �N , and 3N=2�
3N=2. In the 3N=2� 3N=2multiplication, one of the inputs is a con-
stant, whose most significant N/2 digits always equal to 2 and
remain unchanged during the process. Therefore, the 3N=2� 3N=2
multiplication is performed by a 3N=2�N multiplication and a shift
operation. This can be performed by the circuit as shown in Fig. 3.
We can get the most significant N/2 digits of the final result in the
second clock cycle. On the next clock cycle, the lower N/2 digits can
be obtained subsequently. Depending on the weights of the partial
products, the summation is shifted.

For example, using only 5 clock cycles, we can get the product
of an N �N multiplication. For the 4 N �N multiplications at the
start of the algorithm, it only takes 17 clock cycles. Otherwise, if the
multiplication is not pipelined, 20 clock cycles are required.

4 THE FFM2 ALGORITHM AND ITS
HARDWARE ARCHITECTURE

As we mentioned in Section 2, the modulo p ¼ f � 2a3b � 1 is chosen
in that: (a) f is a small number, such as 1 or 2; (b) 2a � 3b. In fact,
the number of p that satisfy the above conditions is finite. In addi-
tion, the original algorithm in [24] provides rules on how to choose
appropriate parameters so that the p is suitable for SIDH. It fixes f
to 2 and makes sure that b must be even. For example, the modulo
used in the [24] is p ¼ 2 � 23863242 � 1. However, in the proposed
FFM2, there is no such limitation on f or b.

In the original EFFM algorithm [24], to prevent the c2 and c3 val-
ues from increasing beyond the size of the modulus, they proposed
efficient Barrett Division, as discussed in Section 2.3. Since Barrett
Division uses the fact that division by two is a simple right shift
operation, it can replace the complex division by simple shifting,
multiplication and addition operations. Inspired by this fact, we
notice that there exists a factor f � 2a3b in the modulo p. Thus, a
division whose divider is f � 2a3b can be performed by the Barrett
Division algorithm. If the modulo is p ¼ f � 2a3b, we can complete
the modular multiplication by only using Barrett Division. This
form of modulo is an ideal modulo while a practical modulo is the
ideal modulo plus or minus 1. In fact, there exists a relationship
between the modular multiplication with an ideal modulo and the
modular multiplication with a practical modulo, which will be dis-
cussed in the following subsections.

4.1 The FFM2 Algorithm

The ideal modulo equals to the practical modulo plus or minus 1.
For these two cases, assume the following equations:

C ¼ A�B (13)

C 
 ðf � 2a3bÞ ¼ q � � � r: (14)

In Eq. (13), C represents the product of A and B. In Eq. (14), q
and r represent the quotient and remainder, respectively, of the
division C 
 ðf � 2a3bÞ.

4.1.1 First Case: The Practical Modulo Equals the Ideal

Modulo Minus 1

In this case, we get:

f � 2a3b ¼ pþ 1: (15)

Then, the operation C mod p can be expressed as follows:

C � q � ðpþ 1Þ þ r � qpþ q þ r � ðq þ rÞmod p: (16)

Eq. (16) shows that the result of the modular multiplication with
a practical modulo can be performed by adding the quotient and
remainder of the modular multiplication with an ideal modulo.
However, there is a good chance that the sum of the quotient and
remainder may be longer than the modulus length. So we need to
check the range of the sum, which determines the performance of
the algorithm. According to Eq. (14), r is the remainder, so we can
get:

r < f � 2a3b; (17)

In this case,

p ¼ f � 2a3b � 1; (18)

Thus,

r 4 p; (19)

As

A 2 ½0; p� 1�
B 2 ½0; p� 1�: (20)

We have

C ¼ A�B 4 ðp� 1Þ2: (21)

Moreover,

f � 2a3b ¼ pþ 1: (22)

Thus, we can get

q ¼ C=ðf � 2a3bÞ� �
< p: (23)

By considering both Eqs. (19) and (23), we have:

rþ q < 2p: (24)

It shows that the sum of the quotient and remainder lies in the
range ½0; 2pÞ. In conclusion, when the sum rþ q is larger than p, we
need to perform another subtraction to get the final result, which is
similar as the final step of the Montgomery algorithm [27].

4.1.2 Second Case: The Practical Modulo Equals the Ideal

Modulo Plus 1

In this case, we have:

f � 2a3b ¼ p� 1: (25)

Then, C mod p can be expressed as follows:

C � q � ðp� 1Þ þ r � qp� q þ r � ðr� qÞmod p: (26)

Eq. (26) shows that the result of the modular multiplication with
a practical modulo can be performed by subtracting the remainder
from the quotient of the modular multiplication with an ideal
modulo.

Similar to above, the result may be longer than the modulus,
hence we need to check the range of the difference. We know that r
is the remainder, so Eq. (17) holds.

As

p ¼ f � 2a3b þ 1: (27)

We have:

r < p: (28)
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As Eqs. (19) and (20) hold, and

f � 2a3b ¼ p� 1: (29)

We have:

q ¼ C=ðf � 2a3bÞ� �
4p: (30)

As r and q are positive, we have

r� q 2 ½�p; pÞ: (31)

If the difference is smaller than 0, we need to perform another
addition.

Algorithm 5. The FFM2 Algorithm

Input: A;B 2 Fp, p ¼ f � 2a3b � 1
Output: C ¼ A�Bðmod pÞ

1 C ¼ A�B;
2 q; r ! BarrettDivisionðC; f � 2a3bÞ;
3 if p ¼ f � 2a3b � 1 then
4 C ¼ q þ r;
5 if C > p then
6 C ¼ C � p;
7 end
8 end
9 else
10 C ¼ r� q;
11 if C < 0 then
12 C ¼ C þ p;
13 end
14 end
15 return C;

Referring to Algorithm 5, we can see that there are three main
steps in implementing FFM2. The first step is to calculate the prod-
uct of A and B. Then, we use Barrett Division to get the r and q.
Finally, according to the practical modulo p, we may need to per-
form an extra subtraction or addition to obtain the correct result.
Once the modulo p is determined, i.e., p equals either f � 2a3b þ 1 or
f � 2a3b � 1, no more than 4 steps are required in Algorithm 5. In
conclusion, the FFM2 is much simpler than the EFFM and the
FFM1. It has less steps and less complex operations. In particular,
the FFM2 only needs to perform the Barrett Division once while
the other two algorithms need to perform it twice.

4.2 The Proposed Hardware Architecture for FFM2

In order to have a comprehensive comparison, we also propose a
hardware architecture for the FFM2, which is shown in Fig. 4. It is
made of one N-bit multiplier, one 5N-bit adder and one 4N-bit sub-
tractor. Similar as the FFM1 hardware architecture, the modular
multiplication process is controlled by a FSM.

Compared with the EFFM and the FFM1, the FFM2 does not
require the radix in the form, R ¼ 2a=23b=2. Thus, the lengths of
inputs of multiplier, adder and subtractor are doubled. There is

one 2N �N multiplication, one 2N � 2N multiplication and one
3N � 3N multiplication. All three multiplications can be converted
into a summation of several N �N multiplications. If we do not
break-up the multiplication, at most three additions and subtrac-
tions need to be performed, which is very simple. During the
whole process, we only need 8 registers to store the precomputed
values and intermediate values. Moreover, we use less MUXs to
choose the different inputs. There are two dashed blocks in Fig. 4,
which represent two different cases: p ¼ f � 2a3b � 1. In the hard-
ware design, only one MUX exists. The values P1 and P2 in Fig. 4
represent the precomputed value in the Barrett Division, and the
practical modulo p, respectively.

4.3 Comparison of Hardware Architectures with Different
Sizes of Multipliers

In the hardware implementation of the FFM2, we explore the
impact of the operand sizes of the multipliers on the algorithm. We
use two kinds of multipliers: one has the size of N �N as men-
tioned in the Section 4.2, while the other one has the size of
N=2�N=2. In other words, we explore two ways to break large
size multiplication into smaller ones. In this work, we break a
2N � 2N multiplication into the following ways, as shown in
Figs. 5 and 6.

In our design, there is only one multiplier no matter how large
the size of the multiplier is. Thus, the smaller the multiplier, the
greater the number of cycles needed to complete the operation.
We know that for a 2N � 2N multiplication, only 4 cycles are
needed when we use the N �N multiplier, while we need 16
cycles when we use the N=2�N=2 multiplier. However, the
operating frequency is lower and more resources are consumed
when we use the larger multiplier. It is clear that there is a trade-
off between throughput and hardware resources. We replace the
N �N multiplier of the hardware architecture outlined in Section
4.2 with an N=2�N=2 multiplier, without changing other parts.
We compare the hardware implementations of these two forms of
multipliers, as shown in Table 1. It can be seen that the hardware
architecture with the N �N multiplier needs less time to finish a
full multiplication than the one with the N=2�N=2 multiplier.
However, it requires double the number of LUTs and quadruple
the number of DSPs.

Fig. 4. The proposed hardware architecture for FFM2.

Fig. 5. Breaking 2N � 2N multiplication into N �N multiplications: R ¼ 2N .

Fig. 6. Breaking 2N � 2N multiplication into N=2�N=2multiplications: R ¼ 2N=2.

TABLE 1
The Comparison of Hardware Architectures with

Different Sizes of Multiplier of the FFM2

Size N=2�N=2 N �N

FFs 11585 11632
LUTs 17706 33049
DSPs 122 529
Frequency(MHz) 48 25
Operations 48 MP 12 MP
Time (ms) 1.33 1.12

IEEE TRANSACTIONS ON COMPUTERS, VOL. 68, NO. 8, AUGUST 2019 1253

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 20,2023 at 09:46:08 UTC from IEEE Xplore.  Restrictions apply. 



5 RESULTS AND COMPARISON

The proposed algorithms FFM1 and FFM2 are implemented in
hardware and compared with the original EFFM algorithm [24].
We also apply the FFM2 hardware architecture in the HW/SW
codesign implementation of the complete SIDH and compare it
with the best SIDH software implementation [20] in this section.

5.1 Hardware Implementations of the Proposed FFMs

The proposed algorithms and the EFFM [24] are implemented
using Vivado 16.4 on the KC705 evaluation board (with Kintex 7
FPGA chip, i.e., xc7k325tffg900-2). The proposed hardware archi-
tecture is applied. In order to have a fair comparison, we choose
the same finite field, i.e., the field generated by the prime
p ¼ 2 � 23863242 � 1, which is consistent with that in [24].

The hardware comparison with [24] is showed in Table 2. The
proposed hardware architecture for the FFM1 algorithm uses 9,688
flip-flops (FFs), 17,247 LUTs and 122 DSP48s, which consumes 2, 8
and 15 of the resources available in the FPGA. One complete mod-
ular multiplication takes only 64 clock cycles and takes 1.16 ms.
The operating frequency is 55 MHz. Compared with the hardware
implementation in [24], our proposed FFM1 design is over 6.56
times faster.

As the hardware architecture for FFM2with theN �N multiplier
is faster than thatwith theN=2�N=2multiplier as shown in Table 1,
it is chosen to compare with other designs. It uses 11,632 flip-flops
(FFs), 33,501 LUTs and 529 DSPs. It is the fastest design among all
hardware implementations for themodularmultiplication.

5.2 HW/SW Codesign Implementation of the SIDH

To evaluate the performance of the SIDHprotocol using the proposed
modular multiplier algorithm and hardware architecture, the FFM2
hardware is use for performingmodular multiplications in the proto-
col. To compare with the previous best SIDH software implementa-
tion [20], the same prime of 23723239 � 1 is chosen and the same
processor (1.7 GHz Intel i5-4210U processor) is used for both the soft-
ware and the HW/SW codesign implementations. However, for a
higher performance codesign, the Zynq FPGA with ARM processor
can be considered. FFM1 is not used as it is slower than FFM2 inhard-
ware and also it requires that b in the prime should be even, which
cannot be applied in the comparison. The complete SIDH protocol is
implemented in the software except the modular multiplications
which are performed in hardware (on Kintex 7 FPGA).

The results of both software and HW/SW codesign results are
provided in Table 3. It can be seen that the SIDH codesign

implementation using the proposed FFM2 hardware is 31.98 per-
cent faster than the software implementation.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we proposed two new modular multiplication algo-
rithms that exploit the special structure of primes, i.e., p ¼ 2�
23863242 � 1, which can be applied in SIDH. One is improved from
the original EFFM algorithm in [24] and the other one is a whole new
algorithm, which differs in structure to the previous two algorithms.
Building on the properties of the previous two algorithms, a mathe-
matical transformation is applied to reduce the number of operations
in the first new algorithm (FFM1). A hardware architecture is also
proposed. The proposed FFM2 is over 6 times faster than the previ-
ous EFFM in hardware. The hardware implementation of the FFM2
algorithm is the fastest among the three algorithms. Furthermore,
the FFM2 algorithm can be applied to awide range ofmodulo,which
is limited in the EFFM algorithm and the FFM1 algorithm. The FFM2
hardware is also applied in the complete SIDH HW/SW codesign
implementation, which is over 31 percent faster than the best SIDH
software implementation. Future work will look at the optimized
modularmultiplication on Fp2 as suggested in [23].
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