
28 September/October 2020 Copublished by the IEEE Computer and Reliability Societies 1540-7993/20©2020IEEE

HARDWARE-ASSISTED SECURITY

 Plundervolt: How a Little Bit of
Undervolting Can Create a Lot of Trouble

Kit Murdock, David Oswald, and Flavio D. Garcia | University of Birmingham
Jo Van Bulck and Frank Piessens | KU Leuven
 Daniel Gruss | Graz University of Technology

Historically, fault injection was the realm of adversaries with physical access. This changed when research
revealed that remote attackers could use software to inject faults. Plundervolt is a new software-based
attack on Intel’s trusted execution technology (SGX). Plundervolt can break cryptography and inject
memory-safety bugs into secure code.

T wo-thirds of the world’s population now owns
a personal computing device in the form of a

smartphone. These devices store vast amounts of
privacy-sensitive data along with a large number of user
applications (Apps). Trusted execution environments
(TEEs) were created out of the need to protect our
private and valuable data from other—possibly mali-
cious—apps and even the operating system (OS) itself.

It is not just mobile phones that store valuable data—
our personal computers often carry copies of our pass-
words. We use our computers for online banking, and
this is where it is desirable that no adversary can tamper
with the data, even if the computer’s OS is compromised.

For these reasons, Intel processors (from 2015
onward) include Software Guard Extensions (SGX),
which allow an app to self-quarantine sensitive data
and functions within a security perimeter known as an
enclave, using dedicated CPU instructions. Intuitively,
SGX enclaves represent a secure vault or fortress in the
processor, which cannot be read or modified by any
other software, including the privileged OS. Intel SGX

was purposely designed to protect against the most
advanced types of adversaries who have unrestricted
physical access to the host machine, e.g., untrusted
cloud providers under the jurisdiction of foreign nation
states. SGX therefore includes state-of-the-art memory
encryption technology4 that protects the confidential-
ity, integrity, and freshness of all enclave memory while
it resides in untrusted off-chip dynamic random-access
memory (DRAM).

Performance Versus Security
More and more is being demanded of our comput-
ers: faster response times to render complex graphics,
multiple programs being run at once, and the constant
switching of apps. These demands increase power
consumption and raise the temperature of already
overworked computers. To manage this, CPU manu-
facturers have introduced various software interfaces
to dynamically adjust the processor’s operating voltage
and frequency. But, as we will see, putting this power at
a user’s fingertips comes with a cost. With great power
comes great responsibility.

Hardware is being optimized to meet the grow-
ing need for performance. The aim is to maximize

Digital Object Identifier 10.1109/MSEC.2020.2990495
Date of current version: 18 May 2020

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 26,2023 at 09:44:16 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/security� 29

performance while keeping functional correctness.
Modern processors cannot continuously run at maxi-
mum clock frequency—they would simply get too
hot—and in mobile devices, the battery would drain
too quickly. In an electrical circuit, voltage and fre-
quency can be thought of as two sides of the same
coin; higher clock frequencies require higher voltages
for electrical signals to arrive in time and, likewise,
lower voltages require the processor and memory to
operate at a slower rate. Power management jargon
therefore specifies optimal “frequency/voltage pairs”
for different use cases.

Hence, the question arises: If frequency and volt-
age are changed independently, what will happen? As
we discuss, this is the question that security research-
ers have been exploring when attempting to deliberately
induce faulty computations and take advantage of the
resulting errors.

Software-Based Fault Attacks
Since the early days of computing, researchers recog-
nized that software computation results may be affected
when hitting the physical limits of the underlying hard-
ware, e.g., after adjusting the voltage, glitching the clock,
overheating or cooling the operating temperature, or
even focusing a laser at a chip.2 Apart from apparent
safety concerns, such as in the avionics or space indus-
try, these fault injections have also been extensively
studied from a security perspective. That is, fault attacks
may deliberately corrupt calculations to bypass secu-
rity mechanisms, such as sophisticated “you shall not
pass” functions. For a long time, such advanced fault
attacks were considered to be of limited importance, as
they required physical access to the target device, e.g., a
smart card.

This all changed, however, in 2014, with the dis-
covery of the Rowhammer7 effect, which causes bits
flips in memory—entirely from software. Underly-
ing this attack is the physical layout of DRAM, which
consists of capacitors storing very small voltage
charges for 1s and 0s. Security researchers observed
that DRAM memory cells can leak their charges into
nearby memory rows when they are accessed at high
frequency, causing memory corruption and bit flips.
In other words, Rowhammer fundamentally changed
the threat of fault attacks. It is no longer just adversaries
with physical access, attacks can now be mounted by
remotely executing code to modify specific data struc-
tures and escalate privileges. Rowhammer remained,
for some time, the only known purely software-based
fault attack on x86 systems. However, Intel ultimately
considers main memory as an untrusted storage facil-
ity in the design of SGX.4 When researchers tried to
attack SGX with Rowhammer, they merely discovered

a denial-of-service effect because the memory encryp-
tion engine produced an integrity check error, halting
the entire system. Intel SGX enclaves were hence con-
sidered immune to such fault attacks.

Initially, researchers were only interested in attack-
ers who were unprivileged, e.g., in a sandboxed envi-
ronment like JavaScript. However, with the creation
of TEEs such as Intel SGX, ARM TrustZone, and
AMD SEV, threat models changed once again. In the
newly emerging TEE landscape, it suddenly becomes
vital to protect against attackers who have gained root
privileges. In 2017, Tang et al.11 presented a privi-
leged software fault attack called CLKscrew. They
discovered that ARM processors permitted chang-
ing the frequency and voltage from system software.
And this is where the story really starts. CLKscrew
showed that overclocking features can be abused to
jeopardize the integrity of computations for privi-
leged adversaries in the ARM TrustZone TEE. This
attack has been demonstrated to defeat Rivest Shamir
Adelman (RSA) signature checks and extract full
cryptographic keys from the TrustZone of a Nexus 6
mobile phone.

Why Plundervolt Is Different
With our new attack, Plundervolt, we demonstrate the
first-ever software-based fault injection attack against
Intel SGX enclaves. Plundervolt abuses undocumented
power management interfaces present in all recent Intel
Core processors. We use these interfaces to lower the
voltage and cause predictable faults in secure enclave
computations. Our attack is able to steal secrets—even
in the presence of state-of-the-art memory encryption
technology (Figure 1). In contrast to prior high-profile
attacks on Intel SGX, which abused microarchitec-
tural design flaws to break confidentiality of enclave
secrets,13,14 we are the first to demonstrate that even the

Figure 1. Plundervolt circumvents SGX’s memory
encryption engine protection boundaries by abusing an
undocumented voltage scaling interface, which allows
privileged software adversaries to induce predictable
computation faults within the processor itself.

Mem

OS Kernel

App Enclave App

CPU

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 26,2023 at 09:44:16 UTC from IEEE Xplore. Restrictions apply.

30	 IEEE Security & Privacy� September/October 2020

HARDWARE-ASSISTED SECURITY

integrity of seemingly secure enclave computations can-
not be trusted anymore. But we didn’t only break crypto
code. We show that an attacker can induce memory mis-
behavior in secure, bug-free code without any enclave
software vulnerabilities.15 For a more technical descrip-
tion, we point interested readers to our original paper,9
on which this article is based.

Current Status and Concurrent Discoveries
After we responsibly disclosed our findings and Intel
prepared a microcode patch, Plundervolt was dis-
closed to the public on 10 December 2019. Intel
confirmed that we were the first to report this issue.
However, during the embargo period, two other
research teams independently investigated under-
volting security implications. One of these, known
as V0LTpwn,6 outlines a similar attack on Intel SGX
enclaves where undervolting is used (in combination
with additional stress from a sibling logical proces-
sor) to study the fault behavior of x86 vector instruc-
tions. Also, another group of researchers developed
the VoltJockey10 attack against ARM processors. Volt-
Jockey continued the CLKscrew saga by showing that
secure TrustZone computations can also be faulted
through voltage changes. This attack was later also
demonstrated on Intel SGX processors, by faulting a
proof-of-concept software-based Advanced Encryp-
tion Standard (AES) implementation.

The Plundervolt Effect
Before we discuss undervolting, we need to talk about
overclocking. CPUs have official maximum clock fre-
quency limits, but gamers often want to speed up their
machines by pushing the clock frequency over the
recommended values. This can be tricky because inte-
grated circuits have strict timing requirements. The
electrical signals need to pass through the circuitry
within one clock cycle before the next signals arrive. If
the clock is too fast, computation results may not arrive
in time, leading to bit flips in the expected output.

Similarly, the lower the voltage, the longer it takes to
propagate input signals throughout the circuitry. So,
if the voltage is too low (for a specific frequency) the
input signals may not traverse the circuitry before the
next clock tick.

Intel processors have features that enable the mod-
ification of both clock frequency and CPU voltage
from privileged software. These are controlled through
undocumented model-specific registers (MSRs). We
focus on MSR 0x150, which is responsible for voltage.
Figure 2 shows how the 64-bit value in MSR 0x150 can
be decomposed into a plane index and a voltage offset.
By specifying the plane index, system software can select
which components will have their voltage changed. The
CPU core and cache share the same voltage plane on
all machines we tested, and the higher voltage will be
applied to both. The voltage offset is encoded as an
11-bit signed integer relative to the core’s base voltage
in units of approximately 1 mV.

This feature can be abused to inject faults into secure
SGX computations. For starters, we conFigured the
CPU to run at a fixed frequency. Then, undervolting
is applied by writing to the concealed MSR 0x150 just
before entering the code in the victim enclave. After
returning from the enclave, the host program immedi-
ately returns to a stable operating voltage.

One of the hardest parts of this research was finding
good parameters to work with. Too much undervolting
and the system repeatedly crashes, too little and no faults
are injected. We experimented by reducing the voltage
in small steps of 1 mV until a fault occurs but before the
dreaded kernel panic or system freeze. In practice, we
found that it is sufficient to undervolt for short periods
of time (<100 ms) by −100 mV–260 mV, depending on
the specific CPU, frequency, and temperature.

Tested Processors
We tested different SGX-enabled processors from Sky-
lake onwards, compare Table 1. We had multiple CPUs
with the same model numbers and, surprisingly, we
found they can respond very differently when under-
volted. We list each individual processor with a letter
appended. All of our tests were run on Ubuntu 16.04 or
18.04 with stock Linux v4.15 and v4.18 kernels.

Inducing the First
Enclave Fault
We tried undervolting various x86 instructions. We
observed that multiplications (e.g., imul) and other
complex instructions such as the AES New Instructions
(AESNI) extensions can be most easily faulted. We do
not definitively know why these specific instructions, but
we can put forward a conjecture: these instructions will
have longer critical paths compared to simpler operations.

63 42 40 36 32 31 21 0

1 Plane Idx

0 = CPU Core
1 = GPU
2 = Cache (Core)
3 = Uncore
4 = Analog I/O

1 r/w

Write-Enable

Offset

11-Bit Signed Voltage Offset
(in Units of 1/1,024 V)

Figure 2. The layout of the undocumented MSR 0x150 for undervolting.
GPU: graphics processor unit; I/O: input–output.

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 26,2023 at 09:44:16 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/security� 31

Not only that, they will have been more aggressively opti-
mized. When lowering the voltage, electrical signals may
not have enough time to propagate through the circuitry
before the next clock tick.

Consider the following enclave multiplication
proof-of-concept (the code compiles to assembly
with imul instructions), where red indicates the data
type of the variable and green indicates the lan-
guage keyword:

uint64_t multiplier = 0x1122334455667788;
uint64_t correct = 0xdeadbeef * multiplier;
uint64_t var = 0xdeadbeef * multiplier;

while (var == correct)
{
   var = 0xdeadbeef * multiplier;
}
uint64_t flipped_bits = var ^ correct;

Clearly, this is an infinite loop—it should never termi-
nate, but undervolting leads to a bit flip in var, typically in
byte 3 (counting from the least-significant byte as byte 0).
This forces the enclave program to erroneously exit the
loop. The exclusive-OR operation on the last line high-
lights only the flipped bit(s). In this configuration, the out-
put is always 0x04 00 00 00. This is worth emphasizing:
the loop always exits with the same bit flipped.

In-Depth Analysis of Undervolting Effects
To better understand what was happening, we under-
volted and measured the core voltage using the
fully documented MSR 0x198 (MSR_PERF_STATUS).
For different clock frequencies, we recorded both the
base voltage and the voltage when the first faulty result
appeared. The results for the i3-7100U-A are shown
in Figure 3.

We induced thousands of faulted multiplications
and were able to draw up some conclusions. The faulty
results, see Table 2 for selected examples, generally fell
into the following categories: 1) one to five (contigu-
ous) bits flip or 2) all most-significant bits flip. And,
very occasionally we observed faulty states in between.
From this, we can summarize:

■■ The smallest first operand to fault was 0x89af.
■■ The smallest second operand to fault was 0x1.
■■ The smallest faulted product was 0x80000 * 0x4,

resulting in 0x200000.
■■ The order of the operands is important: for example,
0x4 * 0x80000 never faulted in our experiments.

The probability of a fault increases with the
undervolting. On the i3-7100U-B, we had to repeat

0xae0000 * 0x18 around 1,000,000,000 times to fault
at –130 mV, while 500,000 repetitions were sufficient
at –146 mV.

From Faults to Enclave Key Extraction
We have shown that Plundervolt can practically
fault in-enclave computations. Now let us see how
that translates to actual attacks against widely-used
cryptographic algorithms that secure our every-
day communications.

Factoring RSA Keys With One Fault
We wrote a proof-of-concept app for RSA signature
generation that would run inside an enclave. We used
Intel’s example code, which uses the Chinese remainder

theorem (CRT) optimization. Given an RSA

Table 1. Processors used for the experiments in
this article.

Code name Model no. μ-code Frequency

Skylake i7-6700K 0xcc 2.0 GHz

Kaby Lake i7-7700HQ 0x48 2.0 GHz

i3-7100U-A 0xb4 1.0 GHz

i3-7100U-B 0xb4 2.0 GHz

i3-7100U-C 0xb4 2.0 GHz

Kaby Lake-R i7-8650U-A 0xb4 1.9 GHz

i7-8650U-B 0xb4 1.9 GHz

i7-8550U 0x96 2.6 GHz

Coffee Lake-R i9-9900U 0xa0 3.6 GHz

0.8

0.75

0.7

0.65

0.6

0.55

0.5

V
ol

ta
ge

 (
V

)

0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1
Frequency (GHz)

Base Voltage
Voltage for First Fault

Figure 3. The base voltage (blue) and voltage for first fault
(orange) versus CPU frequency for the i3-7100U-A.

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 26,2023 at 09:44:16 UTC from IEEE Xplore. Restrictions apply.

32	 IEEE Security & Privacy� September/October 2020

HARDWARE-ASSISTED SECURITY

public key ,n e^ h and the corresponding private key
, ,d p q^ h , RSA-CRT makes the computation time of

mody x nd= ^ h up to four times faster.
RSA-CRT private key operations (decryption

and signature) are well known to be vulnerable to the
famous Bellcore attack, one of the first published fault
attacks.3 This requires a fault in one of the two expo-
nentiations of the core RSA operations. And if we can
do that, we only need one single faulty signature to be
able to factor the modulus n:

, , / .gcdq y y n p n q= - =l^ h

The Lenstra method removes the need to obtain
both correct and faulty outputs for the same input x by
computing ,gcdq x y ne

= -l_^ h i .
To make sure we only hit one exponentiation we

undervolted for roughly the first third of the enclave
computation. The obtained faults could then be used to
factor the 2,048-bit RSA modulus using the Lenstra and
Bellcore attacks—thus recovering the full key.

Breaking AES-NI
Intel’s AES-NI provides efficient hardware implemen-
tations for key schedule and round computation. These
instructions are widely used in the Intel SGX software
development kit to implement crucial operations like
sealing and unsealing, which refers to the encryp-
tion and decryption of enclave secrets so that they can
be persistently stored outside the enclave, e.g., on the
untrusted hard drive.1 Other SGX crypto libraries (e.g.,
mbedtls in Microsoft OpenEnclave) similarly rely on
AES-NI instructions.

Our experiments show that the AES-NI encryption
round instruction (v)aesenc is vulnerable to Plun-
dervolt attacks: we observed faults on the i7-8650U-A
with –195 mV undervolting and on the i3-7100U-A with

–232-mV undervolting. The faults were always a single
bit flip on the leftmost two bytes of the round function’s
output. Such single bit-flip faults are ideally suited for
differential fault analysis.

We ran a canonical implementation using AES-NI
instructions in an enclave with undervolting as before.
By repeating the attack a few times, we got a fault in
round 8. The red color indicates the fault propagation
from round to round. In round 8, there is a single fault.
In round 9, that fault has affected more bytes. By round
10, every byte is affected.

plaintext: 5ABB97CCFE5081A4598A90E1CEF1BC39
CT1: DE49E9284A625F72DB87B4A559E814C4
	 <- faulty
CT2: BDFADCE3333976AD53BB1D718DFC4D5A
	 <- correct

input to round 10:
1: CD58F457 A9F61565 2880132E 14C32401
2: AEEBC19C D0AD3CBA A0BCBAFA C0D77D9F

input to round 9:
1: 6F6356F9 26F8071F 9D90C6B2 E6884534
2: 6F6356C7 26F8D01F 9DF7C6B2 A4884534

input to round 8:
1: 1C274B5B 2DFD8544 1D8AEAC0 643E70A1
2: 1C274B5B 2DFD8544 1D8AEAC0 646670A1

We apply the differential fault analysis technique
by Tunstall et al.,12 which, given a pair of correct and
faulty ciphertexts on the same plaintext, recovers the
full 128-bit AES key with a computational complexity
of only 2 25632 + encryptions on average. In practice, it
takes a few minutes to extract the full AES key from the
enclave, including both fault injection and key recovery

phases. It is worth noting that the attacks we
are using were first discovered in embedded
systems. These twenty-year-old fault attacks
can now be leveraged against CPUs on non-
embedded devices, such as consumer laptops
and company servers.

Other Faults in Crypto
Besides key extractions from RSA-CRT and
AES-NI, we were able to inject faults into
SGX-provided crypto functions: the mes-
sage authentication code (MAC) used in
AES-Galois/Counter Mode, elliptic curve sig-
natures, and key exchange. We also looked at
the SGX-provided instructions for key deriva-
tion and attestation.1 The EGETKEY instruction
derives an enclave-specific 128-bit symmetric

Table 2. Faulted multiplications on i3-7100U-B at 2 GHz.

Start Mult Faulty result Flipped bits

0x080004 0x0008 0xfffffffff0400020 0xfffffffff0000000

0xa7fccc 0x0335 0x000000020abdba3c 0x0000000010000000

0x9fff4f 0x00b2 0x000000004f3f84ee 0x0000000020000000

0xacff13 0x00ee 0x000000009ed523aa 0x000000003e000000

0x2bffc0 0x0008 0x00000000005ffe00 0x0000000001000000

0x2bffc0 0x0008 0xfffffffff15ffe00 0xfffffffff0000000

0x2bffc0 0x0008 0x00000100115ffe00 0x0000010010000000

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 26,2023 at 09:44:16 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/security� 33

key from a hardware-level master secret, which is never
directly exposed to software. The key derivation uses
AES-cipher-based message authentication code
(CMAC) with a software-provided KeyID and the calling
enclave’s identity. Our experiments on the i3-7100U-C
running at 2 GHz with -134-mV undervolting showed
that Plundervolt can reliably fault such key derivations.
Interestingly, we noticed that key derivation faults appear
to be largely deterministic: for a fixed KeyID, the same
wrong key seems to be produced most of the time when
undervolting, even across reboots.

SGX supports local attestation through the ERE-
PORT primitive to create a measurement report for
another target enclave on the same platform. EREPORT
first performs an internal key derivation to establish a
secret key that can only be derived by the intended tar-
get enclave on the same processor. This key is then used
to create a 128-bit AES-CMAC that authenticates the
report data. We experimentally confirmed that Plunder-
volt can indeed reliably induce faults in local attestation
report MACs. As with the EGETKEY experiments above,
we noticed that the faulty MACs appear to be deter-
ministic—but they do change across reboots, because
EREPORT generates an internal random KeyID on every
processor power cycle.

This does not directly break SGX’s security objec-
tives (attestation will simply fail), but faulty key deri-
vations may reveal information about the processor’s
long-term key material that should never be exposed.
We leave further exploration and cryptanalysis of the
above faults as future work.

Beyond Crypto
From our previous examples it would be logical to
assume that only cryptographic code is vulnerable to
Plundervolt. However, we were able to attack standard
code—and this is where things get really interesting.

We know that compilers rely on multiplication
results for pointer arithmetic and memory alloca-
tion. These multiplications themselves are not visible
at the source-code level—they are generated “under
the hood.” Consequently, if we can fault one of these
compiler-generated multiplications, we can introduce
memory-safety issues in code that is entirely bug-free.
As an example, Figure 4 illustrates how the pervasive
code pattern of indexing into an array may cause the
compiler to use a multiplication to dynamically com-
pute the address of element a[i]. Crucially, unexpected
out-of-bounds accesses will occur if an attacker can fault
such compiler-generated multiplications to produce
incorrect addresses. In other words, Plundervolt ulti-
mately breaks the processor’s architectural instruction
specification, thereby violating the hardware-software
contract expected by the compiler.

We explore two scenarios where faulty multiplica-
tions break memory-safety in seemingly secure code.
We first present a case-study enclave app where a
trusted in-enclave array pointer is flipped to untrusted,
attacker-controlled memory outside the enclave. Next,
we look at memory allocations where Plundervolt may
cause heap corruption.

Faulting Pointer Arithmetic
Let us revisit the array indexing example of Figure 4,
where a multiplication is used to calculate the effective
memory address of the ith element in an array. Intuitively,
all an attacker has to do is undervolt while the multipli-
cation is being performed and unexpected addresses will
be produced. However, there are some limitations. When
the type elem_t has a size that is a power of two, compil-
ers will use left bit shifts instead of explicit imul instruc-
tions. We also found it difficult to consistently produce
multiplication faults where both operands are # 0xFFFF.
We were able to fault with smaller operands—but we
crashed the computer a lot more. Therefore, we only con-
sider cases where sizeof(elem_t) and i2 2x 162! .

An Example Scenario
To demonstrate that our attack is realistic and can be
exploited in compiler-generated enclave code, we con-
structed a small case-study app. Consider an enclave
that holds a relatively large amount of data in an array of
struct elements. This could, for example, be a long list of
biometric features in a fingerprint template.

We assume that the enclave loads secret data into
this array, e.g., the user’s fingerprint template decrypted
from permanent storage. The code might look like this
(where teal represents a code comment):

// Get offset to feature in large array
// with around 500k elements
fingerprint_feature_t *f = &features[idx];
// Store some secret data into array entry
f->data = some_secret_feature;

Figure 5 overviews the attack procedure. During nor-
mal execution, only trusted memory inside the enclave

a [0]

a [1]

…

a [i]

+

i x

sizeof (elem_t)

& a[i]

Figure 4. The address of element a[i] in an array is
computed as &a[0] + i * sizeof(elem_t).

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 26,2023 at 09:44:16 UTC from IEEE Xplore. Restrictions apply.

34	 IEEE Security & Privacy� September/October 2020

HARDWARE-ASSISTED SECURITY

will ever be referenced. When undervolting ① during
the imul used for computing the pointer f, however, the
higher bits of the product may flip. This effectively causes
the result to become a large negative offset, relative to the
trusted array base address. Crucially, after adding this cor-
rupted offset, the resulting address suddenly points into
the untrusted address space outside the enclave. Now,
the victim enclave unknowingly dereferences the outside
pointer as if it was in-enclave memory. As the referenced
address is most likely not currently mapped, this access
causes a page fault ②, which invokes the untrusted OS.
We installed a custom page fault handler ③ that maps
the required untrusted memory page on demand. The
attacker can now simply resume ④, the enclave. It will
unknowingly ⑤ write some_secret_feature into
untrusted, attacker-controlled memory. Plundervolt has
succeeded in breaking perfectly secure, bug-free code.

Faulting Memory Allocations
Another example for fault-induced vulnerabilities are
size computations for dynamic memory allocations.
These are very common and (again) rely on multipli-
cations. For example, a large array of struct elements
might be allocated using the following (where red indi-
cates the data type of the variable, teal is a code com-
ment, and green represents a keyword):

// Compute size
size_t size = count * sizeof(elem_t);
// Allocate array
elem_t *array = malloc(size);
// . . . use array . . .

However, we showed that Plundervolt breaks the
processor’s architectural guarantees, as imul can be
faulted to produce erroneous results that are smaller than
the expected value. If a multiplication fault occurs dur-
ing calculation of the size variable, a smaller buffer than
expected will be allocated. Because Plundervolt corrupts
multiplications silently, without failing the malloc()
call, the subsequent code has no means of determining
the actual size of the allocated buffer. Subsequent writes
or reads to the allocated buffer will assume a larger buf-
fer and hence read or write out of bounds, corrupting the
trusted enclave heap—Plundervolt has again induced a
memory-safety issue in memory-safe code.

The Bigger Picture
The ideas presented here have implications beyond
SGX and Plundervolt. Many researchers have studied
the use of faults to break cryptographic algorithms.
Less attention has been paid to fault injection for induc-
ing memory-safety issues into safe code. But any code,
whether it is running on a small embedded device or
inside an enclave on a complex processor, is, in princi-
ple, vulnerable to this type of attack—the only require-
ment is that some vector for fault injection exists. This
is a substantial shift in the risk potential for at least two
reasons. First, now all software—not just cryptographic
implementations—needs protection against fault
attacks, forming a much bigger pool of attack targets
than previously anticipated. Second, code execution
for software-based fault attacks is often easier to obtain
than hooking up an oscilloscope and glitching equip-
ment to a specific victim machine. Thus, inducing
faults via (remote) code execution may be a much more
realistic threat and, at the same time, affect substan-
tially more users.

Countermeasures and Counterattacks
Due to SGX’s threat model, countermeasures can-
not be implemented at the level of the untrusted OS
system or in the untrusted runtime components
(which the attacker controls). Instead, unsafe under-
volting can only be prevented in the CPU hardware
or microcode.

Alternatively, the trusted in-enclave code itself can be
hardened against faults. One approach to do that would
be to detect faulty computation results. Such a defense
could leverage ideas from multivariant execution tech-
niques. Specifically, one could execute enclaved com-
putations twice in parallel on two different cores or
hyperthreads and halt if executions diverge.

Many fault injection countermeasures have been pro-
posed for cryptographic algorithms, including the use
of (generic) temporal redundancy (i.e., compute-twice-
and-compare) as well as more algorithm-specific

FEATURE_A
FEATURE_B

...

id
x

Enclave Virtual Memory Range

Attacker-Controlled Memory Page

fill_user_features:

...
f = features + idx * sizeof

SECRET_FEATURE

...

12

4

mmap(...)3

5

Page Fault Handler

Figure 5. An example scenario of an app enclave where erroneous
multiplication bit flips allow to redirect a trusted fingerprint array lookup to
attacker-controlled memory outside the enclave.

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 26,2023 at 09:44:16 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/security� 35

approaches. For instance, in the RSA-CRT case, the
signature could be verified. In the AES-NI case, the
encryption can be verified with a subsequent decryp-
tion, and so on. However, this would incur substantial
performance overheads.

For noncryptographic code the situation is compli-
cated—the exact results of a fault injection will vary.
Mitigations like address space layout randomization
(which changes the location of the program in memory
each time it runs) make exploits harder but still do not
remove the root cause.

Removing the undervolting interface (MSR 0x150) via
microcode or in hardware is a rather radical solution and
will certainly mitigate our specific attack. Following the
responsible disclosure (embargoed from 7 June 2019 to
10 December 2019), Intel informed us that their coun-
termeasure is exactly this—they included an option to
disable MSR 0x150. The fact that an enclave runs on a
“protected” machine, i.e., without software-controlled
undervolting, is verifiable through remote attesta-
tion. Similar to previous high-profile SGX attacks
like Foreshadow13 and LVI,14 Intel’s mitigation for
Plundervolt requires trusted computing base recov-
ery.1 After the microcode update, different sealing
and attestation keys will be derived depending on
whether or not the undervolting interface has been
disabled at boot time. This allows remote verifiers
to restore trust after reencrypting all existing enclave
secrets with the new key material.

However, we consider this to be an ad hoc mitigation
which does not address the root cause for Plundervolt.
Other undiscovered vectors for software-based fault
injection through power or clock management features
might exist and would need to be similarly disabled.
Ultimately, even without any software-accessible inter-
faces, adversaries with physical access to the CPU are
also within Intel SGX’s threat model. The CPU requests
a specific voltage from the mainboard’s voltage regula-
tor via the SerialVID bus. However, this bus appears
to be completely unauthenticated, so an attacker could
physically connect to this SerialVID bus and overwrite
the requested voltage directly.

Lessons Learned
SGX has brought flexible, trusted execution onto lap-
tops, desktops, and servers. Unfortunately, building a
high-assurance SGX “fortress” on weak foundations
(like the complex and general-purpose x86 microar-
chitecture), seems unlikely to succeed. Over and over
again, attacks like Foreshadow,13 Spectre,8 and LVI14
have shown that microarchitectural optimizations prove
catastrophic to SGX’s security. Some of these attacks,
like LVI and Spectre, are somewhat similar in spirit to
our work, as they too “inject” faulty computations and

cause the program to deviate from its intended execu-
tion path.

Crucial ly, however, these techniques mani-
fest entirely at the microarchitectural level; the faulty
computations are only speculatively executed and are
never persisted to the architectural state. Plundervolt
goes one step further and induces persistent archi-
tectural faults by exploiting fundamental physical
properties of the CPU—namely the need for a stable
supply voltage. In this, our work once again shows
that abstraction levels are only relative in the eyes of
attackers. Plundervolt, for the first time, has extended
the attack surface of SGX from the “high-level” micro-
architectural design to the underlying physical prop-
erties of the electronic circuitry itself. We can only
expect more, yet-undiscovered physical effects to be
exploited in the future.

The smartcard industry has spent decades defend-
ing far fewer complex chips (typically constrained 8-bit,
16-bit, or 32-bit microcontrollers) against side chan-
nels, power glitching, and other fault attacks. This has
led to countermeasures with substantial overheads. For
example, Infineon smartcard chips include “Integrity
Guard” technology,5 in which the same code is executed
by two identical CPUs in parallel. The two CPUs con-
stantly cross-check their results to detect fault injection.

The chip layout itself is carefully designed with spe-
cial meshes to avoid attackers connecting to the internal
data lines and stealing or tampering with chip-internal
secrets. Third-party labs carry out extensive and expen-
sive tests (e.g., under Common Criteria) to check and
certify that the countermeasures are effective.

These overheads and costs may be acceptable for
smartcards that protect high-value data in narrow-use
cases like bank cards or passports. For general-purpose
consumer-grade processors, however, doubling the
size of the whole CPU core would be absolutely
prohibitive. It remains to be seen if Intel and others
can learn from the smartcard experience and strike
a balance between performance, functionality and

Figure 6. Plundervolt is a new and powerful attack that
breaks the integrity and (indirectly) the confidentiality of SGX.
(Source: https://plundervolt.com; used with permission.)

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 26,2023 at 09:44:16 UTC from IEEE Xplore. Restrictions apply.

36	 IEEE Security & Privacy� September/October 2020

HARDWARE-ASSISTED SECURITY

security. After all, having a TEE properly secured
against physical attacks would open up many fantas-
tic new apps.

W ith Plundervolt (Figure 6), we created a new
and powerful attack that breaks the integrity and

(indirectly) the confidentiality of SGX. We demonstrated
realistic and practical attacks against RSA and AES. Fault
injection is not limited to small embedded devices—it is
applicable to large scale CPUs, and this opens up the land-
scape of attacks. Excitingly, we also show that fault attacks
are not limited to cryptographic operations; we introduced
controlled memory corruptions, e.g., flipping bits in pointer
arithmetic so as to redirect enclave secrets to be written to
untrusted memory outside the enclave. As Plundervolt and
other fault attacks ultimately break the processor’s instruc-
tion set specification, even formally verified and bug-free
code can be successfully attacked.

Acknowledgments
This research is partially funded by the Research Fund
KU Leuven, the Agency for Innovation and Entrepre-
neurship (Flanders), the Engineering and Physical Sci-
ences Research Council (EPSRC) under grants EP/
R012598/1, EP/R008000/1, and by the European
Union’s Horizon 2020 research and innovation pro-
gram under grant agreements 779391 (FutureTPM)
and 681402 (SOPHIA). Jo Van Bulck is supported by a
grant from the Research Foundation Flanders.

References
	 1.	 I. Anati, S. Gueron, S. Johnson, and V. Scarlata, “Innova-

tive technology for CPU based attestation and sealing,”
Intel Corp., Santa Clara, CA, white paper, Aug. 14, 2013.
[Online]. Available: https://software.intel.com/content/
www/us/en/develop/articles/innovative-technology
-for-cpu-based-attestation-and-sealing.html

	 2.	 H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and
C. Whelan, “The sorcerer’s apprentice guide to fault
attacks,” Proc. IEEE, vol. 94, no. 2, pp. 370–382, 2006. doi:
10.1109/JPROC.2005.862424.

	 3.	 D. Boneh, R. A. Demillo, and R. J. Lipton. “On the impor-
tance of checking computations,” in Proc. Eurocrypt’97,
1997, pp. 37– 51.

	 4.	 S. Gueron, “A memory encryption engine suitable for
general purpose processors,” Intel Corp., Intel Develop-
ment Center, Israel, University of Haifa, Rep. 2016/204,
2016.

	 5.	 “Integrity guard: The smartest digital security technol-
ogy in the industry,” Infineon, Munich, 2018. Accessed
on: Apr. 5, 2020. https://www.infineon.com/dgdl/
Infineon-Integrity_Guard_The_smartest_digital
_secur it y_technolog y_in_the_industr y_06.18

-WP-v01_01-EN.pdf?fileId=5546d46255dd933d0155e3
1c46fa03fb

	 6.	 Z. Kenjar, T. Frassetto, D. Gens, M. Franz, and A.-R. Sade-
ghi, V0ltpwn: Attacking x86 processor integrity from soft-
ware. 2019. [Online]. Available: arXiv:1912.04870

	 7.	 Y. Kim et al., “Flipping bits in memory without access-
ing them: An experimental study of DRAM disturbance
errors,” in Proc. Int. Symp. Computer Architecture, 2014, pp.
361–372. doi: 10.1109/ISCA.2014.6853210.

	 8.	 P. Kocher et al., “Spectre attacks: Exploiting speculative
execution,” in Proc. IEEE Symp. Security and Privacy, 2019,
pp. 1–19. doi: 10.1109/SP.2019.00002.

	 9.	 K. Murdock, D. Oswald, F. D. Garcia, J. V Bulck, D. Gruss,
and F. Piessens. “Plundervolt: Software-based fault injec-
tion attacks against Intel SGX,” in Proc. 41st IEEE Symp.
Security and Privacy (S&P’20), 2020, pp. 1149–1165.

	10.	 P. Qiu, D. Wang, Y. Lyu, and G. Qu. “VoltJockey: Breach-
ing TrustZone by software-controlled voltage manipu-
lation over multi-core frequencies,” in Proc. 2019 ACM
SIGSAC Conf. Computer and Communications Secu-
rity, CCS ‘19, pp. 195–209. doi: 10.1145/3319535.
3354201.

	11.	 A. Tang, S. Sethumadhavan, and S. Stolfo. “CLKSCREW:
Exposing the perils of security-oblivious energy manage-
ment,” in Proc. USENIX Security Symp., 2017, pp. 1057–1074.

	12.	 M. Tunstall, D. Mukhopadhyay, and S. Ali, “Differen-
tial fault analysis of the advanced encryption standard
using a single fault,” in Information Security Theory and
Practice. Security and Privacy of Mobile Devices in Wireless
Communication, C. A. Ardagna and J. Zhou, Eds. Berlin:
Springer-Verlag, 2011, pp. 224–233.

	13.	 J. Van Bulck et al., “Foreshadow: Extracting the keys
to the Intel SGX kingdom with transient out-of-order
execution,” in Proc. USENIX Security Symp., 2018, pp.
991–1008.

	14.	 J. Van Bulck et al., “LVI: Hijacking transient execution
through microarchitectural load value injection,” in Proc.
41th IEEE Symp. Security and Privacy (S&P’20), 2020,
pp. 1452–1470.

	15.	 J. Van Bulck, D. Oswald, E. Marin, A. Aldoseri, F. Gar-
cia, and F. Piessens. “A tale of two worlds: Assess-
ing the vulnerability of enclave shielding runtimes,” in
Proc. 26th ACM Conf. Computer and Communications
Security (CCS’19), Nov. 2019, pp. 1741–1758. doi:
10.1145/3319535.3363206.

Kit Murdock is a Ph.D. student at the University of Bir-
mingham, United Kingdom. Her research interests
include fault injection emulation in embedded hard-
ware and software-based fault injections. Contact her
at kxm663@cs.bham.ac.uk.

David Oswald is a senior lecturer (associate profes-
sor) at the Centre for Cyber Security and Privacy,

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 26,2023 at 09:44:16 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/security 37

University of Birmingham, United Kingdom. His main
field of research is the security of embedded systems in
the real world. His research on vulnerabilities in various
widespread systems (e.g., DESFire radio‐frequency iden-
tification smart cards, YubiKey two-factor authentication
tokens, electronic locks, and VW/Hitag2 keyless entry
systems) has created awareness for the crucial impor-
tance of security among developers of embedded devices.
Oswald received his Ph.D. at the Chair for Embedded
Security, Ruhr University Bochum, Germany, in 2013.
Contact him at d.f.oswald@cs.bham.ac.uk.

Flavio D. Garcia is a professor of computer security and an
EPSRC fellow at the School of Computer Science, Uni-
versity of Birmingham, United Kingdom. His research
interests include automotive and embedded devices
security, cryptanalysis, and reverse-engineering. Garcia
received his Ph.D. in computer science from the Rad-
boud University Nijmegen, The Netherlands, in 2008.
Contact him at f.garcia@cs.bham.ac.uk.

Jo Van Bulck is a Ph.D. candidate at KU Leuven University,
Belgium. His research interests include microarchitectural

attacks, with a special focus on privileged software adver-
saries in trusted execution environments. Contact him at
jo.vanbulck@cs.kuleuven.be.

Frank Piessens is a professor at the Computer Science
Department, KU Leuven, Belgium. His research inter-
ests are software security, systems security, and pro-
gramming languages. Piessens received his Ph.D. in
computer science from KU Leuven. Contact him at
frank.piessens@cs.kuleuven.be.

Daniel Gruss is an assistant professor at the Graz Uni-
versity of Technology, Austria. He has been involved
in teaching operating system undergraduate courses
since 2010. His research focuses on side channels
and security on the hardware–software boundary.
His research team was involved in several vulner-
ability disclosures, including Meltdown and Spec-
tre. Gruss received his Ph.D. with distinction. He has
coauthored more than 20 top-tier academic publica-
tions in the past five years and received several prizes
for his research. Contact him at daniel.gruss@iaik
.tugraz.at.

IEEE Computer Graphics and Applications bridges the theory
and practice of computer graphics. Subscribe to CG&A and

• stay current on the latest tools and applications and gain
invaluable practical and research knowledge,

• discover cutting-edge applications and learn more about
the latest techniques, and

• benefit from CG&A’s active and connected editorial board.

September/October 2016

 IEEE C
O

M
PU

T
ER G

R
A

PH
IC

S A
N

D
 A

PPLIC
A
T

IO
N

S
Sep

tem
b

er/O
cto

b
er 2

016

Sp
o

rts D
ata V

isu
alizatio

n
V

O
LU

M
E 3

6
 N

U
M

B
ER 5

c1.indd 1 8/22/16 2:59 PM

November/December 2016

 IEEE C
O

M
PU

T
ER G

R
A

PH
IC

S A
N

D
 A

PPLIC
A
T

IO
N

S
N

o
vem

b
er/D

ecem
b

er 2
016

D

efen
se A

p
p

licatio
n

s
V

O
LU

M
E 3

6
 N

U
M

B
ER 6

Defense
Applications

c1.indd 1 10/24/16 3:44 PM

January/February 2017

 IEEE C
O

M
PU

T
ER G

R
A

PH
IC

S A
N

D
 A

PPLIC
A
T

IO
N

S
Jan

u
ary/Feb

ru
ary 2

017
W

ater, Sky, an
d

 th
e H

u
m

an
 Elem

en
t

V
O

LU
M

E 37
 N

U
M

B
ER 1

c1.indd 1 12/14/16 12:21 PM

July/August 2016

 IEEE C
O

M
PU

T
ER G

R
A

PH
IC

S A
N

D
 A

PPLIC
A
T

IO
N

S
Ju

ly/A
u

g
u

st 2
016

Q

u
ality A

ssessm
en

t an
d

 Percep
tio

n
 in

 C
o

m
p

u
ter G

rap
h

ics
V

O
LU

M
E 3

6
 N

U
M

B
ER 4

Quality
Assessment

and
Perception
in Computer Graphics

c1.indd 1 6/22/16 1:20 PM AA&&&GGCCC
www.computer.org/cga

Digital Object Identifier 10.1109/MSEC.2020.3015403

Authorized licensed use limited to: Queens University Belfast. Downloaded on July 26,2023 at 09:44:16 UTC from IEEE Xplore. Restrictions apply.

