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HARDWARE-ASSISTED SECURITY 

 Plundervolt: How a Little Bit of 
Undervolting Can Create a Lot of Trouble
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 Daniel Gruss  | Graz University of Technology

Historically, fault injection was the realm of adversaries with physical access. This changed when research 
revealed that remote attackers could use software to inject faults. Plundervolt is a new software-based 
attack on Intel’s trusted execution technology (SGX). Plundervolt can break cryptography and inject 
memory-safety bugs into secure code.

T wo-thirds of the world’s population now owns 
a personal computing device in the form of a 

smartphone. These devices store vast amounts of 
privacy-sensitive data along with a large number of user 
applications (Apps). Trusted execution environments 
(TEEs) were created out of the need to protect our 
private and valuable data from other—possibly mali-
cious—apps and even the operating system (OS) itself.

It is not just mobile phones that store valuable data—
our personal computers often carry copies of our pass-
words. We use our computers for online banking, and 
this is where it is desirable that no adversary can tamper 
with the data, even if the computer’s OS is compromised.

For these reasons, Intel processors (from 2015 
onward) include Software Guard Extensions (SGX), 
which allow an app to self-quarantine sensitive data 
and functions within a security perimeter known as an 
enclave, using dedicated CPU instructions. Intuitively, 
SGX enclaves represent a secure vault or fortress in the 
processor, which cannot be read or modified by any 
other software, including the privileged OS. Intel SGX 

was purposely designed to protect against the most 
advanced types of adversaries who have unrestricted 
physical access to the host machine, e.g., untrusted 
cloud providers under the jurisdiction of foreign nation 
states. SGX therefore includes state-of-the-art memory 
encryption technology4 that protects the confidential-
ity, integrity, and freshness of all enclave memory while 
it resides in untrusted off-chip dynamic random-access 
memory (DRAM).

Performance Versus Security
More and more is being demanded of our comput-
ers: faster response times to render complex graphics, 
multiple programs being run at once, and the constant 
switching of apps. These demands increase power 
consumption and raise the temperature of already 
overworked computers. To manage this, CPU manu-
facturers have introduced various software interfaces 
to dynamically adjust the processor’s operating voltage 
and frequency. But, as we will see, putting this power at 
a user’s fingertips comes with a cost. With great power 
comes great responsibility.

Hardware is being optimized to meet the grow-
ing need for performance. The aim is to maximize 
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performance while keeping functional correctness. 
Modern processors cannot continuously run at maxi-
mum clock frequency—they would simply get too 
hot—and in mobile devices, the battery would drain 
too quickly. In an electrical circuit, voltage and fre-
quency can be thought of as two sides of the same 
coin; higher clock frequencies require higher voltages 
for electrical signals to arrive in time and, likewise, 
lower voltages require the processor and memory to 
operate at a slower rate. Power management jargon 
therefore specifies optimal “frequency/voltage pairs” 
for different use cases.

Hence, the question arises: If frequency and volt-
age are changed independently, what will happen? As 
we discuss, this is the question that security research-
ers have been exploring when attempting to deliberately 
induce faulty computations and take advantage of the 
resulting errors.

Software-Based Fault Attacks
Since the early days of computing, researchers recog-
nized that software computation results may be affected 
when hitting the physical limits of the underlying hard-
ware, e.g., after adjusting the voltage, glitching the clock, 
overheating or cooling the operating temperature, or 
even focusing a laser at a chip.2 Apart from apparent 
safety concerns, such as in the avionics or space indus-
try, these fault injections have also been extensively 
studied from a security perspective. That is, fault attacks 
may deliberately corrupt calculations to bypass secu-
rity mechanisms, such as sophisticated “you shall not 
pass” functions. For a long time, such advanced fault 
attacks were considered to be of limited importance, as 
they required physical access to the target device, e.g., a 
smart card.

This all changed, however, in 2014, with the dis-
covery of the Rowhammer7 effect, which causes bits 
flips in memory—entirely from software. Underly-
ing this attack is the physical layout of DRAM, which 
consists of capacitors storing very small voltage 
charges for 1s and 0s. Security researchers observed 
that DRAM memory cells can leak their charges into 
nearby memory rows when they are accessed at high 
frequency, causing memory corruption and bit flips. 
In other words, Rowhammer fundamentally changed 
the threat of fault attacks. It is no longer just adversaries 
with physical access, attacks can now be mounted by 
remotely executing code to modify specific data struc-
tures and escalate privileges. Rowhammer remained, 
for some time, the only known purely software-based 
fault attack on x86 systems. However, Intel ultimately 
considers main memory as an untrusted storage facil-
ity in the design of SGX.4 When researchers tried to 
attack SGX with Rowhammer, they merely discovered 

a denial-of-service effect because the memory encryp-
tion engine produced an integrity check error, halting 
the entire system. Intel SGX enclaves were hence con-
sidered immune to such fault attacks.

Initially, researchers were only interested in attack-
ers who were unprivileged, e.g., in a sandboxed envi-
ronment like JavaScript. However, with the creation 
of TEEs such as Intel SGX, ARM TrustZone, and 
AMD SEV, threat models changed once again. In the 
newly emerging TEE landscape, it suddenly becomes 
vital to protect against attackers who have gained root 
privileges. In 2017, Tang et al.11 presented a privi-
leged software fault attack called CLKscrew. They 
discovered that ARM processors permitted chang-
ing the frequency and voltage from system software. 
And this is where the story really starts. CLKscrew 
showed that overclocking features can be abused to 
jeopardize the integrity of computations for privi-
leged adversaries in the ARM TrustZone TEE. This 
attack has been demonstrated to defeat Rivest Shamir 
Adelman (RSA) signature checks and extract full 
cryptographic keys from the TrustZone of a Nexus 6 
mobile phone.

Why Plundervolt Is Different
With our new attack, Plundervolt, we demonstrate the 
first-ever software-based fault injection attack against 
Intel SGX enclaves. Plundervolt abuses undocumented 
power management interfaces present in all recent Intel 
Core processors. We use these interfaces to lower the 
voltage and cause predictable faults in secure enclave 
computations. Our attack is able to steal secrets—even 
in the presence of state-of-the-art memory encryption 
technology (Figure 1). In contrast to prior high-profile 
attacks on Intel SGX, which abused microarchitec-
tural design flaws to break confidentiality of enclave 
secrets,13,14 we are the first to demonstrate that even the 

Figure 1. Plundervolt circumvents SGX’s memory 
encryption engine protection boundaries by abusing an 
undocumented voltage scaling interface, which allows 
privileged software adversaries to induce predictable 
computation faults within the processor itself.
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integrity of seemingly secure enclave computations can-
not be trusted anymore. But we didn’t only break crypto 
code. We show that an attacker can induce memory mis-
behavior in secure, bug-free code without any enclave 
software vulnerabilities.15 For a more technical descrip-
tion, we point interested readers to our original paper,9 
on which this article is based.

Current Status and Concurrent Discoveries
After we responsibly disclosed our findings and Intel 
prepared a microcode patch, Plundervolt was dis-
closed to the public on 10 December 2019. Intel 
confirmed that we were the first to report this issue. 
However, during the embargo period, two other 
research teams independently investigated under-
volting security implications. One of these, known 
as V0LTpwn,6 outlines a similar attack on Intel SGX 
enclaves where undervolting is used (in combination 
with additional stress from a sibling logical proces-
sor) to study the fault behavior of x86 vector instruc-
tions. Also, another group of researchers developed 
the VoltJockey10 attack against ARM processors. Volt-
Jockey continued the CLKscrew saga by showing that 
secure TrustZone computations can also be faulted 
through voltage changes. This attack was later also 
demonstrated on Intel SGX processors, by faulting a 
proof-of-concept software-based Advanced Encryp-
tion Standard (AES) implementation.

The Plundervolt Effect
Before we discuss undervolting, we need to talk about 
overclocking. CPUs have official maximum clock fre-
quency limits, but gamers often want to speed up their 
machines by pushing the clock frequency over the 
recommended values. This can be tricky because inte-
grated circuits have strict timing requirements. The 
electrical signals need to pass through the circuitry 
within one clock cycle before the next signals arrive. If 
the clock is too fast, computation results may not arrive 
in time, leading to bit flips in the expected output. 

Similarly, the lower the voltage, the longer it takes to 
propagate input signals throughout the circuitry. So, 
if the voltage is too low (for a specific frequency) the 
input signals may not traverse the circuitry before the 
next clock tick.

Intel processors have features that enable the mod-
ification of both clock frequency and CPU voltage 
from privileged software. These are controlled through 
undocumented model-specific registers (MSRs). We 
focus on MSR 0x150, which is responsible for voltage. 
Figure 2 shows how the 64-bit value in MSR 0x150 can 
be decomposed into a plane index and a voltage offset. 
By specifying the plane index, system software can select 
which components will have their voltage changed. The 
CPU core and cache share the same voltage plane on 
all machines we tested, and the higher voltage will be 
applied to both. The voltage offset is encoded as an 
11-bit signed integer relative to the core’s base voltage 
in units of approximately 1 mV.

This feature can be abused to inject faults into secure 
SGX computations. For starters, we conFigured the 
CPU to run at a fixed frequency. Then, undervolting 
is applied by writing to the concealed MSR 0x150 just 
before entering the code in the victim enclave. After 
returning from the enclave, the host program immedi-
ately returns to a stable operating voltage.

One of the hardest parts of this research was finding 
good parameters to work with. Too much undervolting 
and the system repeatedly crashes, too little and no faults 
are injected. We experimented by reducing the voltage 
in small steps of 1 mV until a fault occurs but before the 
dreaded kernel panic or system freeze. In practice, we 
found that it is sufficient to undervolt for short periods 
of time (<100 ms) by −100 mV–260 mV, depending on 
the specific CPU, frequency, and temperature.

Tested Processors
We tested different SGX-enabled processors from Sky-
lake onwards, compare Table 1. We had multiple CPUs 
with the same model numbers and, surprisingly, we 
found they can respond very differently when under-
volted. We list each individual processor with a letter 
appended. All of our tests were run on Ubuntu 16.04 or 
18.04 with stock Linux v4.15 and v4.18 kernels.

Inducing the First  
Enclave Fault
We tried undervolting various x86 instructions. We 
observed that multiplications (e.g., imul) and other 
complex instructions such as the AES New Instructions 
(AESNI) extensions can be most easily faulted. We do 
not definitively know why these specific instructions, but 
we can put forward a conjecture: these instructions will 
have longer critical paths compared to simpler operations. 
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Figure 2. The layout of the undocumented MSR 0x150 for undervolting.  
GPU: graphics processor unit; I/O: input–output.
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Not only that, they will have been more aggressively opti-
mized. When lowering the voltage, electrical signals may 
not have enough time to propagate through the circuitry 
before the next clock tick.

Consider the following enclave multiplication 
proof-of-concept (the code compiles to assembly 
with imul instructions), where red indicates the data 
type of the variable and green indicates the lan-
guage keyword:

uint64_t multiplier = 0x1122334455667788;
uint64_t correct = 0xdeadbeef * multiplier;
uint64_t var = 0xdeadbeef * multiplier;

while (var == correct)
{
    var = 0xdeadbeef * multiplier;
}
uint64_t flipped_bits = var ^ correct;

Clearly, this is an infinite loop—it should never termi-
nate, but undervolting leads to a bit flip in var, typically in 
byte 3 (counting from the least-significant byte as byte 0). 
This forces the enclave program to erroneously exit the 
loop. The exclusive-OR operation on the last line high-
lights only the flipped bit(s). In this configuration, the out-
put is always  0x04 00 00 00. This is worth emphasizing: 
the loop always exits with the same bit flipped.

In-Depth Analysis of Undervolting Effects
To better understand what was happening, we under-
volted and measured the core voltage using the 
fully documented MSR 0x198 (MSR_PERF_STATUS). 
For different clock frequencies, we recorded both the 
base voltage and the voltage when the first faulty result 
appeared. The results for the i3-7100U-A are shown 
in Figure 3.

We induced thousands of faulted multiplications 
and were able to draw up some conclusions. The faulty 
results, see Table 2 for selected examples, generally fell 
into the following categories: 1) one to five (contigu-
ous) bits flip or 2) all most-significant bits flip. And, 
very occasionally we observed faulty states in between. 
From this, we can summarize:

■■ The smallest first operand to fault was 0x89af.
■■ The smallest second operand to fault was 0x1.
■■ The smallest faulted product was 0x80000 * 0x4, 

resulting in 0x200000.
■■ The order of the operands is important: for example, 
0x4 * 0x80000 never faulted in our experiments.

The probability of a fault increases with the 
undervolting. On the i3-7100U-B, we had to repeat 

0xae0000 * 0x18 around 1,000,000,000 times to fault 
at –130 mV, while 500,000 repetitions were sufficient 
at –146 mV.

From Faults to Enclave Key Extraction
We have shown that Plundervolt can practically 
fault in-enclave computations. Now let us see how 
that translates to actual attacks against widely-used 
cryptographic algorithms that secure our every-
day communications.

Factoring RSA Keys With One Fault
We wrote a proof-of-concept app for RSA signature 
generation that would run inside an enclave. We used 
Intel’s example code, which uses the Chinese remainder  

theorem (CRT) optimization. Given an RSA 

Table 1. Processors used for the experiments in 
this article.

Code name Model no. μ-code Frequency

Skylake i7-6700K 0xcc 2.0 GHz 

Kaby Lake i7-7700HQ 0x48 2.0 GHz 

i3-7100U-A 0xb4 1.0 GHz 

i3-7100U-B 0xb4 2.0 GHz

i3-7100U-C 0xb4 2.0 GHz 

Kaby Lake-R i7-8650U-A 0xb4 1.9 GHz 

i7-8650U-B 0xb4 1.9 GHz 

i7-8550U 0x96 2.6 GHz 

Coffee Lake-R i9-9900U 0xa0 3.6 GHz 
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Figure 3. The base voltage (blue) and voltage for first fault 
(orange) versus CPU frequency for the i3-7100U-A.
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public key ,n e^ h  and the corresponding private key 
, ,d p q^ h , RSA-CRT makes the computation time of 

mody x nd= ^ h  up to four times faster.
RSA-CRT private key operations (decryption 

and signature) are well known to be vulnerable to the 
famous Bellcore attack, one of the first published fault 
attacks.3 This requires a fault in one of the two expo-
nentiations of the core RSA operations. And if we can 
do that, we only need one single faulty signature to be 
able to factor the modulus n:

, , / .gcdq y y n p n q= - =l^ h

The Lenstra method removes the need to obtain 
both correct and faulty outputs for the same input x by 
computing ,gcdq x y ne

= -l_^ h i .
To make sure we only hit one exponentiation we 

undervolted for roughly the first third of the enclave 
computation. The obtained faults could then be used to 
factor the 2,048-bit RSA modulus using the Lenstra and 
Bellcore attacks—thus recovering the full key.

Breaking AES-NI
Intel’s AES-NI provides efficient hardware implemen-
tations for key schedule and round computation. These 
instructions are widely used in the Intel SGX software 
development kit to implement crucial operations like 
sealing and unsealing, which refers to the encryp-
tion and decryption of enclave secrets so that they can 
be persistently stored outside the enclave, e.g., on the 
untrusted hard drive.1 Other SGX crypto libraries (e.g., 
mbedtls in Microsoft OpenEnclave) similarly rely on 
AES-NI instructions.

Our experiments show that the AES-NI encryption 
round instruction (v)aesenc is vulnerable to Plun-
dervolt attacks: we observed faults on the i7-8650U-A 
with –195 mV undervolting and on the i3-7100U-A with 

–232-mV undervolting. The faults were always a single 
bit flip on the leftmost two bytes of the round function’s 
output. Such single bit-flip faults are ideally suited for 
differential fault analysis.

We ran a canonical implementation using AES-NI 
instructions in an enclave with undervolting as before. 
By repeating the attack a few times, we got a fault in 
round 8. The red color indicates the fault propagation 
from round to round. In round 8, there is a single fault. 
In round 9, that fault has affected more bytes. By round 
10, every byte is affected.

plaintext: 5ABB97CCFE5081A4598A90E1CEF1BC39
CT1: DE49E9284A625F72DB87B4A559E814C4  
	 <- faulty
CT2: BDFADCE3333976AD53BB1D718DFC4D5A  
	 <- correct

input to round 10:
1: CD58F457 A9F61565 2880132E 14C32401
2: AEEBC19C D0AD3CBA A0BCBAFA C0D77D9F

input to round 9:
1: 6F6356F9 26F8071F 9D90C6B2 E6884534
2: 6F6356C7 26F8D01F 9DF7C6B2 A4884534

input to round 8:
1: 1C274B5B 2DFD8544 1D8AEAC0 643E70A1
2: 1C274B5B 2DFD8544 1D8AEAC0 646670A1

We apply the differential fault analysis technique 
by Tunstall et al.,12 which, given a pair of correct and 
faulty ciphertexts on the same plaintext, recovers the 
full 128-bit AES key with a computational complexity 
of only 2 25632 +  encryptions on average. In practice, it 
takes a few minutes to extract the full AES key from the 
enclave, including both fault injection and key recovery 

phases. It is worth noting that the attacks we 
are using were first discovered in embedded 
systems. These twenty-year-old fault attacks 
can now be leveraged against CPUs on non-
embedded devices, such as consumer laptops 
and company servers.

Other Faults in Crypto
Besides key extractions from RSA-CRT and 
AES-NI, we were able to inject faults into 
SGX-provided crypto functions: the mes-
sage authentication code (MAC) used in 
AES-Galois/Counter Mode, elliptic curve sig-
natures, and key exchange. We also looked at 
the SGX-provided instructions for key deriva-
tion and attestation.1 The EGETKEY instruction 
derives an enclave-specific 128-bit symmetric 

Table 2. Faulted multiplications on i3-7100U-B at 2 GHz.

Start Mult Faulty result Flipped bits 

0x080004 0x0008 0xfffffffff0400020 0xfffffffff0000000 

0xa7fccc 0x0335 0x000000020abdba3c 0x0000000010000000

0x9fff4f 0x00b2 0x000000004f3f84ee 0x0000000020000000

0xacff13 0x00ee 0x000000009ed523aa 0x000000003e000000

0x2bffc0 0x0008 0x00000000005ffe00 0x0000000001000000

0x2bffc0 0x0008 0xfffffffff15ffe00 0xfffffffff0000000 

0x2bffc0 0x0008 0x00000100115ffe00 0x0000010010000000
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key from a hardware-level master secret, which is never 
directly exposed to software. The key derivation uses 
AES-cipher-based message authentication code 
(CMAC) with a software-provided KeyID and the calling 
enclave’s identity. Our experiments on the i3-7100U-C 
running at 2 GHz with -134-mV undervolting showed 
that Plundervolt can reliably fault such key derivations. 
Interestingly, we noticed that key derivation faults appear 
to be largely deterministic: for a fixed KeyID, the same 
wrong key seems to be produced most of the time when 
undervolting, even across reboots.

SGX supports local attestation through the ERE-
PORT primitive to create a measurement report for 
another target enclave on the same platform. EREPORT 
first performs an internal key derivation to establish a 
secret key that can only be derived by the intended tar-
get enclave on the same processor. This key is then used 
to create a 128-bit AES-CMAC that authenticates the 
report data. We experimentally confirmed that Plunder-
volt can indeed reliably induce faults in local attestation 
report MACs. As with the EGETKEY experiments above, 
we noticed that the faulty MACs appear to be deter-
ministic—but they do change across reboots, because 
EREPORT generates an internal random KeyID on every 
processor power cycle.

This does not directly break SGX’s security objec-
tives (attestation will simply fail), but faulty key deri-
vations may reveal information about the processor’s 
long-term key material that should never be exposed. 
We leave further exploration and cryptanalysis of the 
above faults as future work.

Beyond Crypto
From our previous examples it would be logical to 
assume that only cryptographic code is vulnerable to 
Plundervolt. However, we were able to attack standard 
code—and this is where things get really interesting.

We know that compilers rely on multiplication 
results for pointer arithmetic and memory alloca-
tion. These multiplications themselves are not visible 
at the source-code level—they are generated “under 
the hood.” Consequently, if we can fault one of these 
compiler-generated multiplications, we can introduce 
memory-safety issues in code that is entirely bug-free. 
As an example, Figure 4 illustrates how the pervasive 
code pattern of indexing into an array may cause the 
compiler to use a multiplication to dynamically com-
pute the address of element a[i]. Crucially, unexpected 
out-of-bounds accesses will occur if an attacker can fault 
such compiler-generated multiplications to produce 
incorrect addresses. In other words, Plundervolt ulti-
mately breaks the processor’s architectural instruction 
specification, thereby violating the hardware-software 
contract expected by the compiler.

We explore two scenarios where faulty multiplica-
tions break memory-safety in seemingly secure code. 
We first present a case-study enclave app where a 
trusted in-enclave array pointer is flipped to untrusted, 
attacker-controlled memory outside the enclave. Next, 
we look at memory allocations where Plundervolt may 
cause heap corruption.

Faulting Pointer Arithmetic
Let us revisit the array indexing example of Figure 4, 
where a multiplication is used to calculate the effective 
memory address of the ith element in an array. Intuitively, 
all an attacker has to do is undervolt while the multipli-
cation is being performed and unexpected addresses will 
be produced. However, there are some limitations. When 
the type elem_t has a size that is a power of two, compil-
ers will use left bit shifts instead of explicit imul instruc-
tions. We also found it difficult to consistently produce 
multiplication faults where both operands are # 0xFFFF. 
We were able to fault with smaller operands—but we 
crashed the computer a lot more. Therefore, we only con-
sider cases where sizeof(elem_t) and i2 2x 162! .

An Example Scenario
To demonstrate that our attack is realistic and can be 
exploited in compiler-generated enclave code, we con-
structed a small case-study app. Consider an enclave 
that holds a relatively large amount of data in an array of 
struct elements. This could, for example, be a long list of 
biometric features in a fingerprint template.

We assume that the enclave loads secret data into 
this array, e.g., the user’s fingerprint template decrypted 
from permanent storage. The code might look like this 
(where teal represents a code comment):

// Get offset to feature in large array
// with around 500k elements
fingerprint_feature_t *f = &features[idx];
// Store some secret data into array entry
f->data = some_secret_feature;

Figure 5 overviews the attack procedure. During nor-
mal execution, only trusted memory inside the enclave 

a [0]

a [1]

…

a [i]

+

i x

sizeof (elem_t)

& a[i]

Figure 4. The address of element a[i] in an array is 
computed as &a[0] + i * sizeof(elem_t).

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 26,2023 at 09:44:16 UTC from IEEE Xplore.  Restrictions apply. 



34	 IEEE Security & Privacy� September/October 2020

HARDWARE-ASSISTED SECURITY 

will ever be referenced. When undervolting ① during 
the imul used for computing the pointer f, however, the 
higher bits of the product may flip. This effectively causes 
the result to become a large negative offset, relative to the 
trusted array base address. Crucially, after adding this cor-
rupted offset, the resulting address suddenly points into 
the untrusted address space outside the enclave. Now, 
the victim enclave unknowingly dereferences the outside 
pointer as if it was in-enclave memory. As the referenced 
address is most likely not currently mapped, this access 
causes a page fault ②, which invokes the untrusted OS. 
We installed a custom page fault handler ③ that maps 
the required untrusted memory page on demand. The 
attacker can now simply resume ④, the enclave. It will 
unknowingly ⑤ write some_secret_feature into 
untrusted, attacker-controlled memory. Plundervolt has 
succeeded in breaking perfectly secure, bug-free code.

Faulting Memory Allocations
Another example for fault-induced vulnerabilities are 
size computations for dynamic memory allocations. 
These are very common and (again) rely on multipli-
cations. For example, a large array of struct elements 
might be allocated using the following (where red indi-
cates the data type of the variable, teal is a code com-
ment, and green represents a keyword):

// Compute size
size_t size = count * sizeof(elem_t);
// Allocate array
elem_t *array = malloc(size);
// . . . use array . . .

However, we showed that Plundervolt breaks the 
processor’s architectural guarantees, as imul can be 
faulted to produce erroneous results that are smaller than 
the expected value. If a multiplication fault occurs dur-
ing calculation of the size variable, a smaller buffer than 
expected will be allocated. Because Plundervolt corrupts 
multiplications silently, without failing the malloc() 
call, the subsequent code has no means of determining 
the actual size of the allocated buffer. Subsequent writes 
or reads to the allocated buffer will assume a larger buf-
fer and hence read or write out of bounds, corrupting the 
trusted enclave heap—Plundervolt has again induced a 
memory-safety issue in memory-safe code.

The Bigger Picture
The ideas presented here have implications beyond 
SGX and Plundervolt. Many researchers have studied 
the use of faults to break cryptographic algorithms. 
Less attention has been paid to fault injection for induc-
ing memory-safety issues into safe code. But any code, 
whether it is running on a small embedded device or 
inside an enclave on a complex processor, is, in princi-
ple, vulnerable to this type of attack—the only require-
ment is that some vector for fault injection exists. This 
is a substantial shift in the risk potential for at least two 
reasons. First, now all software—not just cryptographic 
implementations—needs protection against fault 
attacks, forming a much bigger pool of attack targets 
than previously anticipated. Second, code execution 
for software-based fault attacks is often easier to obtain 
than hooking up an oscilloscope and glitching equip-
ment to a specific victim machine. Thus, inducing 
faults via (remote) code execution may be a much more 
realistic threat and, at the same time, affect substan-
tially more users.

Countermeasures and Counterattacks
Due to SGX’s threat model, countermeasures can-
not be implemented at the level of the untrusted OS 
system or in the untrusted runtime components 
(which the attacker controls). Instead, unsafe under-
volting can only be prevented in the CPU hardware  
or microcode.

Alternatively, the trusted in-enclave code itself can be 
hardened against faults. One approach to do that would 
be to detect faulty computation results. Such a defense 
could leverage ideas from multivariant execution tech-
niques. Specifically, one could execute enclaved com-
putations twice in parallel on two different cores or 
hyperthreads and halt if executions diverge.

Many fault injection countermeasures have been pro-
posed for cryptographic algorithms, including the use 
of (generic) temporal redundancy (i.e., compute-twice-
and-compare) as well as more algorithm-specific 

FEATURE_A
FEATURE_B

...

id
x

Enclave Virtual Memory Range

Attacker-Controlled Memory Page

fill_user_features:

...
f = features + idx * sizeof

SECRET_FEATURE

...

12

4

mmap(...)3

5

Page Fault Handler

Figure 5. An example scenario of an app enclave where erroneous 
multiplication bit flips allow to redirect a trusted fingerprint array lookup to 
attacker-controlled memory outside the enclave.
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approaches. For instance, in the RSA-CRT case, the 
signature could be verified. In the AES-NI case, the 
encryption can be verified with a subsequent decryp-
tion, and so on. However, this would incur substantial 
performance overheads.

For noncryptographic code the situation is compli-
cated—the exact results of a fault injection will vary. 
Mitigations like address space layout randomization 
(which changes the location of the program in memory 
each time it runs) make exploits harder but still do not 
remove the root cause.

Removing the undervolting interface (MSR 0x150) via 
microcode or in hardware is a rather radical solution and 
will certainly mitigate our specific attack. Following the 
responsible disclosure (embargoed from 7 June 2019 to 
10 December 2019), Intel informed us that their coun-
termeasure is exactly this—they included an option to 
disable MSR 0x150. The fact that an enclave runs on a 
“protected” machine, i.e., without software-controlled 
undervolting, is verifiable through remote attesta-
tion. Similar to previous high-profile SGX attacks 
like Foreshadow13 and LVI,14 Intel’s mitigation for 
Plundervolt requires trusted computing base recov-
ery.1 After the microcode update, different sealing 
and attestation keys will be derived depending on 
whether or not the undervolting interface has been 
disabled at boot time. This allows remote verifiers 
to restore trust after reencrypting all existing enclave 
secrets with the new key material.

However, we consider this to be an ad hoc mitigation 
which does not address the root cause for Plundervolt. 
Other undiscovered vectors for software-based fault 
injection through power or clock management features 
might exist and would need to be similarly disabled. 
Ultimately, even without any software-accessible inter-
faces, adversaries with physical access to the CPU are 
also within Intel SGX’s threat model. The CPU requests 
a specific voltage from the mainboard’s voltage regula-
tor via the SerialVID bus. However, this bus appears 
to be completely unauthenticated, so an attacker could 
physically connect to this SerialVID bus and overwrite 
the requested voltage directly.

Lessons Learned
SGX has brought flexible, trusted execution onto lap-
tops, desktops, and servers. Unfortunately, building a 
high-assurance SGX “fortress” on weak foundations 
(like the complex and general-purpose x86 microar-
chitecture), seems unlikely to succeed. Over and over 
again, attacks like Foreshadow,13 Spectre,8 and LVI14 
have shown that microarchitectural optimizations prove 
catastrophic to SGX’s security. Some of these attacks, 
like LVI and Spectre, are somewhat similar in spirit to 
our work, as they too “inject” faulty computations and 

cause the program to deviate from its intended execu-
tion path.

Crucial ly,  however,  these techniques mani-
fest entirely at the microarchitectural level; the faulty 
computations are only speculatively executed and are 
never persisted to the architectural state. Plundervolt 
goes one step further and induces persistent archi-
tectural faults by exploiting fundamental physical 
properties of the CPU—namely the need for a stable 
supply voltage. In this, our work once again shows 
that abstraction levels are only relative in the eyes of 
attackers. Plundervolt, for the first time, has extended 
the attack surface of SGX from the “high-level” micro-
architectural design to the underlying physical prop-
erties of the electronic circuitry itself. We can only 
expect more, yet-undiscovered physical effects to be 
exploited in the future.

The smartcard industry has spent decades defend-
ing far fewer complex chips (typically constrained 8-bit, 
16-bit, or 32-bit microcontrollers) against side chan-
nels, power glitching, and other fault attacks. This has 
led to countermeasures with substantial overheads. For 
example, Infineon smartcard chips include “Integrity 
Guard” technology,5 in which the same code is executed 
by two identical CPUs in parallel. The two CPUs con-
stantly cross-check their results to detect fault injection.

The chip layout itself is carefully designed with spe-
cial meshes to avoid attackers connecting to the internal 
data lines and stealing or tampering with chip-internal 
secrets. Third-party labs carry out extensive and expen-
sive tests (e.g., under Common Criteria) to check and 
certify that the countermeasures are effective.

These overheads and costs may be acceptable for 
smartcards that protect high-value data in narrow-use 
cases like bank cards or passports. For general-purpose 
consumer-grade processors, however, doubling the 
size of the whole CPU core would be absolutely 
prohibitive. It remains to be seen if Intel and others 
can learn from the smartcard experience and strike 
a balance between performance, functionality and 

Figure 6. Plundervolt is a new and powerful attack that 
breaks the integrity and (indirectly) the confidentiality of SGX. 
(Source: https://plundervolt.com; used with permission.)  
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security. After all, having a TEE properly secured 
against physical attacks would open up many fantas-
tic new apps.

W ith Plundervolt (Figure 6), we created a new 
and powerful attack that breaks the integrity and 

(indirectly) the confidentiality of SGX. We demonstrated 
realistic and practical attacks against RSA and AES. Fault 
injection is not limited to small embedded devices—it is 
applicable to large scale CPUs, and this opens up the land-
scape of attacks. Excitingly, we also show that fault attacks 
are not limited to cryptographic operations; we introduced 
controlled memory corruptions, e.g., flipping bits in pointer 
arithmetic so as to redirect enclave secrets to be written to 
untrusted memory outside the enclave. As Plundervolt and 
other fault attacks ultimately break the processor’s instruc-
tion set specification, even formally verified and bug-free 
code can be successfully attacked. 
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