
Provable-Security Model for Strong Proximity-based Attacks
– With Application to Contactless Payments –

Ioana Boureanu

Liqun Chen

Sam Ivey

i.boureanu@surrey.ac.uk,liqun.chen@surrey.ac.uk,s.ivey@surrey.ac.uk

University of Surrey, Surrey Centre for Cyber Security (SCCS)

Guidford, UK

ABSTRACT
In Mastercard’s contactless payment protocol called RRP (Relay

Resistant Protocol), the reader is measuring the round-trip times of

the message-exchanges between itself and the card, to see if they

do not take too long. If they do take longer than expected, a relay

attack would be suspected and the transaction should be dropped. A

recent paper of Financial Crypto 2019 (FC19) raises some questions

w.r.t. this type of relay-protection in contactless payments. Namely,

the authors point out that the reader has no incentive to protect

against relaying, as it stands to gain from illicit payments. The paper

defines the notion of such a rogue reader colluding with a MiM

attacker, specifically in the context of contactless payments; the

paper dubs this as collusive relaying. Two new protocols, PayBCR
and PayCCR, which are closely based onMastercard’s RRP and aim to

achieve resistance against collusive relaying, are presented therein.

Yet, in the FC19 paper, there is no formal treatment of the collusive-

relaying notion or of the security of the protocols.

In this paper, we first lift the FC19 notions out of the specifics

of RRP-based payments – to the generic case of distance bounding.

Thus, we set to answer the wider question of what it would mean

to catch if RTT-measuring parties (readers, cards, or others) cheat

and collude with proximity-based attackers (i.e., relayers or other

types). To this end, we give a new distance-bounding primitive

(validated distance-bounding) and two new security notions: strong
relaying and strong distance-fraud. We also provide a formal model

that, for the first time in distance-bounding, caters for dishonest

RTT-measurers. In this model, we prove that the new contactless

payments in the FC19 paper, PayBCR and PayCCR attain security

w.r.t. strong relaying. Finally, we define one other primitive (vali-
dated and audited distance-bounding), which, in fact, emulates more

closely the PayCCR protocol in the Financial Crypto 2019 paper;

this is because, contrary to the line introducing them, we note

that PayBCR and PayCCR in fact differ in construction and secu-

rity guarantees especially in those that go past relaying and into

authentication.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ASIA CCS ’20, October 5–9, 2020, Taipei, Taiwan
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6750-9/20/10. . . $15.00

https://doi.org/10.1145/3320269.3384748

ACM Reference Format:
Ioana Boureanu, Liqun Chen, and Sam Ivey. 2020. Provable-Security Model

for Strong Proximity-based Attacks – With Application to Contactless

Payments –. In Proceedings of the 15th ACMAsia Conference on Computer and
Communications Security (ASIA CCS ’20), October 5–9, 2020, Taipei, Taiwan.
ACM,NewYork, NY, USA, 14 pages. https://doi.org/10.1145/3320269.3384748

1 INTRODUCTION
In relay attacks, a malicious party forwards communications be-

tween two legitimate parties, without them knowing and with the

aim to have some gain. In 2015, EMV (Europay Mastercard and

Visa), which is the most widely used electronic payment protocols

was shown [8] to be susceptible to these relay attacks. In turn, this

implies that contactless cards are abused by attackers to unwillingly

make payments to a far-away EMV reader. As such, in 2016, Master-

card enhanced its contactless EMV protocol, called PayPass, with a

relay-protection mechanism. The resulting protocol was dubbed

RRP(relay-resistant protocol). For relay-protection, in RRP, the ter-
minal enforces an upper bound on the round trip times (RTTs)

of the messages it exchanges with the card. This is a RTT-based

method of relay-deterrence, widely known as proximity checking
or distance bounding (DB) [6].

Recent attention has been given to RRP. Namely, in [7], the au-

thors note that the RTT-measurements sitting with the EMV reader

may not fit with the incentives of the latter; specifically, some EMV

terminals would be ready to take illicit, relayed payments, as they

only stand to gain from it anyway. Moreover, the issuing-bank in

RRP does not get any proof of the RTT-checks, so a rogue terminal

as per the above can “walk free”. Thus, [7], did propose new proto-

cols based on RRP, with the view that these protocols would catch

such a cheating reader that would potentially collude with a relay

attacker.

The authors of [7] focused purely on RRP (as opposed to other

DB/payment protocols) and on one definition capturing the poten-

tial collusion between the rogue reader and the relay-attacker. This

definition was called collusive relaying, and it is given informally.

Moreover, this definition is (again) cast in the strict setting of EMV.

Concretely, the security against collusive relaying says that if the

issuing-bank is authenticating a contactless card during a payment,

then that card must have been close to the reader (implicitly the

reader who asked for the payment be taken). Two things strike w.r.t.

this definition. Firstly, it mixes a property of authentication and

one of proximity in ways that are not totally clear. For instance, it is

not clear which inputs the bank ought to receive w.r.t. RTT-checks,

if any. This generality could be fine for a generic primitive, but it

Session 2: Authentication ASIA CCS '20, October 5–9, 2020, Taipei, Taiwan

87

https://doi.org/10.1145/3320269.3384748
https://doi.org/10.1145/3320269.3384748
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3320269.3384748&domain=pdf&date_stamp=2020-10-05

is arguably too loose given that it is applied to a specific case, like

EMV. Secondly and on a more pedantic note, the name collusive
relaying via the lens of the given definition is misleading, as re-

laying per se is an attack against proximity-checking not against

authentication [11]. For an attack against authentication, we gen-

erally speak of MiM (men in the middle) that do more than just

relaying. So, it appears that [7] aimed to introduced not just security

against relay-facilitating collusions, but also/rather security against

MiM-facilitating collusion.

Also, the general question of an actual primitive that would

augment distance-bounding to protect against cheating by the RTT-

measuring parties was not asked by [7]. In this vain, [7] stops short

of asking itself if there are other collusive attacks in DBwhichwould

align to collusive relaying. I.e., could an attacker collude with an

RTT-measuring card to mount a sort of collusive distance-fraud1.
Last but not least, [7] does not include a formal model, not even

one just for collusive relaying over EMV.

Research Questions. This paper aims to bridge these gaps. It

aims to “peel” back to layer to the original and generic idea in [7],

and answer these questions:

Q1: “If the RTT-measuring party in DB is corrupted, can we still

get some security against a strong form of relaying or of other

proximity-based attacks, whereby –in the attack– the corrupted

entity could side with the main attacker?”

Q2: ”Can we formally prove this type of security for the protocols

in [7]?

Q3: “What primitive would encapsulate this security property

best?”

Q4: “What would the security model for this primitive be?”

Q5: “How do the security definitions yielded here compare with

the collusive-relaying notion introduced in [7]?”.

Note. Consider the presence of rogue RTT-measurers who may

collude with other attackers. In this context, we would like to point

out that it is of practical interest to be first looking at collusions just

w.r.t. relaying (as opposed to collusions over relaying and authenti-

cation as per the albeit informal endeavours in [7]). Indeed, relaying

is a simple attack to put in place (which subverts no cryptography),

as opposed to authentication forgeries. That is why we pursue

the relaying line primarily, and only in Section 5 move towards

including collusive attacks over authentication as well.

Contributions & Structure. In this paper, we answer the above
questions as follows.

(1) Answering Q3 above, we introduce a generic, augmented

DB primitive, called validated distance-bounding (v-DB).
In this primitive, a party is mandated to recheck the RTT-

measurements, with the view to catch corruption therein.

See Section 3.

(2) Answering Q4 above, we define a security model that allows

for the RTT-measuring party to be malicious. Incidentally,

this also means that it allows for a reader to be malicious (if

the reader does the RTT). To the best of our knowledge, this

is the first formal model of this type in the DB literature. See

Section 4.

1
Distance-fraud is a DB attack whereby a far-away card manages to make it look like

it is close to the reader.

(3) Answering Q1 above, v-DB protocols, we define the security

properties of strong relaying and strong distance-fraud.
See Subsection 4.4.

(4) Answering Q2 above, we prove that the protocols in [7]

attain strong relaying. Strong distance-fraud does not

apply to them. See Subsection 4.5, and Appendix A for the

actual proofs.

(5) Answering Q5 above, we also introduce the primitive (vali-
dated andaudited distance-bounding (v-ADB) protocols),
and the property (strong MiM v-ADB-security) that would
be closer to the notion of collusive relaying in [7]. See Sec-

tion 5.

2 BACKGROUND & FOUNDATIONAL
ASPECTS

2.1 Contactless Payment Protocols Designed
around Collusive Relaying

In [7], the authors introduce two protocols PayCCR and PayBCR, both
based on Mastercard’s RRP. These protocols assume the addition of

Trusted Platform Modules (TPMs) to the EMV infrastructure (i.e.,

to the PKI, in such a way that banks can check TPM certificates

during EMV transactions). In this section, we recall relevant details

of these protocols.

PayBCR & PayCCR: High-level Description. Both protocols

in [7] enhance Mastercard’s contactless-payment protocol with re-

lay protection, i.e., RRP [12] . They do so by adding a TPM onboard

the RRP reader. This TPM is called twice, each time to timestamp

an input, such that the difference of the two timestamps closely

approximates the roundtrip time (RTT) between the card and the

reader. Moreover, PayCCR and PayBCR record this timestamping

information, later to be used by the card or the issuing bank to

re-verify the RTT measurements, alongside other checks each nor-

mally makes in RRP. On one hand, PayBCR does not modify the card

side of RRP and thus it is the issuing bank who does the verifica-

tion of the TPM’s timestamps. On the other, PayCCR leaves the RRP
reader-to-bank specifications unchanged, and it modifies the RRP
card so that it re-checks the RTT measurements mediated by the

TPM onboard the RRP reader.

Herein, we will mainly recall PayBCR. The reader is referred

to [7] for details. PayBCR , shown in Figure 1, is tightly based on

RRP. Firstly, the EMV reader sends its nonce NR to the TPM to

be timestamped. The TPM uses the TPM2_GetTime command to

timestamp this nonce and it produces a randomised signature σ1 on
the timestamped nonce. The signature σ1 from the TPM is sent to

the card, in lieu of the nonce so-called UN in RRP. To keep PayBCR
compliant with RRP, a truncation of σ1 is sent to the card; this

truncation is denoted as σ ′
1
. The card’s response (NC as per RRP) is

sent to the TPM, which similarly yields a randomised signature σ2.
The SDAD signs the AC, the timing information and σ ′

1
(in place

of UN). Finally, the card’s RRP time-bound td , σ1, σ2, t1 and t2 and
the AC are sent to the bank. With these, the bank can check the

difference between the timestamps to ensure the card and EMV

reader were close.

For completeness, we give the description of PayCCR too; see

Figure 2. Its details are very similar to those of PayBCR, only that it

Session 2: Authentication ASIA CCS '20, October 5–9, 2020, Taipei, Taiwan

88

Bank TPM Reader Card

td , KM , Pr ivC
Cer tPr ivCA (PubB)
Cer tPr ivB (PubC)
NC ∈R {0, 1}32

PubCA, NR ∈R {0, 1}32Pr ivSiдnT PMCer t (PubSiдnT PM), KM

T PM2_GetT ime (NR)

t1 := TPM-AttestedTime;
σ1 = SiдnT PM (t1 ,NR)

t1 , σ1 σ ′
1

NC , tdT PM2_GetT ime (NC)
timed

t2 := TPM-AttestedTime;
σ2 = SiдnT PM (t2, NC)

t2 , σ2
READ RECORD

Certs

GEN AC, data, . . .

KS = EncKM (ATC)

AC=MACKs (ATC,data,σ
′
1
,..)

SDAD= SignPr ivC (AC, NC , td ,
σ ′
1
,. . .)

SDAD, AC

Check SDAD
AC, t1 , t2 , σ1 , σ2 , td , SDAD, Certs,. . .

Check t1 in σ1 , t2 in σ2
Check σ1, σ2 & NC , NR , td in SDAD
Check AC, Check t2 − t1 ≤ td

Figure 1: PayBCR [7]: Mastercard’s RRP with Collusive-Relay
Protection & No Changes to the Card

TPM Reader Card

td , KM , Pr ivC , Cer tB (PubC)
Cer t (PubSiдnT PM),

NC ∈R {0, 1}32

PubCA
NR ∈R {0, 1}32

Pr ivSiдnT PM ,. . .

TPM2_GetTime(NR)

t1 := TPM-AttestedTime;
σ1 = SiдnT PM (t1 ,NR)

t1, σ1 σ1

NC
TPM2_GetTime(NC)timed

t2 := TPM-AttestedTime;
σ2 = SiдnT PM (t2, NC)

t2, σ2 t2 ,σ2 ,t1 ,NR
Cer t (PubSiдnT PM)

Certs

GEN AC, data, . . .

Check signatures & values in σ1 & σ2 ,
Check t2 − t1 < td and check Certs

KS = EncKM (ATC)
AC=MACKs (ATC,data,σ

′
1
, . . . ,)

SDAD= SignPr ivC (AC, NR , td , NC ,..)

SDAD, AC

Check SDAD
To Bank: AC,. . .

Figure 2: PayCCR [7]: Mastercard’s RRP with Collusive-Relay
Protection & No Changes to the Issuing Bank

is the card who does the verification of the timestamping signatures.

3 VALIDATED DISTANCE-BOUNDING
PROTOCOLS

In this section, we introduce the notion of validated distance-bounding
(v-DB). We then discuss this definition w.r.t. existing lines in the

field.

3.1 v-DB Definitions
This is an augmented DB protocol in the sense that the following

two aspects are added to a “standard” DB protocol:

a. the proximity-checking algorithm is portable and, unlike in

traditional DB, it can be added not only to the reader, but

–alternatively– it can be added to the card;

b. the proximity-checking is validated in the sense that, in an

v-DB protocol, after the proximity-checking phase is finished,

a protocol party will re-verify that the proximity-checking

was performed as expected.

In other words, the above means that –unlike in standard DB–

in a v-DB protocol, the reader may or may not be the one to under-

take the RTT measurements, but –no matter which protocol party

performed the measurements– these are certainly re-checked by

another algorithm in the protocol. We now formalise this below.

Definition 3.1. ValidatedDistance-BoundingProtocols. A val-
idated distance-bounding (v-DB) protocol is a tuple
Π = (C,R,T ,PC,W,B), where B denotes the distance bound

and C,R,T ,PC,W are ppt
2
. algorithms as follows:

• C is the card algorithm and R is the reader algorithm in an

unilateral authentication protocol where C authenticates to

R;

• T is a tamper-resistant, trusted execution environment;

• the tuple (PC,T) form a proximity-checking functionality:

(PC,T) checks that d (C,R) ≤ B;
• the tuple (PC,T) is directly used by one authentication

party: be it by C or by R;

• R and (PC,T) respectively have public outputs OutR and

Out(PC,T) in {0, 1} (success/failure of the authentication

and proximity-checking respectively), as well as private out-

puts denoting their transcripts, denoted τR and, resp., τPC ;
• W is the proximity validating algorithm: given the private

output of (PC,T), the algorithmW checks the correctness

of public output of (PC,T).
• W has a public output OutW .

Def. 3.1 says that a validated distance-bounding (v-DB) protocol
is composed of two primitives. First, it comprises the authenti-

cation primitive that implements the mechanisms of C authen-

ticating to R. Second, it includes the proximity-checking primi-

tive facilitated by (PC,T), which is aimed to verify that the de-

vices/parties running C and resp. R are at a distance of no more

than B from one another. Note that the validating algorithmW

solely re-verifies the proximity- checking, without the authentication

side (i.e.,W operates on the private output (PC,T) only, without
that of R).

Remark 1: W.r.t. above, we note:

2
All measures of complexity and probability are asymptotic in a security parameter s .

Session 2: Authentication ASIA CCS '20, October 5–9, 2020, Taipei, Taiwan

89

(1) Since the authentication and proximity checking algorithms

are separated, one can clearly differentiate the corruption of

one or the other, thus yielding a finer threat model than in

“standard DB” [1], and propose specialised security proper-

ties.

(2) Unlike in “standard DB”, in v-DB, the proximity-checking

can sit either with C or R. Here,W only re-verifies the

proximity-checking dimension of the protocol between C

and R. That means, that whilst we introduced v-DB on top

of unilateral authentication, in fact v-DB is agnostic of the

underlying protocol run by C and R and that v-DB would

work the same if this latter protocol were something other

than authentication.

We now move to the notion of a validated distance-bounding

system, which intuitively takes a v-DB protocol to the implemen-

tation level. To this end, some setup phases are run, algorithms

are instantiated and loaded onto devices, and –importantly– the

proximity-checking algorithm is fixed on one side: on the card-

implementing side, or on the reader-implementing side. We for-

malise this in Def. 3.2 below.

Definition 3.2. Validated Distance-Bounding (v-DB) Systems.
Given a v-DB protocol Π and ppt. algorithm X , a validated distance-
bounding system Πreal

(v-DB system, for short) is a concrete repre-

sentation of v-DB and X , written v-DBreal =(C, PC,T ,R,W ,X ,B), as
follows:

– the bound B is instantiated,

– the card and reader algorithms are set up
3
correctly to run the

unilateral authentication protocol in v-DB,
– the proximity-checking algorithm (PC,T) is set up4 correctly
and is coupled with the card algorithm or with the reader algorithm,

– the validating algorithmW is set up
5
correctly and coupled with

the card algorithm or with the reader algorithm opposite to how

the proximity-checking algorithm is coupled, or –alternatively– it

is coupled with X ,

– after this coupling and setup, all algorithms in Π are loaded onto

communicating devices.

By enumerating where (PC,T) andW can “sit” in a v-DB sys-

tem, we obtain the following classes of v-DB systems.

Definition 3.3. Classes of v-DB Systems. Consider a v-DB sys-

tem denoted as v-DBreal =(C, PC,T ,R,W ,X ,B) be . If the proximity-

checking algorithm is coupled with the card and the validating algo-

rithm is coupledwith the reader, wewriteΠreal
=([C, PC,T], [R,W],B),

andwe call this card-checked and reader-validated distance-bounding
system. The [C, PC,T] tuple is called a card coupling.

If the proximity-checking algorithm is coupled with the reader

and the validating algorithm is coupled with the card, we write

Πreal
=([R, PC,T], [C,W],B), and we call this reader-checked and

card-validated distance-bounding system. The [R, PC,T] tuple is
called a reader coupling.

If the proximity-checking algorithm is coupled with the card and

the validating algorithm is coupled with X , we write

3
All PKI involved or any cryptographic keys pre-shared are all set up.

4
E.g., PC is set up with the same B as instantiated.

5
E.g.,W is set up with the same B as instantiated.

Πreal
=([C, PC,T],R, [W ,X],B), and we call this card-checked and

X-validated distance-bounding system.

If the proximity-checking algorithm is coupled with the reader

and the validating algorithm is coupled with X , we write

Πreal
=([R, PC,T],C, [W ,X],B), and we call this reader-checked and

X-validated distance-bounding system.

The Scope of v-DB Systems. With Def. 3.3 in place, one can

now see that v-DB systems are paramount in cases where access

to services are provided based on proximity checking, and where

the “traditional” party ascertaining proximity may have incentives

to misbehave and not execute its role correctly. In such cases, the

output by T will aid another party in the protocol to runW as to

re-verify that the proximity-checking was indeed performed, even

by a potentially corrupt proximity-checker. We detail this below.

In reader-checked systems, Def. 3.2 aims to formalise the fol-

lowing: a v-DB protocol is run between a card and a reader, and

the reader does the proximity-checking PC assisted by a trusted

execution environment denoted T . In this case, the card or a 3rd

party X re-validates that the proximity-checking was done cor-

rectly. Intuitively, in this case, the trusted execution environmentT
will prevent the reader from cheating and from not performing the

proximity-checking PC correctly. An example of where a reader

may wish to cheat and not perform the proximity-checking is that

where its core function is orthogonal to the closeness of the card:

i.e., in EMV, the reader just wants to take a payment, and would

arguably still take payment from a card that was afar.

In card-checked systems, Def. 3.2 formalises a situation akin to

that of reader-checked systems, only that –in this case– the roles

of the card and reader are inverted. That is to say, imagine that

a card is tasked with checking its proximity to the reader that is

mobile. Assume this card has an incentive to lie about the proximity-

checking (e.g., in order to allow a far-away reader to authenticate

it). Then, in card-checked v-DB systems, we addT on board the card

and the re-verifierW (which can sit with the reader or a 3rd party)

will use T ’s outputs to detect that such a corrupted card may wish

to fault the system.

3.2 v-DB’s Place in the Field of
Distance-Bounding

Examples of v-DB Systems & Related Definitions. The for-

malisation of v-DB systems is introduced for the first time in this

paper. However, we can point to two existent systems that fit this

description. PayBCR in [7] is a reader-checked and bank-validated
v-DB system, whilst PayCCR in the same [7] is a reader-checked and

card-validated v-DB system.

We are not aware of card-checked v-DB. Whilst there exist pro-

tocols where the card does check the proximity to the reader (e.g.,

mutual distance-bounding [2]), in these cases there is no validation

(via another algorithmW) of this checking by the card.

Definitions Relating to v-DB Systems. Vaudenay and Kilinc,

in [15], augment distance-bounding protocols by adding a Hard-

ware Security Module (HSM) to cards, which is akin to Def. 3.2

coupling T and C . That said, the Kilinc-Vaudenay systems yielded

are not card-checked (i.e., PC is not on the card side) and, moreover,

no validating algorithm is present. In other words, the security

Session 2: Authentication ASIA CCS '20, October 5–9, 2020, Taipei, Taiwan

90

reasons and mechanisms of [15] are different: therein, cards are

augmented with HSMs mainly to protect against a threat called

terrorist-fraud [9] and notwith our purpose of aiding to the proximity-

checking mechanism per se, and –unlike herein – there is no di-

mension of re-validation of said proximity-checking by another

party.

On a similar note, in [10], the authors look at mixing proximity-

checking with roots of trust, akin to Def. 3.2 putting together T
and PC . There are two notable differences between [10] and our

definitions. (1) In [10], software roots of trust and –in fact– spe-

cific ones (i.e., Intel SGX) are envisaged to stand in for T and the

proximity-checking algorithm is also fixed; this is clearly not the

case in this work. (2) In [10], there is no aspect of re-validation of

said proximity-checking by another party.

We sumup that Defs. 3.1 and 3.2 introduce a new primitive/protocol

that was not defined before; however, we can see that they do offer

some formalisation
6
for the contactless payment protocols pub-

lished at Financial Crypto 2019, in [7].

4 A FORMAL MODEL FOR VALIDATED
DISTANCE BOUNDING

In this section, we will present a formalism that captures the exe-

cution and threat models for v-DB protocols and systems.

In this model, we will be able to formally express for the first

time certain fine-grained corruptions, which will be the basis of

putting forward new security properties. For instance, in a v-DB sys-

tem Πreal
=([R, PC,T], [C,W],X ,B), a man-in-the-middle (MiM) at-

tacker can corrupt the R and/or the PC sides of the reader-coupling

[R, PC,T] and, as such, this yields collusive attacks whereby the

corrupted reader can strengthen MiM attacks.

In the model that we are about to introduce, it is possible to

capture other types of strong, collusive attacks that had not been

introduced in the past. One example of that is our Definition 4.4 of

strong distance-fraud, as well as the new attacks such as the ones

we discuss in Section 5.

4.1 Execution Model.
v-DB Parties. In this paragraph, we detail part of the setup in a v-

DB systemΠreal
, presented inDef. 3.2. LetΠ = (C,R,T ,PC,W,B)

be a v-DB protocol. To create the corresponding v-DB system Πreal
,

the algorithms inΠ are loaded onto devices: e.g., physical RFID cards,

NFC-enabled phones, EMV payment terminals, etc. This loading

is done in accordance with the coupling presented in Def. 3.2: i.e.,

algorithms coupled together are loaded on the same device. For

instance, in this Πreal
=([C, PC,T], [R,W],X ,B), the card algorithm

C, the proximity-checking algorithm PC and the trusted execution

environment will be loaded on the same device [C, PC,T], whereas
the reader algorithm R and validating algorithmW will be loaded

on the same device [R,W]. We refer to devices that have the card

algorithm C on them as card devices, and devices that have the

reader algorithm R on them as reader devices.

6
We say “some” due to the fact that v-DB protocols/systems do not attempt to formalise

the underlying protocol between C and R , i.e., payment in the case of [7]; v-DB only
focuses on proximity-checking aspects.

The ppt. algorithm X inside Πreal
is also loaded onto a compu-

tational machine. When the algorithm and machine X are present

in a concrete v-DB system, it is because we are faced with an X-
validated distance-bounding system; in this case, as in Def. 3.2, note

that the machine X also has algorithmW loaded on it. We stress

that this machine onto which X (and thenW) are loaded, i.e., the X
machine, is not referred to as a device.

We consider a ppt. adversary who can corrupt (card and
reader) devices (but not both the designated card and the desig-

nated reader in a given security experiment). We will define the

full corruption model later. We consider that the adversary has his

own adversarial devices, running arbitrary ppt. algorithms.

A party is an executing device (be it card, reader or adversary-

owned device), or an executing X machine. Each party Y has a

unique public identifier i and, as such, it is denoted Yi .

Sessions. We allow multiple parties of the same type. Also, each

party can execute multiple concurrent runs. One run of a party is

called a session. If one execution is run on a card-device or reader-

device, then it is a card session or a reader session, respectively. We

write Y i for the i-th session of a party Y .
Each card and reader party involved in an execution has a status:

active or inactive. When a card or reader is inactive, it ignores all

incoming messages. Initially, all are inactive. A party is only active

when it is involved in one or more sessions, and becomes inactive

again when this/these finish.

The chronologically-ordered list of the messages sent and re-

ceived by a party in a session is called the transcript of the session.
All sessions are attributed a unique identifier. (e.g., via the applica-

tion of the pseudorandom function to the transcript). A session is

full if its transcript contains the last message of the specification.

Otherwise a session is partial.
The transcripts of a card-session and “corresponding” sessions of

other types (reader, X) may differ, due to adversarial manipulation

of messages.

If a series of partial sessions of type card, reader and (potential)

X , with or without adversarial parties involved, that when put

together make a partial execution of Π, then they form a partial
macro-session. If this leads to a full session of the party onboarded

withW , then the macro-session is said to be full.

4.2 Physical & Communication Model.
From here on, we describe a DB-driven model that focuses mainly

on the communication between card and reader devices, in a con-

current setting and in the presence of an adversary. Unlike in tra-

ditional DB model, we will also consider the communication with

the X machine, which will remain honest. Also, unlike in a tradi-

tional DB model, the adversary will be able to corrupt devices in a

fine-grained manner: i.e., just one specific algorithm on a device,

as opposed to the whole device.

Let Π = (C,R,T ,PC,W,B) be a v-DB protocol, and Πreal
be a

v-DB system.

We assume that there is a global clock.

4.2.1 Computation. We assume that the computation of mes-

sages to send out, as well as the write and the read to memory are

instantaneous.

Session 2: Authentication ASIA CCS '20, October 5–9, 2020, Taipei, Taiwan

91

Communications inside Πreal
have durations, measured in units

of time (e.g., seconds or fractions thereof). All messages travel at

the same speed, irrespective of their length. Next, we further define

these durations.

4.2.2 Communication Within Couplings. Within couplings

that involve T (i.e., [C, PC,T] and [R, PC,T]), we assume that com-

munication happens at a constant speed. Synonymously, we con-

sider that to exchange a message inside a T coupling takes a time-
bound ∆: i.e., to send/receive something between (PC,T) and C ,
or to send/receive something between (PC,T) and R takes exactly

∆ units of time.

With respect to couplings that involveW (i.e., [R,W] and [C,W]

and [X ,W]), we are not interested in communication times. How-

ever, we assume that these take at most a given, finite amount of

time; notably, in a [R,W] and [C,W] and [X ,W] session, if this

given amount of time elapses and the last response toW is not

received, then OutW is set to 0.

4.2.3 Communication Across Couplings. This means commu-

nications between card parties, reader parties, the X machine(s), as

well as between these and adversarial parties. In fact, we will not

be interested in the communication times with the X machine(s).

To this end, we consider that card, reader and adversary parties

are positioned in a Euclidean space. The X machine is not part of

this positioning.

We say that two (card, reader or adversary) parties Y1 and Y2 are
close if the Euclidean distance d (Y1,Y2) between them is at most

B: i.e., d (Y1,Y2) ≤ B. Otherwise, the two parties are said to be far
apart.

All messages exchanged between (card, reader or adversary) par-

ties are broadcast over insecure channels and travel at a constant

speed. In particular, there exists a time-bound tB such that a mes-

sage from a party Y1 reaches a party Y2 (across couplings) within
the time tB if and only if party Y1 is close to party Y2.

There also exists another timing-out time-bound in which if PC
inside [PC,T] does not receive a response to a challenge, then it

terminates unsuccessfully, i.e., Out
[PC,T]=1.

The communicationwithmachineX is done via unicastmessages

and on secure channels. To partially re-iterate, we are not interested

in the physics of the channel (e.g., communication speed/time) or

durations of computation
7
.

4.3 Threat Model.
Adversarial Capabilities – Informal. We now present the ca-

pabilities of our adversary, informally. This informal presentation

helps with the presentation in the rest of the section, whereby

finally we also conclude with a formalisation of the adversary.

Let Π be a v-DB protocol.

(1). The adversary has a number of instances, at most polynomial

in the security parameter, all located in the Euclidean space consid-

ered. Each instance (or adversarial device) implements an arbitrary

ppt. algorithm.

(2).A can interfere with the setup of Π into Πr eal
. In this case, the

7
By this we mean that we will not look at how long a message computation takes inside

the machine X . However, we do not mean that we allow X to be in any complexity

class; in fact, from a complexity viewpoint, the X machine runs a ppt. algorithm

adversary can corrupt theC and/or R and/or PC parts of the devices,

but it cannot corrupt the T ,W and X algorithms. The adversary

cannot change the coupling created by the setup. For the corrupted

parts,A can read all their material (i.e., a white-box access), but the

adversary cannot modify it. Also, if a part of the coupling/device is

corrupt, then then the other part does not become corrupt, yet all

communications between the two parts are compromised.

(3). As usual, corruption is immutable: once corrupted, all sessions

of that device are visible and can be manipulated to the attacker; we

will be more specific w.r.t. coupling, in the formal parts to follow.

(4). A interacts with non-adversary parties by sending them mes-

sages: opening sessions with them, interfering in sessions that these

parties had already started. These parties reply honestly as per Π.
(5). A can move card-parties from one location in the metric space

to another. Any such move takes as much time as a message would

take to travel between the two points in the Euclidean space.

(6). Adversarial instances operate as ITMs: they collaborate and

communicate.

(7). The messages between adversarial devices and corrupted de-

vices are subject to the same intra/inter-coupling communication

laws as per the above in Subsection 4.2. Notably, the adversary

cannot change the speed of communication of messages (i.e., make

them go faster).

(8). The adversary cannot modify the global clock, except for with

a negligible amount.

(9). A can send unicast messages, which can only be read by their

intended target, e .д., using directional antennas.
(10). A can block any message from being received by a party of

his choice, irrespective of their position.

(11). A can modify messages on the fly, i.e., read and flip bits with-

out introducing a delay to the communication.

(12). Messages sent by A have priority, i.e., if a bit b sent by A

arrives to an honest party B at the same time as another bit b ′

sent by an honest party C , then B ignores the bit b ′ sent by C in

preference of the bit b sent by A.

Remarks on Our Adversarial Model. Note that our adversary
is generally much aligned with “standard” distance-bounding (DB)

adversary [14]. The new aspects compared to this model are as

follows:

• the adversary can move parties (see point (5) above).
• the adversary can do fined grained corruption by only con-

trolling part of a device (see control of couplings in point

(2) above); this is a mix between whitebox and blackbox

corruption in distance-bounding (DB) [4], and allows for the

definition of new DB security properties, as we will see in

Section 4.4.

Let us discuss the main restrictions of this adversary. Firstly,

the adversary cannot change the coupling created by the setup of

Πr eal
(see point (2) above), and that even if he corrupts one part

of a coupling (say PC inside [PC,T]), then he cannot change the

communication laws within the coupling (see point (7) above). In
practice, this implies that the attacker cannot overclock the host of

the trusted device T , i.e., the reading/writing speed of the interface

to/from T stays as prescribed by the specifier of T . Secondly, as per
point (8) above, the adversary cannot control the global clock; this

Session 2: Authentication ASIA CCS '20, October 5–9, 2020, Taipei, Taiwan

92

is in line with “standard” distance-bounding (DB) models [14], but it

also captures the fact that there is root of trust in the presence ofT ;
implicitly, we consider thatT provides this trusted, tamper-resistant

clock
8
.

Challenger. To simulate the honest executions of a v-DB system

Πr eal
as well as its interactions with the adversary we introduce,

as usual, a challenger.
(1). The challenger Ch is aware of the global clock.

(2). The challenger Ch keeps a list P of all parties in the system,

indexed by their id. Each entry in P also contains their corruption

status (corrupt/honest), and –for card and reader parties– the entry

also contains their location
9
. If parties/devices are coupled (as in

[C, PC,T]), then –in the list– they appear with the entire coupling.

This is because it is the challenger Ch who ran the setup in Πr eal
.

Also, Ch deals with all adversarial actions via a set of oracles pre-

sented later; as such, challenger Ch knows if a given party has been

corrupted by A and his list P is kept up-to-date accordingly.

(3). The challenger Ch keeps track of every session, opened by

every party in a list called Sess . This list is index by the unique

session identifier, and it registers the time the session started, if it

is a card session, a reader session, etc., as well as the up-to-date

status of a session: i.e., finished or running, and a transcript of the

session.

(4). The challenger Ch keeps a list Sends of timed, sent messages.

This contains: the id of the session (of the sender party) to which

this is message belongs to, the sender party, the aimed receiver party

(which is optional), the message, and the time of send. Recall that

most messages are sent in broadcast mode, and only the adversary

can send messages in unicast mode; so, the latter is the only case

in which is there is an aimed receiver.

(5). The challenger Ch keeps a list Reads of read messages at given

times. This contains: the id of the session (of the reading party)

in which this message is being read, the (apparent) sender party,

the (real) sender party, the receiver party, the message, the time

of the receipt. We will formalise this later. However, we men-

tion the following two important time-keeping aspects here.

Firstly, if the “read” is from/to a sender and receiver across dif-

ferent couplings, then an entry in this list is possible only if the

message appears in the sent-messages list Sends and if the mes-

sage had the time to travel from the sender to the receiver. I.e.,

d (sender , receiver) ≤ (tsent − current_time) × c , where the chal-
lenger Ch finds the locations of sender , receiver in the P list , the

time tsent in the Sends list, the current_time by using the global

clock, and c is the speed of messages. If this inequality holds, then

the time of receipt inside Reads is recorded as the current_time .
Second, if the “read” is from/to a sender and receiver inside the

same coupling, then an entry in this list is possible only if the mes-

sage appears in the sent-messages list Sends and the fixed amount

of time passed since the message was sent. I.e., the challenger Ch
finds the locations of sender and receiver in the P list , the time

8
This is in line with the specification for Trusted Platform Modules (TPMs) by their

standardisation body – TCG (Trusted Computing Group).

9
We can also trade space-complexity for time efficiency and also keep dedicated lists

of corrupted parties, dedicated lists for locations, etc. This type of trade-off can be

considered on all Ch’s lists; when implementing a mechanisation of this model in

a cryptographic prover, such multiple lists with redundancy are beneficial for faster

proofs.

tsent in the Sends list, the current_time by using the global clock,

and current_time − tsent = δ .
The points above show that the challenger Ch is an arbiter for

the setup of the system, honest and corrupt behaviours, and the

communication rules in our model. Specifically, w.r.t. point (5)
above, the challenger Ch uses his “communication log” kept in the

lists P, Sess , Sends and Reads , so that he does not allow the commu-

nication rules expressed in our model to be broken: communication

across couplings is proportional to distance, and communication

inside couplings takes a fixed amount of time.

Oracle-based Security Model. As we will see now, the adver-
sary and the challenger’s aforementioned behaviours are formalised

(as per the usual) through an interaction modelled via oracles. In
this sense, the adversary will call oracles to the challenger in order

to simulate real executions between honest and corrupted parties.

The set of oracles below is denoted as v-DB-Orcls.

• init([C,R,T ,PC,W,X,A])
This oracle allows the adversary to initiate a session be-

tween a meaningful subset of the parties listed as potential

inputs. The challenger Ch checks the format of the call, and

only meaningful calls are allowed. E.g., On the one hand, if

a card-party Ci is not coupled, then the adversary can call

init (Ci). On the other hand, if a card-party Ci is coupled,

then the adversary can only call init (Ci ,PC,T), where PC
and T are the parties coupled with Ci .

The adversary can also call init (C,R,T ,PC) with the

correct coupling included in the call (i.e., init ([C,PC,T],R)
or init ([R,PC,T],C), otherwise the call is rejected). In this

case, it means that the parties in the call will start sessions

in which they communicate together. To this end, the chal-

lenger Ch records in the Sess list different times for differ-

ent parties depending on their location. I.e., the initiator of

the session is logged inside Sess to have started the session

at the current time t , the responder in the session at time

t + distance (initiator , responder). Note that the challenger
Ch has the location of all parties in P and knows the proto-

cols, so it can determine if e.g., a card party or a reader party

is the initiator or responder of the sessions, respectively. If

W is used inside the call, then the time of the recorded open

session forW is the same as the party coupled with PC,T .

Note that some parties can be corrupted (see oracle corrupt (. . .)
later on) and, as such, this session-creating is also over cor-

rupt cards and PC parties.

If A is used inside the call, then the adversary “starts” a

session with one/some of the other parties in the call.

The challenger Ch will record the opened session(s) ac-

cordingly in the Sess list. If all parties in a Πr eal
are given

at input, then different session ids are created for each, and

a macro-session idmid is created for the set. Themids and
macro-session are also recorded in Sess (i.e., each sid can be

linked to amid and its details) inside Sess .
The ID sid of the opened session(s) per each party is given

as output (to A).

• send([sid, S,R,m])
This oracle generally denotes the sending of a messagem

inside session sid from sender S aimed to the receiver R. As

Session 2: Authentication ASIA CCS '20, October 5–9, 2020, Taipei, Taiwan

93

we explain next, only S is required, the rest of the parameters

are optional.

All checks mentioned below are done by the challenger

Ch via the lists P and Sess .
If no sid is specified, then the message is sent to all ses-

sions of the party passed under the R parameter. If S is equal

to A, thenm must be specified, meaning that the adversary

is sending a messagem. If a sid is specified, then this session

id sid must exist in Sess . If S is equal to A, plus the receiver

R and sid are specified, then R must have a session sid open

(which the challenger Ch checks in Sess), and only the party

R can read this message (i.e., A is sending a message in

unicast mode). Contrarily, if send ([S, ·,m]) with S , A is

called, then this messaging emulates broadcast, i.e., all pos-

sible parties who as per Π can receivem will be forwarded

this message.

The adversary can call this oracle with non-adversarial

parties as parameters, in to order get a simulation of com-

munications between honest or corrupt devices. I.e., in the

template of the oracle send ([sid, S,R,m]), we have that S,R ∈
{C,R, (PC,T), (W,Y) |Y ∈ {}} in such a way that compli-

ance with the protocol specification, the coupling and the

session ids is maintained. That is to say, the Ch makes the

necessary checks: e.g., if both an S and an R are passed in

the oracle, then they communicate as per the protocol, if the

sid is specified then the sender S has such a session in Sess ,
etc.

If all checks pass, then themessage will become part of this

session’s transcript (inside the list Sess) and the sending will
be recorded in the Sends list (which was described above). If

the checks do not pass, the challenger discards the call.

• read([sid, S,R,m])
This oracle has two inputs that are obligatory:R, and either

sid orm. This means that party R should read a message in

session sid , or read the messagem. If all are specified, then

clearly it means that party R should read messagem in sid
and consider it as coming from party S . Any subset of inputs
is implicitly explained by this. The challenger Ch makes the

necessary checks by looking in Sends: i.e., (1)seeing if S
or A have sent the messagem; (2) if in session sid , R is at

the step to read m; (3) if the difference between the time

tsent whenm was sent by (the honest or adversarial) S , and

the current time t is large enough for the message to have

travelled from the sender to the receiverR (i.e., (t−tsent)∗c ≥
distance (S,R), where c is the speed of messages).

If all checks pass, the message will become part of this

session’s transcript (inside the list Sess) and the reading will

be recorded in the Reads list (which was described above). If

the checks do not pass, the challenger discards the call.

Note. In this formalisation, no two messages can be sent at

the same time. Yet, read ([sid, S,R,m1]) and read ([sid, S,R,m2])
could be enabled at the same time for a receiver R. In this

case, if one of the two messages are sent by the adversary or

a corrupt party, and the other message by an honest party,

then the one sent by the adversary has priority, i.e., the chal-

lenger will record the read of the adversarial message first
10
.

• corrupt(E)
The adversary calls this oracle to corrupt parties/algorithms;

E can be a party of type card, type reader, or the PC algo-

rithm coupled inside a reader or card party. In the latter case,

the input has to specify the coupling.

The challenger looks in its list P and if the party exists,

it changes its status to “corrupt”. Otherwise, if the input is

malformed or the checks fail, the challenger discards the call.

• term(E)
This oracle terminates all the running sessions of the party

E. This gets recorded in the list P (where the party E is made

inactive), and in the lists Sess where its sessions are set to
“finished”.

• move(E, loc)
This oracle moves a party E from its location to another

point loc in the metric space. The challenger Ch checks in

P that the party E is of type card and that it is corrupt. In

this case, the challenger calculates the difference between

E’s current location loc1 (found in P) and loc , and in pro-

portional amount of time, it updates
11

its records in P to

stipulate that E is at location loc .
• check_prox(sid)

The challenger checks that sid is a valid session for [PC,T].
If so, it takes its transcript from Sess and passes it to [PC,T].
From this, the attacker is given: Out

[PC,T] and τ[PC,T], i.e.,
the public output and the private output of [PC,T], as well
as the id of the card C and reader R who were measured by

[PC,T].
In Sess , the entry for sid is marked as “finished”.

• validate_prox(sid)
The challenger checks that sid is a valid session id forW .

If so, it takes its transcript from Sess and passes it to the

coupling [W ,X]. From this, the attacker is given: OutW and

τW , i.e., the public output and the private output ofW , as

well as the id of the cardC and reader R who were measured

by [PC,T] and revalidated byW .

In Sess , the entry for sid is marked as “finished”.

Other Actions by the Challenger.The list Sess of sessions is
maintained by the challenger Ch also out-of-bound with the oracles

above. Namely, there is a time-keeping aspect that we mentioned in

Subsection 4.2.2 and Subsection 4.2.3: i.e., if certain messages in a

PC orW -linked session take too long to arrive, then that session is

marked as “finished” and the transcript containsOutPC=0,OutW =0

inside the list Sess.

Remarks on the v-DB SecurityModel. With respect to proximity-

checking, the model introduced above is arguably standard. Notably,

timing and distance-related aspects are explicit as in [14], with the

addition that it extends this to operate over couplings (intra and

across couplings). Of course, this is inherent to the fact that we

lift DB protocols to validated DB protocols; to this end, we also

10
Note that this prioritisation mechanism also encapsulates blocking of any messages

by the adversary A.

11
Note that “moves” of parties are also subject to same laws of physics as messages,

thus not hindering the latter.

Session 2: Authentication ASIA CCS '20, October 5–9, 2020, Taipei, Taiwan

94

incorporate the management of the communication (incl. timed as-

pects thereof) with [W ,Y] with Y ∈ {C,R,X }. What this model has

that was notably not present in previous DB models is the fact that

the attacker can move (card) parties. Last but not least, our model

enjoys a precise session management, which is rooted primarily on

the fact that there are multiple parties involved in the primitive of

v-DB (compared to a standard “DB” primitive).

4.4 Security Properties for Validated Distance
Bounding

In this section, we define the correctness and security of v − DB
systems.

4.4.1 Correctness of v-DBProtocols. Now, in Def. 4.1, we define
what it means for a v-DB system to terminate and to run correctly.

Concretely, firstly, Def. 4.1 says that the no matter which algorithms

run on the card and reader, eventually PC andW terminate
12
. Sec-

ondly, Def. 4.1 says that if an arbitrarily fixed, honest card is close

to an arbitrarily fixed honest reader, coupled (in any way) with an

honest proximity-checking algorithm, then the proximity-checking

and the validating algorithms finish successfully with probability p.

Definition 4.1. Correctness of Validated Distance Bounding.
Let Π = (C,R,T ,PC,W,B) be a v-DB protocol, and

Πreal
=(C, PC,T ,R,W ,X ,B) be a validated DB system. We say that

Π andΠreal
are terminating and complete validated distance-bounding

if the following holds, respectively:

• Termination:
(∀s) (∀C ′ unbounded) (∀R′ unbounded),
for any init[C ′,R′, (PC,T),W ,X] call yielding amacro-session

mid , it is the case that (PC,T) andW halt inpoly (s) computa-

tional steps and f inished is recorded in Sess for the sessions
of [PC,T] andW corresponding to the macro-sessionmid ,
where s is the security parameter;

• p-Completeness: (∀s), if distance (C,R) ≤ B, we have the
following:

for any init[C,R, (PC,T),W ,X] call yielding amacro-session

mid , with sid and sid ′ being the respective sessions of [PC,T]
andW corresponding to the macro-sessionmid , we have that

Pr

rC ,rR ,rPC ,rT ,rW

[
(Out sid(PC,T) = 1 ∧ Out sid

′

W (τ(PC,T))
= 1) :

mid running

sid, sid ′ ∈ mid

]
≥ p,

for any arbitrarily fixedC,R, PC uncorrupted, for any arbitrarily

fixed T ,W ,X , with rC , rR , rPC , rT , rW being the random coins in

the macro-sessionmid of the algorithms mentioned in the indices.

In practice, p the parameter for correctness (in Def. 4.1) needs

to be tuned with the parameters that will define our security (see

such tuning in e.g. [5]). However, for security to be meaningful we

require that p is always overwhelming in the security parameter.

4.4.2 Security of v-DB Protocols. We give our definition of se-

curity for v-DB systems in terms of a game. Roughly speaking, in

this game, the attacker can play with multiple cards, multiple read-

ers, and validating bodies, in a given coupling: either they are all

card-coupled or all reader-coupled. There is a target card and a

12
In our model, this is in part guaranteed implicitly by the conditions mentioned in

Subsection 4.2.2 and Subsection 4.2.3 and incorporated formally in the challenger’s

behaviours.

target reader. The attacker can open multiple sessions with each

such party. He can corrupt cards, readers and PC (at any point),

and he can move (corrupted) cards; some restrictions apply over

the different phases of the game. Indeed, the game has two phases:

(a) a learning phase in which the target parties may be in mutual

proximity but are not corrupt and nor is the PC on board one of

them. (b) an attack phase – in which the target parties are far away

and the one that has PC on board can be corrupted, as can its on-

board PC . As the corrupted PC is made to output 1 (i.e., lie about

the proximity of the target parties), the attacker wins if he manages

to make the validating party [W ,X] also output 1. In other words,

the attacker wins if it is able to manipulate a number of parties,

possibly in a concurrent setting, in order to make the validating

algorithm be fooled w.r.t. to a lie by the corrupt PC algorithm, that

W is supposed to audit.

In fact this game-based definition can be split in two: (a) the case

where the PC is on-board the “target” reader; (b) the case where

the PC is on-board the “target” card. In each case, indeed, it yields

different security properties. In the second case, the attacker would

collude with a far-away PC-coupled card to mount a distance-fraud

that is undetected by the validating algorithm. In the first case,

the attacker would collude with a PC-coupled reader so that they

together mount a strong relay attack attack that is undetected by

the validating algorithm.

In our case, we define the case in a generic game, i.e., comprising

both of the above cases together. Then, we simply fork the two cases

for the security definitions. This generic game is captured in Def. 4.2

by the notion of (ℓ, z,n,qC ,qR ,qT , type)-v-DB experiment, where
type can be “card-coupled” or “reader-coupled”, ℓ are number of

card-parties, z are number of reader-parties,n are number of [PC,T]
on-board algorithms and X -machines, qC ,qR ,qT are number of

sessions of type card, reader, and T , respectively.

Definition 4.2. (ℓ, z,n, qC, qR, qT, type)-v-DB Experiment. Let
Π an v-DB protocol. For any security parameter s , an
(ℓ, z,n, qC, qR, qT, type)-v-DB experiment is an interaction between
the Challenger and Adversary as follows:

(1) The Challenger setups a v-DB system with:

• ℓ > m card-parties C1 (·), . . . ,Cm (·), . . . ,Cℓ (· · ·) and a

card-party C (·);
• z reader-parties R1 (·), . . . ,Rp (·), . . . ,Rz (·) and a reader

party denoted R (·);
• n on-board algorithms [PC1,T1], . . . , [PCn ,Tn] and one

other on-board algorithm denoted [PC,T];

• a n machines X1, . . . ,Xn and one X -machine denoted X ;

• apart from the cryptographic material used to authenticate

C to R, the other card-parties Ci s and reader-parties Rj s

can respectively have the same cryptographic material
13

used in the authentication part of the v-DB protocol Π.

13
Whilst the devices are different, with different device ids, it is the case that e.g., two

cards are have the same cryptographic credentials. This, together with the corruption

powers described below, entails a powerful attacker model. I.e., in the learning phase

of the experiment, the attacker can corrupt a card-party Ci running on cryptographic

material x , making it behave as he pleases and potentially extracting x out of it. This

means that the attacker gets the capability to, e.g., sign, as a legitimate card based on

x . Moreover, in the attack phase of the experiment, another card-party Cj with the

same cryptographic material x can also be present (alongside the “learned” adversary),

only that this time we do restrict that Cj per se is un-corrupted.

Session 2: Authentication ASIA CCS '20, October 5–9, 2020, Taipei, Taiwan

95

where valuesm, ℓ, z,p,n are in poly (s), and all [PC,T]s are
either coupled with the cards, or all with the readers

14
(i.e.,

n=m or n=z). If the coupling of [PC,T]s is with the cards,

then the type of the experiment is “card-coupled”; we call

this a card-coupled experiment.

If the coupling of [PC,T]s is with the readers, then the type
of the experiment is “reader-coupled”; we call this a reader-
coupled experiment.

(a) If the experiment is a card-coupled experiment, then
the adversary can call corrupt(. . .) at any point, but the

only on card-parties and PC algorithms. And, not all card/PC

parties can be corrupted in any phase of the experiment.

(b) If the experiment is a reader-coupled experiment, then
the adversary can call corrupt(. . .) at any point, but only

on reader-parties and PC algorithms. And, not all reader/PC

parties can be corrupted in any phase of the experiment.

(c) Before any call by the adversary, the Challenger popu-

lates the P list as follows:

– for parties C1 (·), . . . ,Cm (·) and parties R1 (·), . . . ,Rp (·),
the positions are chosen arbitrarily in the Euclidean space;

– for card-partiesCm+1 (·), . . . ,Cℓ (·),C (·), the reader-parties

Rp (·), . . . ,Rz (·), R (·), the positions are chosen such that

the distance between any of these card and reader parties

are bigger than the bound B.
(2) In the learning phase of the experiment, the adversary is

allowed access to the firstm out of ℓ card-parties and C (·),

the first p reader-parties and R (·), the [PC,T] algorithms and

X machines fitting the coupling made with these card and

reader devices.

(3) The Challenger will reveal the id of C (·) and R (·).
(a) The entire set v-DB-Orcls of oracles defined above is

available to the adversary, restricted as per the below.

–The adversary cannot call corrupt on C (·), R (·) or

PC (·).
–The adversary is allowed a polynomial number of

queries of each type of oracle.

–The experiment starts as soon as at least one macro-

session is running as a result of a call of the type

init(C,R, PC,T ,W ,X), with parameters from the set of

parties available in this phase of the game. We consider

that the Challenger makes this call, for some arbitrarily

picked parties in this stage.

(b) After at least one X -session is marked as “finished” in

the list Sess , the Challenger can stop the learning phase. In
any case, the Challenger stops the learning phase after a

polynomial number of X sessions are marked as “finished”

in the list Sess . This stopping by the Challenger means

that all sessions are terminated.

(4) In the attack phase of the experiment, the adversary is

allowed access toCm+1 (·), . . . ,Cℓ (·),C (·), the reader-parties

14
In order words, there is no mixing of card-coupling and reader-coupling in the

system.

Rp (·), . . . ,Rz (·), R (·), th [PC,T] algorithms and X machines

fitting the coupling made with these card/reader devices. The

adversary is allowed access to the set v-DB-Orcls of oracles,
as follows.

(5) The Challenger will reveal the id of C (·) and R (·).
(a) If the experiment is card-coupled:

–The Challenger will itself call corrupt on PC on board

C (·)

–TheChallengerwill call init([C (·), PC (·),T (·)],R (·),W ,X);
this produces a macro-sessionmid . The challenger gives
the necessary handles of this to A.

–The adversary can also call corrupt onCm+1 (·), . . . ,C (·)
and their PCs. The adversary cannot call corrupt on R (·).

(b) If the experiment is reader-coupled:
–The Challenger will itself call corrupt on PC on board

R (·).

–The Challengerwill call init([C (·),C (·),T (·)],R (·), [W ,X]);
this produces a macro-sessionmid . The challenger gives
the necessary handles of this to A.

–The adversary can also call corrupt onRp (·), . . . ,Rz (·),R (·)
and their PCs. The adversary cannot call corrupt on C (·).

(c) The adversary cannot call move(C (·)).
(6) The adversary can make qC , qR , qT queries to init(C, . . .),

init(. . . ,R, . . .), init(. . . , [PC,T], . . .) in total. Of the other

types of oracle, the adversary can make an unspecified by

polynomial number of calls.

(7) The Challenger lets the experiment continue until PC and X
finish their respective session sid and sid ′ inside the macro-

session sessionmid , or until the adversary’s allowed number

of queries is reached.

(8) The experiment continues if Outsid
(PC,T)

= 1 (since PC is cor-

rupted, A gets all details of PC’s session and, to finish the

game, will produce this output.)

(9) The adversary wins if Outsid
′

(W (τ((PC,T))))= 1.

(10) The advantage of the adversary is the Pr

[
Outsid

′

W (τ((PC,T)))
= 1

]
,

taken over all random coins in parties included in the attack

phase.

Definition 4.3. Strong Relaying Security. For a given v-DB pro-
tocolΠ, the (ℓ, z,n, qC, qR, qT, reader−coupled)-v-DB experiment
gives the game for strong relaying over Π of the same parame-

ters.

If the advantage of the adversary is negligible is this game, then we

say that Π is secure w.r.t. strong relaying.

In this case,A is a strongman-in-the-middlewho controls the PC

algorithm onboard a reader R, and may control R itself. It attempts

the make the attesterW accept a transcript when the card C was

far from the reader, when the PC algorithm already lied about this

fact (i.e,Outsid
(PC,T)

= 1); that is, the adversary and the PC algorithm

(maybe alongside the reader R algorithm) try collude to make it

look that C was close to the reader R when it was not. Moreover,

this adversary, during the attack, has access to cards other than

C which it can move around, and to readers other than R. Also, it

Session 2: Authentication ASIA CCS '20, October 5–9, 2020, Taipei, Taiwan

96

took part in a learning phase, in which is observed and interfered

with several runs of the protocol in a concurrent setting, yet in this

learning phase PC and R were honest.

Definition 4.4. Strong Distance-Fraud Security. For a given

v-DB protocolΠ, the (ℓ, z,n, qC, qR, qT, card−coupled)-v-DB exper-
iment gives the game for strong distance-fraud over Π of the

same parameters.

If the advantage of the adversary is negligible is this game, then we

say that Π is secure w.r.t. strong distance-fraud.

In this case, A is a strong man-in-the-middle who controls the

PC algorithm onboard a card C , and may control C itself. It at-

tempts the make the attesterW accept a transcript when the card

C was far from the reader, but PC algorithm lied about this fact (i.e,

Outsid
(PC,T)

= 1). In other words, the attacker corrupts a PC-coupled

proximity-checking cardC inside a v-DB protocol and try to use this
card to mount a distance-fraud that the attester would not catch.

The rest of the aspects (i.e., learning phases, etc.) stay the same as

in the game for strong relaying, only that readers are uniformly

replaced with cards.

4.5 Security Statements
In this section, we prove that PayBCR and PayCCR, introduced in [7],

and indeed secure w.r.t. strong relaying.

Theorem 4.5. PayBCR’s Security w.r.t. Strong Relaying. Con-
sider the (ℓ, z,n,q′C ,q

′
R ,q
′
T , reader − coupled)-v-DB experiment in

the strong relaying game for PayBCR.
Ifσ1,σ2 are signatures unforgeable w.r.t. selective unforgeability [3]

(i.e., SUF-unforgeable) and AC is produced with a MAC that resists
existential forgeries, then PayBCR is secure with respect to strong

relaying. Concretely, the advantage of the adversary is:
q2

R
2
|NR |
+

q2

T

2
|σ ′
1
|
+

2qC 2

2
|NC |

, where qC = q′C · l , qR = q′R · z, qT = q′T · n and | · | denotes
the bit-length of a protocol message.

Theorem 4.6. PayCCR’s Security w.r.t. Strong Relaying. Con-
sider the (ℓ, z,n,q′C ,q

′
R ,q
′
T , reader − coupled)-v-DB experiment in

the strong relaying game for PayCCR.
If σ1, σ2 are signatures unforgeable w.r.t. selective unforgeability

(i.e., SUF-unforgeable), then PayCCR is secure with with respect to

strong relaying. Concretely, the advantage of the adversary is:
q2

R
2
|NR |
+

q2

T
2
|σ
1
| +

2qC 2

2
|NC |

, where qC = q′C · l , qR = q
′
R · z and qT = q

′
T ·n and | · |

denotes the bit-length of a protocol message.

The proofs of these theorems are found in Appendix A.

Note that because in PayCCR, it is the AC-producing card that has
the validating algorithm on board (as opposed to PayBCR, where this
AC needs to be sent by the card to the validating bank), the require-

ments for PayCCR’s security w.r.t. strong relaying are weaker than

those of PayBCR. I.e., the security of AC plays no role in PayCCR’s
security w.r.t. strong relaying. This imbalance will be inverted if

we look at auditing authentication properties as well. In this case,

it is will be PayBCR that achieves better guarantees w.r.t. strong,

collusive attacks against authentication. This is discussed further

in Section 5.

5 OTHER DISCUSSIONS
5.1 v-DB, PayBCR, PayCCR: Further Security

Discussions
When looking at v-DB , it is important to note that we defined secu-

rity for only the properties of strong relaying and strong distance-

fraud. As such, we may wish to look at a primitive that can give

assurances of both proximity checking and authentication. This

would be comprised by having a “validating" partyW to re-check

the proximity measurement and “auditing” party, say F , to re-check

the authentication part. This split would clearly also open for other

coupling options than in v-DB. For instance, PayCCR has the val-

idator for the proximity checking with one party (that is, on the

card side) and the auditor for authentication with another party

(that is, on the bank side). Contrarily, with PayBCR , the auditor for

authentication and the validator for proximity checking validation

occur both with the same party (i.e., on the bank’s side).

We now define such a protocol.

Definition 5.1. Validated&AuditedDistance-Bounding Pro-
tocols. A validated and audited distance-bounding (v-ADB) protocol
is a tuple Π = (C,R,T ,PC,W,F ,B), where B denotes the dis-

tance bound and C,R,T ,PC,W,F are ppt. algorithms as follows:

• C is the card algorithm and R is the reader algorithm in an

unilateral authentication protocol where C authenticates to

R;

• T is a tamper-resistant trusted execution environment;

• the tuple (PC,T) form a proximity-checking functionality:

(PC,T) checks that dist (C,R) ≤ B;
• tuple (PC,T) is directly used by one authentication party:

be it by C or by R;

• R and (PC,T) respectively have public outputs OutR and

Out(PC,T) in {0, 1} (success/failure of the authentication

and proximity-checking respectively), as well as private out-

puts denoting their transcripts, denoted τR and, resp., τPC ;
• W is the proximity-validating algorithm: given the private

output of (PC,T), the algorithmW checks the correctness

of public output of (PC,T).
• F is the authentication-auditing algorithm: given the private

output of R, the algorithm F checks the correctness of the

public output of R

Security in this setting can be defined in various ways, some

stronger than others. E.g., we can say that a v-ADB protocol Π has

strong MiM v-ADB-security if for all cards C (x) far away from

potentially malicious readers R (y), their authentication fails to be

audited by F with input from R (y) andW fails to validated C (x)
was close to R (y) (even if the output of corrupted PC is 1). Clearly,

similarly we can defined strong v-ADB-distance-fraud, but where
the card may be malicious instead of the reader. Of course, this

would need to be cast in threat model akin to ours but where more

authentication-forging powers are given to the adversary. We leave

this for future work.

Collusive relaying, as informally defined in [7], is a property

that is stronger then the property of strong relaying defined for

v − DB, but weaker than strong MiM v-ADB-security. It requires
intuitively that if F audits successfully an authentication, then this

Session 2: Authentication ASIA CCS '20, October 5–9, 2020, Taipei, Taiwan

97

authentication is for a card that was close to a reader, even if the

reader and the PC algorithm may be malicious.

v-ADB Security: Protocol Comparisons. As we explained al-

ready, Def 5.1 makes a difference for PayCCR but not for PayBCR.
Concretely, in PayBCR F andW are on the same device (i.e., the

bank), but in PayCCR, F is one party (i.e., bank) andW is another

party (i.e., the card). In turn, this intuitively makes PayCCR weaker

than PayCCR. More specifically, assume a card C that is far-away

from a reader R. In PayCCR, we have that [PC,T] is coupled with

the reader, andW coupled with the C . Even ifW is coupled with

the card, the AC produced by the card will not contain the failed

checks byW . (The latter is because, in PayCCR, the AC is kept

unchanged compared to RRP; also, the AC is to go to F , and –as

such– the AC need not contain proximity-checking details but only

authentication details). This AC will be sent to the reader who will

send it to the bank. So, the bank authenticates a far-away card, even

if the auditingW will report the proximity-checking failing. This

is an attack against strong MiM v-ADB-security informally exhibited

onto PayCCR. Because, in PayBCR, F andW are kept on the same

device, this vulnerability does not occur.

6 RELATEDWORK
Models for “standard DB”. Most distance-bounding protocols

have been analysed without a formal approach. From 2013 on-

wards, efforts have been made on proving security for distance-

bounding [11, 13, 14]. The first formalism in this direction was put

forward by Dürholz et al [11]. The authors formalise the impossibil-

ity of illegitimate yet sufficiently fast round-trip communications

using a session-based model, and specifically the notion of tainted
sessions; to encode timing-restrictions, tainted sessions only allow

certain flows of communication. Then, a protocol is said to be se-

cure if no adversary executing it with tainted sessions can violate

its security properties. The model comprises a formalisation of

all the classical DB frauds and provides several (partial) security

proofs for some protocols [11]. In [14], the authors provide a rather

general, ITM-based model that captures the notion of concurrency

(i.e., allowing adversaries to interact with many provers and veri-

fiers, sometimes with the same keys). Here, the notion of timing

is explicit, the round trip time is simply the difference between

two times. The notion of distance is also defined in a similar way.

All parties are located in Euclidian space with a distance between

them defined in the usual manner. As such the explicit measure of

time can be used to estimate the distance between two parties to

compare with a distance bound.

In this paper, we use a mix of both of these ideas. We use oracles

in the sense of Dürholz et al [13], but we also make use of explicit

timing and distances as in [14].

Security Models for Distance-Bounding Augmented with
Hardware. In [15], a “three-algorithm symmetric DB protocol” is

defined as a tuple of (K ,V , P ,B,H), where K is the key genera-

tion algorithm, H is the hardware algorithm, V is the verifying

algorithm, P is the prover algorithm and B is the distance bound.

However, the trusted hardware H is always attached to (or in our

terms, “coupled with”) the Prover, whereas in our model the se-

cure element is coupled with the proximity-checking algorithm PC ,

and this PC can in turn be coupled with either the card (prover)

or the reader (verifier). This makes our model more versatile and

expressive. Also, ultimately, the aims of [15] are very different to

ours: they wish to protect against a specific attack in DB, called

terrorist-fraud; the latter has no substantial relation to our notions

of strong relaying and strong distance-fraud.

Security Models for Relay-Protected Contactless Payments.
In [16], Kilinç and Vaudenay introduce a model for contactless

payments with relay-protection. This model is distinct to the model

herein, in ways others that the one herein is generic and the one

in [16] is specific to payments. The major difference is that the

reader is always trusted.

7 CONCLUSIONS
In this paper, we set to answer the question of what it would for-

mally mean to catch if RTT-measuring parties (readers, cards, or

others) cheat and collude with proximity-based attackers (i.e., relay-

ers or other types). To this end, we gave a new distance-bounding

primitive (validated distance-bounding) and two new security no-

tions: strong relaying and strong distance-fraud. We also provided a

formal model that, for the first time in distance-bounding, caters

for dishonest RTT-measurers. In this model, we proved that the

new contactless payments in [7], PayBCR and PayCCR attain secu-

rity w.r.t. strong relaying. Finally, we define one other primitive

(validated and audited distance-bounding) which, in fact, emulates

more closely the PayCCR protocol; this is because, contrary to the

line introducing them, we note that PayBCR and PayCCR in fact

differ in construction and security guarantees that go past relaying

and into authentication. In future work, we plan to study further

formal security (now just sketched) alongside validated and audited

distance-bounding.

Acknowledgments. The authors acknowledge the support of
the NCSC-funded “TimeTrust” and “PayPhy” projects.

REFERENCES
[1] G. Avoine, M. Bingöl, I. Boureanu, S. Čapkun, G. Hancke, S. Kardaş, C. Kim, C. Lau-

radoux, B. Martin, J. Munilla, A. Peinado, K. Rasmussen, D. Singelée, A. Tchamk-

erten, R. Trujillo Rasua, and S. Vaudenay. Security of distance-bounding: A

survey. ACM Computing Surveys, 2018.
[2] G. Avoine and C. H. Kim. Mutual distance bounding protocols. IEEE Trans. Mob.

Comput., 12(5):830–839, 2013.
[3] G. Bleumer. Selective Forgery. Springer US, Boston, MA, 2011.

[4] I. Boureanu, D. Gerault, and P. Lafourcade. Boxdb: Realistic adversary model for

distance bounding. Cryptology ePrint Archive, Report 2018/1243, 2018. https:

//eprint.iacr.org/2018/1243.

[5] I. Boureanu and S. Vaudenay. Optimal proximity proofs. In International Confer-
ence on Information Security and Cryptology, pages 170–190. Springer, 2014.

[6] S. Brands and D. Chaum. Distance-bounding protocols. In Workshop on the
Theory and Application of Cryptographic Techniques on Advances in Cryptology,
EUROCRYPT ’93, pages 344–359, Berlin, Heidelberg, 1994. Springer-Verlag.

[7] T. Chothia, I. Boureanu, and L. Chen. Making contactless emv robust against

rogue readers colluding with relay attackers. In 23rd International Conference
on Financial Cryptography and Data Security (FC 19). International Financial
Cryptography Association, February 2019.

[8] T. Chothia, F. D. Garcia, J. de Ruiter, J. van den Breekel, and M. Thompson. Relay

cost bounding for contactless EMV payments. In R. Böhme and T. Okamoto,

editors, Financial Cryptography and Data Security - 19th International Conference,
FC 2015, San Juan, Puerto Rico, January 26-30, 2015, Revised Selected Papers, volume

8975 of Lecture Notes in Computer Science, pages 189–206, Puerto Rico, January

2015. Springer.

[9] Y. Desmedt, C. Goutier, and S. Bengio. Special uses and abuses of the fiat-shamir

passport protocol. In Advances in Cryptology - CRYPTO ’87, A Conference on the

Session 2: Authentication ASIA CCS '20, October 5–9, 2020, Taipei, Taiwan

98

https://eprint.iacr.org/2018/1243
https://eprint.iacr.org/2018/1243

Theory and Applications of Cryptographic Techniques, Santa Barbara, California,
USA, August 16-20, 1987, Proceedings, pages 21–39, 1987.

[10] A. Dhar, I. Puddu, K. Kostiainen, and S. Capkun. ProximiTEE: Hardened SGX

Attestation and Trusted Path through Proximity Verification. IACR Cryptology
ePrint Archive, 2018:902, 2018.

[11] U. Dürholz, M. Fischlin, M. Kasper, and C. Onete. A formal approach to distance

bounding RFID protocols. In Information Security Conference ISC 2011, volume

7001 of Lecture Notes in Computer Science, pages 47–62. Springer, 2011.
[12] EMVCo. Book C-2 kernel 2 specification v2.7. EMV contactless specifications for

payment system, Feb, 2018.

[13] M. Fischlin and C. Onete. Terrorism in distance bounding: Modeling terrorist-

fraud resistance. In Applied Cryptography and Network Security, ACNS’13, pages
414–431, Berlin, Heidelberg, 2013. Springer.

[14] I. Boureanu, A. Mitrokotsa, and S. Vaudenay. Practical and provably secure

distance-bounding. In Y. Desmedt, editor, Information Security, pages 248–258,
Cham, 2015. Springer.

[15] H. Kilinç and S. Vaudenay. Formal Analysis of Distance Bounding with Secure

Hardware. In Applied Cryptography and Network Security - 16th International
Conference, ACNS 2018, Leuven, Belgium, July 2-4, 2018, Proceedings, pages 579–
597, 2018.

[16] H. Kilinç and S. Vaudenay. Secure contactless payment. In Information Secu-
rity and Privacy - 23rd Australasian Conference, ACISP 2018, Wollongong, NSW,
Australia, July 11-13, 2018, Proceedings, pages 579–597, 2018.

A PROOFS
A.1 PayBCR – Security w.r.t. Strong Relaying
Theorem 4.5:Consider the (ℓ, z,n,q′C ,q

′
R ,q
′
T , reader−coupled)-v-DB

experiment in the strong relaying game for PayBCR. If σ1, σ2 are signa-
tures unforgeable w.r.t. selective unforgeability (i.e., SUF-unforgeable)
and AC is produced with a MAC that resists existential forgeries, then
PayBCR is secure with respect to strong relaying. Concretely, the ad-

vantage of the adversary is:
q2

R
2
|NR |
+

q2

T

2
|σ ′
1
|
+

2qC 2

2
|NC |

, where qC = q′C · l ,

qR = q
′
R · z, qT = q

′
T · n and | · | denotes the bit-length of a protocol

message.

Proof. This is a game-based proof. By Pr [G], we mean the prob-

ability that A wins in the game G.
G0: This game is the initial game, that is the strong relaying

game against PayBCR. Unlike in this game, we do not use C and R
for the target card and reader; instead, we simply use C and R.

G1: This game is G0, where no NR value is indeed used more

than once by any reader.

Let qR be the number of NR values issued by readers during

the experiment (this is equal to the number of reader sessions).

The probability that one NR repeats is upper bounded by
qR 2

2
|NR |

,

where |NR | is the bitlength of NR . G0 and G1 are identical except

for the failure event that two identical NR values are used. So, we

have Pr [G1] − Pr [G0] ≤
q2

R
2
|NR |

, which is negligible in the security

parameter s if |NR | is in ω (s).
G2: This game is the gameG1, with the difference that if the com-

munication between parties R andT is too quick, whenNR is sent to

T . Then,Ch aborts the experiment. That is, if t (T
NR
←−−− R) < ∆ then

Ch aborts (see Subsection 4.2.2), where ∆ is the communication

time between R andT . If the games continue, then Pr [G2] =Pr [G1].

G3: This game is the game G2, with the difference that if the

communication between parties R and T is too quick, when σ1 is

sent to R. Then, Ch aborts the experiment. That is, if t (T
t1, σ1
−−−−−→

R) < ∆ thenCh aborts (see Subsection 4.2.2). If the games continue,

then Pr [G3]=Pr [G2].

G4: This game is the gameG3 where σ
′
1
does not repeat itself. Let

qT be the number of σ ′
1
values issued by R during the experiment

as this is equal to the number TPM sessions. The probability that

one σ ′
1
repeats is upper bounded by

qT 2

2
|σ ′
1
|
, G3 and G4 are identical

except for the failure event that two identical σ ′
1
values are used, so

we have Pr [G4] − Pr [G3] ≤
q2

T

2
|σ ′
1
|
, which is negligible is negligible

in the security parameter s – if |σ ′
1
| is in ω (s).

G5: This game is the game G4, with the difference that if the

communication between parties R and C is too quick when σ ′
1
is

sent. Then, Ch aborts the experiment. That is, if t (R
σ ′
1

−−→ C) < t
B
2

then Ch aborts (also, as point (7) in the adversary). If the games

continue, then Pr [G5] = Pr [G4].

G6: This game is the game G5, where no NC value is used

more than once by any card. Let qC be the number of NC val-

ues issued during the experiment, which is equal to the num-

ber of card sessions. The probability that one NC repeats is up-

per bounded by
qC 2

2
|NC |

. So, G5 and G6 are identical except for the

failure event that two identical NC values are used, so we have

Pr [G6] − Pr [G5] ≤
qC 2

2
|NC |

, which is negligible.

G7: This game is the game G6, with the difference that if the

communication between parties R and C is too quick when NC is

sent. Then, Ch aborts the experiment. That is, if t (R
NC , td
←−−−−−− C) <

t
B
2 thenCh aborts (also, as point (7) in the adversary). If the games

continue, then Pr [G7]=Pr [G6].

G8: This is the gameG7, except that the card never sends a value

NC that has previously been sent by an adversary through the send
oracle. The idea behind this game transition is to eliminate the event

EG where A can randomly guess a value NC in advance. Note that

the number of calls to the send oracle with respect toNC is bounded

by the number of card sessions, qC . Let qC be the number of calls

to the send oracle. This gives us that Pr [EG] ≤
qC 2

2
|NC |

. Therefore,

Pr [G6] − Pr [G5] ≤
qC 2

2
|NC |

, which is negligible.

G9: This is the final game and is equivalent to the gameG8, with

the difference that if the communication between parties R and T
is too quick when NC is sent. ThenCh aborts the experiment. That

is, if t (T
NC
←−−− R) < ∆ then Ch aborts (see Subsection 4.2.2). If the

game continues, then Pr [G9]=Pr [G8].

Now we look at the success probability of A in G9, in which

we assume theOut
[PC,T]= 1. SinceA controls PC (onboard R), the

output τ
[PC,T] can be tampered with by A.

Note that [W ,X] (i.e., the bank) will check σ1, σ2 against t1, t2
and against other inputs that went into σ1,σ2 (e.g., NC which is

part ofAC). These would all be provided – in the game– via τ
[PC,T]

to [W ,X].

For [W ,X] (i.e., the bank) to output 1, the adversary needs to

produce (t ′
1
,σ ∗

1
) and (t ′

2
,σ ∗

2
) that put inside the forged τ

[PC,T] and

with σ ∗i being valid signatures by T on t ′i (with i ∈ {1, 2}).
Since A controls R, note that A can choose NR (one that has

not produced been input to another σ1, given the game in which

we are). Also, even if he does not control C , A can also choose one

such fresh NC – since it controls the channel between C and R. If
he chooses one such fresh NC , it also needs to forge the MAC AC

Session 2: Authentication ASIA CCS '20, October 5–9, 2020, Taipei, Taiwan

99

(which will be part of τ
[PC,T]). If the AC is produced with a MAC

that resists existential forgery, then this is negligible.

Further, as per the model, A does not control T , so A can-

not choose t1, t2 or the randomness of T . The former are timed-

structures that are in part fixed prior to the attack starting (e.g., they

contain global-clock value). As such, if σ1 and σ2 are unforgeable
w.r.t. selective unforgeability (i.e., SUF-unforgeable), then (t ′

1
,σ ′

1
)

and (t ′
2
,σ ′

2
) as per the above can only be produced with negligible

probability.

□

A.2 PayCCR – Security w.r.t. Strong Relaying
Theorem 4.6:Consider the (ℓ, z,n,q′C ,q

′
R ,q
′
T , reader−coupled)-v-DB

experiment in the strong relaying game for PayCCR. If σ1, σ2 are signa-
tures unforgeable w.r.t. selective unforgeability (i.e., SUF-unforgeable),
then PayCCR is secure with rwith respect to strong relaying. Con-

cretely, the advantage of the adversary is:
q2

R
2
|NR |
+

q2

T
2
|σ
1
| +

2qC 2

2
|NC |

, where
qC = q

′
C · l , qR = q

′
R ·z and qT = q

′
T ·n and | · | denotes the bit-length

of a protocol message.

Proof. This is a game-based proof. By Pr [G], we mean the prob-

ability that A wins in a game G.
G0: This game is the initial game, that is the strong relaying

game against PayCCR. Unlike in this game, we do not use C and R
for the target card and reader; instead, we simply use C and R.

G1: This game isG0, where no where no NR value is indeed used

more than once by any reader.

Let qR be the number of NR values issued by readers during the

experiment (this is equal to the number of reader sessions). The

probability that one NR repeats is upper bounded by

q2

R
2
|NR |

. So, G0

and G1 are identical except for the failure event that two identical

NR values are used, so we have Pr [G1] − Pr [G0] ≤
q2

R
2
|NR |

, which is

negligible in the security parameter s – if |NR | is in ω (s).
G2: This game is the gameG1, with the difference that if the com-

munication between parties R andT is too quick, whenNR is sent to

T . Then,Ch aborts the experiment. That is, if t (T
NR
←−−− R) < ∆ then

Ch aborts (see Subsection 4.2.2), where ∆ is the communication

time between R andT . If the games continue, then Pr [G2] =Pr [G1].

G3: This game is the gameG2, with the difference that if the com-

munication between parties R and T is too quick, when σ1 is sent

to R. Then, Ch aborts the experiment. That is, if t (T
t1, σ1
−−−−−→ R) < ∆

thenCh aborts (see Subsection 4.2.2), where ∆ is the communication

time between R andT . If the games continue, then Pr [G3] =Pr [G2].

G4: This game is the gameG3 where σ1 does not repeat itself. Let
qT be the number of σ1 values issued by R during the experiment

as this is equal to the number TPM sessions. The probability that

one σ1 repeats is upper bounded by
qT 2

2
|σ
1
| . G3 and G4 are identical

except for the failure event that two identical σ1 values are used, so

we have Pr [G4]−Pr [G3] ≤
q2

σ
1

2
|σ
1
| , which is negligible in the security

parameter s – if |σ1 | is in ω (s).
G5: This game is the game G4, with the difference that if the

communication between partiesR andC is too quickwhenσ1 is sent

to C . Then, Ch aborts the experiment. That is, if t (R
σ ′
1

−−→ C) < t
B
2

then Ch aborts (also, as point (7) in the adversary). If the games

continue, then Pr [G5]=Pr [G4].

G6: This game is the game G5, where no NC value is used more

than once by any card. Let qC be the number of NC values issued

by readers during the experiment encapsulating this game as this is

equal to the number of card sessions. The probability that one NC

repeats is upper bounded by
qC 2

2
|NC |

. G5 and G6 are identical except

for the failure event that two identical NC values are used, so we

have Pr [G6] − Pr [G5] ≤
qC 2

2
|NC |

, which is negligible in the security

parameter s – if |NC | is in ω (s).
G7: This game is the gameG6, with the difference that if the com-

munication between parties R andC is too quick, thenCh aborts the

experiment when NC is sent to R. Then, Ch aborts the experiment.

That is, if t (R
σ ′
1

−−→ C) < t
B
2 thenCh aborts (also, as point (7) in the

adversary). If the games continue, then Pr [G7]=Pr [G6].

G8: This is the gameG7, except that the card never sends a value

NC that has previously been sent by an adversary through the send
oracle. The idea behind this game transition is to eliminate the

event EG whereA can randomly guess a value NC in advance. Note

that the number of calls to the send oracle with respect to NC is

bounded by the number of card sessions, qC . Let qC be the number

of calls to the send oracle. This gives us that Pr [EG] ≤
qC 2

2
|NC |

.

Therefore, Pr [G6] − Pr [G5] ≤
qC 2

2
|NC |

, which is negligible in the

security parameter s – if |NC | is in ω (s).
G9: This is the final game and is equivalent to the gameG8, with

the difference that if the communication between parties R and T
is too quick, when NC is sent toT . Then,Ch aborts the experiment.

That is, if t (T
NC
←−−− R) < ∆ then Ch aborts (see Subsection 4.2.2),

where ∆ is the communication time between R and T . If the games

continue, then Pr [G9] =Pr [G0].

Now we look at the success probability of A inG9, in which we

assume the Out
[PC,T]= 1 (since PC on board R is controlled by the

attacker). I.e., since A controls PC , the private output τ
[PC,T] can

be tampered with by A.

Note that [W ,C] (i.e., the card) will check σ1, σ2 against t1, t2
and against other inputs that went into σ1,σ2 such as NC . Formally,

in the game, [W ,C] get the private output τ
[PC,T]

For [W ,C] (i.e., the card) to output 1, the adversary needs to

produce (t ′
1
,σ ∗

1
) and (t ′

2
,σ ∗

2
) to put in the forged τ

[PC,T] and with

σ ∗i being valid signatures by T on t ′i (with i ∈ {1, 2}).
Since A controls R, note that A can choose NR (one that has

not produced been input to another σ1, given the game in which

we are). Also, A cannot choose NC – since this is produced by C
within [W ,C].

But, as per the model,A does not controlT , soA cannot choose

t1, t2 or the randomness of T . The former are timed-structures that

are in part fixed prior to the attack starting (e.g., they contain global-

clock value). As such, if σ1 and σ2 are unforgeable w.r.t. selective
unforgeability (i.e., SUF-unforgeable), then (t ′

1
,σ ′

1
) and (t ′

2
,σ ′

2
) as

per the above can only be produced with negligible probability.

□

Session 2: Authentication ASIA CCS '20, October 5–9, 2020, Taipei, Taiwan

100

	Abstract
	1 Introduction
	2 Background & Foundational Aspects
	2.1 Contactless Payment Protocols Designed around Collusive Relaying

	3 Validated Distance-Bounding Protocols
	3.1 v-DB Definitions
	3.2 v-DB's Place in the Field of Distance-Bounding

	4 A Formal Model for Validated Distance Bounding
	4.1 Execution Model.
	4.2 Physical & Communication Model.
	4.3 Threat Model.
	4.4 Security Properties for Validated Distance Bounding
	4.5 Security Statements

	5 Other Discussions
	5.1 v-DB, PayBCR, PayCCR: Further Security Discussions

	6 Related Work
	7 Conclusions
	References
	A Proofs
	A.1 PayBCR – Security w.r.t. Strong Relaying
	A.2 PayCCR – Security w.r.t. Strong Relaying

