
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 10, OCTOBER 2019 2459

Transactions Briefs
Optimized Schoolbook Polynomial Multiplication for Compact

Lattice-Based Cryptography on FPGA
Weiqiang Liu , Sailong Fan , Ayesha Khalid, Ciara Rafferty , and Máire O’Neill

Abstract— Lattice-based cryptography (LBC) is one of the most
promising classes of post-quantum cryptography (PQC) that is being
considered for standardization. This brief proposes an optimized school-
book polynomial multiplication (SPM) for compact LBC. We exploit
the symmetric nature of Gaussian noise for bit reduction. Additionally,
a single field-programmable gate array (FPGA) DSP block is used for two
parallel multiplication operations per clock cycle. These optimizations
enable a significant 2.2× speedup along with reduced resources for
dimension n = 256. The overall efficiency (throughput per slice) is
1.28× higher than the conventional SPM, as well as contributing to a
more compact LBC system compared to previously reported designs. The
results targeting the FPGA platform show that the proposed design can
achieve high hardware efficiency with reduced hardware area costs.

Index Terms— Field-programmable gate array (FPGA), lattice-
based cryptography (LBC), polynomial multiplication.

I. INTRODUCTION

Traditional public key cryptography algorithms, including RSA
and elliptic-curve cryptography (ECC), will no longer be secure in
the near future, due to advancements in quantum computing. The
National Institute of Standards and Technology (NIST) called for the
proposal of post-quantum cryptographic (PQC) algorithms [1] and
received 70 PQC algorithm submissions. Among the potential PQC
algorithms to be standardized, lattice-based cryptography (LBC) is
one of the most promising types. Almost half of the PQC candidates
in round 2 of the PQC standardization process are lattice-based [2].
LBC algorithms are based on the hard problem of finding the shortest
(or closest) vector (SVP or CVP) in a lattice. These problems are
believed to be hard for both classical and quantum computers.

Polynomial multiplication plays a critical role in LBC and is
typically carried out by schoolbook or number theoretic trans-
form (NTT) multiplication. Schoolbook polynomial multiplication
(SPM) is a naive method, requiring direct multiplication and sub-
sequent accumulation of results. Although it is slow, it offers
simple implementation and low hardware resource cost. NTT is a
much faster alternative that comes with additional hardware resource
costs and complexity in terms of operations (pre-computation, array

Manuscript received February 23, 2019; revised May 24, 2019; accepted
June 11, 2019. Date of publication June 28, 2019; date of current version
September 25, 2019. This work was supported by National Natural Sci-
ence Foundation of China (NSFC) under Grant 61871216, the Fundamental
Research Funds for the Central Universities China under Grant NE2019102,
and Six Talent Peaks Project in Jiangsu Province under Grant 2018-XYDXX-
009. (Corresponding author: Weiqiang Liu.)

W. Liu and S. Fan are with the College of Electronic and Information Engi-
neering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016,
China (e-mail: liuweiqiang@nuaa.edu.cn; fansl4g@nuaa.edu.cn).

A. Khalid, C. Rafferty, and M. O’Neill are with the Centre for
Secure Information Technologies (CSIT), Queen’s University Belfast,
Belfast BT7 1NN, U.K. (e-mail: a.khalid@qub.ac.uk; c.m.rafferty@qub.ac.uk;
m.oneill@ecit.qub.ac.uk).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2019.2922999

TABLE I

R-LWE ENCRYPTION SCHEME

reordering, and post-computation) apart from the NTT/inverse-NTT
butterflies. Both methods have been widely used for different sce-
narios; a relevant survey discusses various butterfly architectures
and techniques [3]. Pöppelmann and Güneysu [4] proposed adapt-
able and extensible hardware implementations of both NTT and
SPM methods supporting various operand sizes. Working toward
efficient design, Du and Bai [5] reduced the required clock cycles
and saved storage by exploring the characteristics of twiddle
factors. In the case of SPM, limited research exists: [6] suggested
area optimization techniques for SPM hardware. Moreover, [7]
employed SPM in LBC for digital signatures on field-programmable
gate array (FPGA)s. Until now, little research has been conducted
in terms of a thorough tradeoff between performance and hardware
consumption for SPM. Furthermore, in round 2 of the NIST PQC
initiative, half of the 12 LBC contestants, including FRODO-KEM,
Round5, Saber, Threebears, and NTRUPrime, do not use NTT [2].
NTT is suitable for the parameters on the specific modulo ring, while
schoolbook multiplication is a more generic approach. Therefore,
it is important to explore how to efficiently implement schoolbook
multiplication.

Ring-learning with errors (R-LWE) is a widely investigated algo-
rithm that is based on a hard lattice problem. The most critical
operation in the R-LWE schemes is polynomial multiplication on the
ring. It operates on the ring Zq [x]/(xn + 1), where q is the modular
prime.

This brief proposes a compact and efficient hardware design
for R-LWE encryption/decryption based on SPM. We exploit the
distribution symmetry of Gaussian noise to achieve a reduced bit
width and full utilization of DSP blocks. A compact SPM is designed
with approximately 2× speedup without additional hardware resource
consumption. A comparison with the existing R-LWE designs is
provided, which highlights the efficiency of our proposed design.
The proposed design optimizations can also be undertaken for other
LBC schemes and other FPGA families.

II. PRELIMINARY BACKGROUND

Table I details the R-LWE-based public key encryption (PKE)
scheme. We focus on encryption and decryption, assuming that key
generation can be carried out infrequently and offline. The hardware

1063-8210 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 20,2023 at 09:45:30 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-8398-8648
https://orcid.org/0000-0002-8178-7284
https://orcid.org/0000-0002-3670-366X

2460 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 10, OCTOBER 2019

Algorithm 1 Schoolbook PMA for Encryption or Decryption

resource requirements for R-LWE encryption and decryption are
mainly due to the SPM. Dσ is the Gaussian distribution with
standard deviation σ , and U is the uniform distribution. Polynomials
c1 and c2 are the ciphertext results. The decryption procedure also
performs polynomial multiplication and addition and decodes the
polynomial to plaintext. Please refer to [8] for more details on the
R-LWE scheme. It is evident that polynomial multiplication is the
most computationally intensive part of the cryptographic scheme.

The typical SPM algorithm used in R-LWE can be expressed as
in Table 1 [4]. Considering the property of polynomial multiplication
that xn ≡ −1, note that the product c(x) = a(x) × b(x) is
not a normal circumferential convolution. It has a sign bit in the
accumulation, namely, (−1)�(i+ j)/n�. This sign bit is 1 if i + j < n
and −1, otherwise. The dimension is denoted as n, which means that
this method has O(n2) complexity

c = ab =
⎡
⎣

n−1∑
i=0

n−1∑
j=0

ai b j xi+ j

⎤
⎦ mod (xn + 1)

=
n−1∑
i=0

n−1∑
j=0

(−1)�(i+ j)/n�ai b j x(i+ j) mod n . (1)

Polynomial addition is an ordered sequential addition, well
suited for a low-cost hardware implementation. To evaluate the
encryption/decryption performance of R-LWE, we implement both
polynomial multiplication and addition (PMA) on FPGA, as shown
in Algorithm 1. This algorithm calculates d = a ∗ b + c. First,
the elements a multiplied b are calculated, then the Barrett reduc-
tion algorithm is used to perform the modular operation with the
prime (q), and finally, the result is assigned to d . The modular
reduction in line 11 only requires a multiplexer due to the small
bit width.

In most of the reported hardware designs [8]–[10] with a medium
security level, the R-LWE parameter set (n = 256, q = 7681, and
s = 11.31) is used. For modular q reduction, [11] introduces an algo-
rithm that uses shift, add, and subtract operations to accomplish the
modular reduction. For the noise, a zero-centered discrete Gaussian
distribution (such as r2) with a standard deviation of s/

√
2π = 4.51

Fig. 1. Discrete Gaussian function distribution (q = 7681 and σ = 4.51).

Fig. 2. Sign bit and data bits for reduced bit-width representation.

Algorithm 2 Novel Modular Reduction for q = 7681

is considered. On the modular ring, Gaussian distribution is shown
in Fig. 1. As most of the lattice-based cryptosystems in NIST
PQC Round 2 candidates require Gaussian or binomial distribution,
the proposed methods in Section III can be extended to such
distributions that have a bounded interval around 0.

III. PROPOSED OPTIMIZED POLYNOMIAL MULTIPLICATION

This section proposes two novel techniques for efficient hardware
implementation of R-LWE encryption/decryption modules.

A. Reduced Bit Width Due to the Noise Distribution Symmetry

The discrete Gaussian noise distribution, as shown in Fig. 1,
is naturally symmetrical between [0, q−1]. Without loss of generality,
for σ = 4.51, the number range is limited to [0, 31] and [−31, −1]
(i.e., [7650, 7680] on the modular integer ring if presented as an
unsigned number). Opting for signed number representation instead
of naïve 13-bit representation can save hardware resources. For the
required number range, one sign bit and five data bits (6 bits in total)
are enough to represent the input data instead of a 13-bit unsigned
representation, as shown in Fig. 2. This proposed reduced bit-width
technique can be applied to all polynomial multiplications in various
R-LWE-based PKE schemes.

The reduced signed representation reduces the data for multiplica-
tion as well as memory accesses, and the modular operation described

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 20,2023 at 09:45:30 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 10, OCTOBER 2019 2461

Fig. 3. Block diagram of two multiplications in the DSP block.

Algorithm 3 Two Multiplications Within One DSP Block

TABLE II

HARDWARE IMPLEMENTATION RESULTS OF DIFFERENT SPMA DESIGNS

TABLE III

ENS ON FPGA

in Algorithm 2 is also simplified. The multiplication product width
is reduced from 26 bits (13 bit × 13 bit) to 17 bits (13 bit × 5 bit),
as the sign bit is not used during the modular multiplication. The
sign bit is used for number inversion, as shown in line 7 of
Algorithm 1. Compared to the original modular reduction in [11],
it saves one addition, one multiplexer, and one subtraction. In line 2
of Algorithm 2, tq is the product of t multiplied q. In line 3, y is
an approximate modular result, which requires extra subtractions.
Furthermore, the reduced bit-width multiplication makes it possible to
perform two multiplications on a single DSP block in FPGA, which
will be further discussed in Section III-B.

B. Full Utilization of FPGA DSP Blocks

In Xilinx 7 series FPGAs, a single DSP block can support a
25 × 18 bit multiplication. For R-LWE, due to the reduced size

Algorithm 4 Optimized Schoolbook PMA for Encryption or Decryp-
tion

of the multiplication required (13 × 5), we can efficiently pack two
multiplicands to perform two multiplications using one DSP block on
the FPGA. This bit packing is elaborated in Algorithm 3, where two
multiplications m = a×c and n = b×c are depicted. First, in line 1,
a and b are concatenated with 13 inserted zeros in the middle to form
a new multiplicand tmp_ab. tmp_ab is 23 bits in size, where the first
5 bits are b, the last 5 bits are a, and with 13 zeros in the middle.
Then, in line 2, a 23×13 multiplication is carried out. In lines 3 and 4,
the results m and n are separated out for two parallel multiplications.
The whole process is presented in detail in Fig. 3. The product of
a×c is an 18-bit result, unrelated to the product of b×c. This packing
enables two simultaneous multiplications via one DSP slice per cycle.

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 20,2023 at 09:45:30 UTC from IEEE Xplore. Restrictions apply.

2462 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 10, OCTOBER 2019

TABLE IV

COMPARISONS WITH OTHER R-LWE DESIGNS

Fig. 4. Hardware structure of the optimized SPMA.

This trick can be extended to newer Xilinx FPGA families (including
Ultrascale and Ultrascale+), which come with DSP multiplier slices
of similar or wider dimensions, e.g., 27×18 multiplier in Ultrascale+.

The optimized schoolbook PMA, presented in Algorithm 4, uses
both optimization techniques. First, it offers reduced bit-width repre-
sentation to save hardware resources, which simplifies the modular
reduction and reduces the critical path delay. In Algorithm 4,
the polynomial b elements are the discrete Gaussian distribution
samples, each of length 5 bits. Second, by employing full utilization
of DSP blocks, the system carries out two multiplications, boosting
performance without extra DSP resources. In lines 14 and 17, sign()
denotes the MSB of the signed number (sig1/sig2 = 1 for negative
number). For negative numbers, result ab_m should be subtracted
from the modulus q.

IV. HARDWARE IMPLEMENTATION RESULTS

A. Hardware Design Structure

The high-level hardware block diagram of the optimized SPMA
is shown in Fig. 4. There are four input data from the BRAMs
for storing the three polynomials a, b and c, in which polynomial
b allows two parallel accesses per clock cycle. Right after the
multiplication, the data split into two parallel pipelined parts. Then,
modular reduction operations follow next. The control signals “sig1”
XOR “b1.sign()” and “sig2” XOR “b2.sign()” are used to determine
the sign of accumulated data. Finally, results d1 and d2 are written
to the BRAMs. BRAMs are controlled by the control address unit.

Fig. 5. Overall hardware structure of R-LWE scheme (the details of SPMA
is provided in Fig. 4).

B. SPMA Performance Results

The designs are synthesized and implemented using Xilinx Vivado
2016.4 targeting a Kintex-7 FPGA (KC705) and post-place and
route results are presented in Table II. SPMA-1 refers to the naïve
design with no optimizations, as described in Algorithm 1. SPMA-2
exploits the reduced bit-width technique, while SPMA-3 additionally
uses the DSP bit packing technique. The SPMA-2 design requires
around 15.2% fewer FPGA resources and achieves a higher operating
frequency. The SPMA-3 design achieves the highest throughput
due to two reasons: first, due to a reduction in the critical path,
enabling the highest operating frequency, and second, SPMA-3
almost halves the computation cycles required and consequently
achieves twice the speedup compared with SPMA-1. The efficiency
(denoted as throughput per slice) of SPMA-3 is 2.28× compared
with SPMA-1.

C. R-LWE Cryptography Implementation Results

In the context of R-LWE-based PKE, SPMA-3 can be used in
all three modules: key generation, encryption, and decryption. The
encryption module consists of three Gaussian samplers, two SPMA-3,
and one polynomial addition. The implementation of the Gaussian
sampler is based on the cumulative distribution table (CDT) sampling
design, which resists the threat of timing attacks by inherently running
in constant time [12]. The overall R-LWE cryptosystem hardware
block diagram is shown in Fig. 5.

To ensure a fair comparison of our optimized SPMA-3-based
R-LWE design with the earlier reported FPGA implementations (on

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 20,2023 at 09:45:30 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 10, OCTOBER 2019 2463

Spartan and Virtex families), the following method of equivalence
conversion is proposed for design evaluation. We first convert the
DSP blocks and BRAMs used in a given design into an equivalent
number of slices (ENS). For Xilinx 7 series, a single DSP block
can be replaced by 128 slices for a 25 × 18 multiplier using the
built-in IP core. But not every design fully uses the DSP block,
therefore, the weight of 0.8 is assigned to the DSP block (one DSP
block = 128× 0.8 = 102.4) slices. Similarly, each BRAM (18k) can
be substituted for 116.2 (166 × 0.7) slices and BRAM (8k) can be
replaced by 56 (70×0.8) slices. The BRAMs are reconstituted by the
slice memory using two dual-ported RAM modes. Table III shows
the detailed ENS on FPGA.

Table IV compares the proposed design with the previous R-LWE
implementations using the same parameter set (n = 256, q = 7681,
and s = 11.31) except [6]. The design in [6] also uses SPMAs, but it
has lower frequency and throughput, and its efficiency is much lower
than the proposed design. Furthermore, it uses a parameter set of (256,
4093, and 8.35), which is considered to be less secure compared with
other designs in Table IV. The latest design [10] claims resistance
against timing attack due to the usage of CDT-based noise sampling.
However, it is much slower than other hardware designs. Pöppelmann
and Güneysu [8] proposed a fast R-LWE cryptographic processor at
the cost of substantially more resource. The most efficient designs [9]
only use NTT (without inverse NTT) for encryption and only inverse
NTT for decryption. Meanwhile, NTT computation requires the
computation of twiddle factors, which requires the RAM storage
when precomputed. However, these RAMs have not been included
for comparison. As mentioned in Section I, half of the 12 LBC
contestants in round 2 of the NIST PQC initiative do not use NTT.

Due to the two proposed novel techniques for optimized SPMA,
we achieve an efficient design for R-LWE encryption and decryption.
Our design only requires 69 654 clock cycles (0.229 ms) for encryp-
tion and 34 436 clock cycles (0.114 ms) for decryption, which makes
our proposed design the optimal choice for resource-constrained
devices, achieving both high hardware efficiency and performance.

V. CONCLUSION

This brief proposes novel optimizations for the most computa-
tionally intensive part of LBC constructions, i.e., the polynomial
multiplier, targeting the high-speed FPGA platform. We exploit the

noise distribution symmetry to reduce the dynamic range and reduced
bit width of the discrete Gaussian data samples. This simplification
also leads to smart packing of data and the full utilization of the DSP
block to gain a 2× speedup.

REFERENCES

[1] L. Chen et al., “Post-quantum cryptography,” U.S. Dept. Commerce, Nat.
Inst. Standards Technol., Gaithersburg, MD, USA, Tech. Rep. NISTIR
8105, 2016.

[2] NIST. PQC Round 2. Accessed: Feb. 2019. [Online]. Avail-
able: https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-
submissions

[3] F. Valencia, A. Khalid, E. O’Sullivan, and F. Regazzoni, “The design
space of the number theoretic transform: A survey,” in Proc. Int. Conf.
Embedded Comput. Syst. Archit., Modeling, Simul. (SAMOS), Jul. 2017,
pp. 273–277.

[4] T. Pöppelmann and T. Güneysu, “Towards efficient arithmetic
for lattice-based cryptography on reconfigurable hardware,”
in Proc. Int. Conf. Cryptol. Inf. Secur. Latin America, 2012,
pp. 139–158.

[5] C. Du and G. Bai, “Towards efficient polynomial multiplication for
lattice-based cryptography,” in Proc. IEEE Int. Symp. Circuits Syst.
(ISCAS), May 2016, pp. 1178–1181.

[6] T. Pöppelmann and T. Güneysu, “Area optimization of lightweight
lattice-based encryption on reconfigurable hardware,” in Proc. IEEE Int.
Symp. Circuits Syst. (ISCAS), Jun. 2014, pp. 2796–2799.

[7] J. Howe, C. Rafferty, A. Khalid, and M. O’Neill, “Compact and provably
secure lattice-based signatures in hardware,” in Proc. IEEE Int. Symp.
Circuits Syst. (ISCAS), May 2017, pp. 1–4.

[8] T. Pöppelmann and T. Güneysu, “Towards practical lattice-based public-
key encryption on reconfigurable hardware,” in Proc. Int. Conf. Sel.
Areas Cryptogr., 2013, pp. 68–85.

[9] S. S. Roy, F. Vercauteren, N. Mentens, D. D. Chen, and I. Verbauwhede,
“Compact ring-LWE cryptoprocessor,” in Proc. Int. Workshop Crypto-
graph. Hardw. Embedded Syst., 2014, pp. 371–391.

[10] D. Liu, C. Zhang, H. Lin, Y. Chen, and M. Zhang, “A resource-
efficient and side-channel secure hardware implementation of ring-LWE
cryptographic processor,” IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 66, no. 4, pp. 1474–1483, Apr. 2018.

[11] Z. Liu, H. Seo, S. S. Roy, J. Großschädl, H. Kim, and I. Verbauwhede,
“Efficient ring-LWE encryption on 8-bit AVR processors,” in
Proc. Int. Workshop Cryptograph. Hardw. Embedded Syst., 2015,
pp. 663–682.

[12] A. Khalid, J. Howe, C. Rafferty, and M. O’Neill, “Time-
independent discrete Gaussian sampling for post-quantum cryptogra-
phy,” in Proc. Int. Conf. Field-Program. Technol. (FPT), Dec. 2016,
pp. 241–244.

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 20,2023 at 09:45:30 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

