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ABSTRACT
Contactless systems, such as the EMV (Europay, Mastercard and

Visa) payment protocol, are vulnerable to relay attacks. The typical

countermeasure to this relies ondistance bounding protocols, in

which a reader estimates an upper bound on its physical distance

from a card by doing round-trip time (RTT) measurements. How-

ever, these protocols are trivially broken in the presence of rogue

readers. At Financial Crypto 2019, we proposed two novel EMV-

based relay-resistant protocols: they integrate distance-bounding

with the use of hardware roots of trust (HWRoT) in such a way

that correct RTT-measurements can no longer be bypassed.

Our contributions are threefold: first, we design a calculus to

model this advanced type of distance-bounding protocols integrated

with HWRoT; as an additional novelty, our calculus is also the

first to allow for mobility of cards and readers during a proximity-

checking phase. Second, to make it possible to analyse these proto-

cols via more standard mechanisms and tools, we consider a 2018

characterisation of distance-bounding security that does away with

physical aspects and relies only on the causality of events; we cast

it in our richer calculus and extend its theoretical guarantees to our

more expressive models (with mobility, potentially rogue readers,

and HWRoT). Due to this extension, we can carry out the security

analysis in the standard protocol verification tool ProVerif. Third,

we provide the first implementation of Mastercard’s relay-resistant

EMV protocol PayPass-RRP as well as one of its 2019 extension

with HWRoT called PayBCR. We evaluate their efficiency and their

robustness to relay attacks, in presence of both honest and rogue

readers. Our experiments are the first to show that Mastercard’s

PayPass-RRP and its HWRoT-based extension PayBCR are both

practical in preventing relay attacks of the magnitude shown thus-

far in EMV.

CCS CONCEPTS
• Security and privacy → Formal security models.
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1 INTRODUCTION
Contactless payments are now globally adopted and in 2019 alone,

“50 countries have seen more than 10% increase in tap-to-pay vs.

PIN-based transactions”, and “in Europe, more than two-thirds

of face-to-face Visa transactions occur contactlessly
1
”. As such,

the importance of fast and secure contactless payments cannot be

understated. This paper focuses on the development of a formal

approach to security analysis of new contactless payments, their in-

tegration and implementation as per the EMV (Europay Mastercard

Visa) standard as well as their robustness and efficiency testing.

One of the main security concerns in contactless payments is

that of relay attacks. In these, a man-in-the-middle (MiM) is inter-

posed between an EMV reader and an honest EMV card which is

out of the range of the reader. The adversary captures messages

honestly generated by the card and the reader, and simply forwards

them back and forth between the two. In such a way, the MiM

makes it look as if the card were in the range of the PoS (Point of

Sale). Consequently, the MiM manages to pay fraudulently with

the funds associated to the victim-card. The contactless/NFC (Near

Field Communication) interface that touch-and-pay EMV builds

on does not protect against these vulnerabilities. To mitigate such

relay attacks, after 2016, Mastercard’s EMV specifications included

the PayPass-RRP protocol. In this protocol (detailed in Appendix B

and shown in Figure 5), the reader measures the round-trip times

(RTTs) in certain exchanges between itself and the card. That is, the

PayPass-RRP reader distance-bounds, the contactless Mastercard: if

the RTTs are within a given bound, the likelihood is that the card

is close to the reader and no relay attack is taking place.

In the PayPass-RRP protocol, the main assumption is that the

reader/PoS behaves correctly and as such detects a relay attack and

stops it. However, the reader/PoS has just one incentive: to take

the payment, be it honest or relayed. What is more, in EMV (i.e.,

in the PayPass-RRP protocol), the card-issuing bank gets no proof

1
https://usa.visa.com/visa-everywhere/blog/bdp/2019/05/13/tap-to-pay-

1557714409720.html
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that the reader performed the anti-relay checks. Rogue readers

could easily conspire with the relaying MiM and allow far-away

payments to go through; which we term “collusive relaying”. To
this end, we introduced two contactless payment protocols that

augment the PayPass-RRP reader with a TPM (Trusted Platform

Module), in order to protect against collusive relaying: i.e., the

RTT-measurements necessarily pass through the TPM on-board

the reader, in a way that ensures that dishonest readers can no

longer cheat and allow relayed-transactions through. We presented

these protocols, without a proof of correctness or implementation,

as a short paper at Financial Crypto 2019 [7] . Our two solutions,

called PayBCR and PayCCR, build on PayPass-RRP in a way that

is backwards compatible with EMV: PayBCR does not modify the

PayPass-RRP card, while PayCCR does not modify the bank’s side

of the PayPass-RRP protocol.

Shortcomings of State of the Art & Related Work. To the best

of our knowledge, no formal analysis of the security of PayBCR
or PayCCR is possible with any previously proposed framework.

There exist a number of formal frameworks for modelling distance

bounding protocols (e.g. [2, 11]) that do not have automated tool

support. Formal methods that lead to automated tools [8, 9, 12, 18]

have been applied to analyse (authenticated) distance-bounding

and proximity-checking protocols, including PayPass-RRP. How-
ever all of these works require an honest reader, and are unable to

model the evidence produced by the hardware roots of trust. Two

of these methods [8, 12] put forward a version of the applied-pi

calculus specialised for encoding distance-bounding: i.e., with par-

ticipants having locations in metric spaces, actions being timed, etc.

The approach by Mauw et al. in [18] is based in turn on multiset-

rewriting logics, in which the authors express two flavours of

distance-bounding security: one pertaining to time and locations,

and the other hinging on just a series of events on a trace. The lat-

ter is called causality-based distance bounding and [18] also proves

that, under some conditions, timed distance-bounding security and

causality-based distance-bounding are equivalent, thus rendering

the verification problem more amenable to automation.

The reduction to causality-based security for distance-bounding

described in [18] is sound assuming a number of aspects. First, it

must be one and the same agent (i.e., the reader) who timestamps

the RTTs and checks these against the time-bound. This is not the

case in the new and stronger versions of PayPass-RRP proposed

in [7]: e.g., in PayBCR, the reader timestamps the exchange be-

tween itself and the card, then takes the RTT measurement, yet the

issuing-bank also (re-)verifies these RTT timestamps. Secondly, the

time-stamping party (i.e., the reader) must be honest, which is not

the case in the strong, collusive-relay attacks. Third, the cards are

modelled as fixed at one location throughout the protocol execu-

tion: i..e, neither does the most-related prior formalism in [18] nor

others (e.g. [8, 12]) capture mobility of parties, which is a realistic

aspect of payment systems and could possibly lead to attacks.

The PayPass-RRP-based protocols presented in [7] were not im-

plemented or tested (for security and/or efficiency), Furthermore,

there are no public implementations of a reader for MasterCards

PayPass-RRP protocol. Therefore questions remain over how well

these protocols would work in practice given the physical con-

straints of the hardware involved. We answer these questions by

fully implementing these protocols and carrying out a series of

tests.

Contributions. In this work, we aim to overcome the aforemen-

tioned shortcomings of the state of the art. Specifically, our main

contributions are as follows:

(1) Extending the work in [12], we put forward an applied-

pi calculus that can capture advanced features of distance-

bounding protocols featured in new payment protocols: mo-

bility of parties and time-stamping by one party and verifi-

cation by another.

(2) Following the ideas in [18], we then formulate a causality-

based definition of distance-bounding (which does away

with most timing aspects of these protocols). Importantly,

we prove that timed-based security is equivalent to causality-

based security, even in our strong model mentioned above.

This theoretical result gives formal guarantees that certain

physicality-based protocols can be checked easily in different

provers, in a language that abstracts away time and loca-

tion. We encode PayBCR, PayCCR and variants, alongside a

causality-based definition of secure payments in the fully au-

tomatic ProVerif prover, and we discuss the analysis results

obtained on these protocols.

(3) We provide concrete evidence that the currently proposed

EMV distance bounding protocols can work in practice. We

do this by implementing a reader for PayPass-RRP, and Pay-
BCR including TPM calls. Using a PayPass-RRP test card

from MasterCard and a tool from EMV-centred consultancy

Consult Hyperion that emulates the bank backend, we fully

test these implementations and provide timing information.

We find that both protocols can stop relays that add a delay

of 10ms or more, and therefore these protocols are effective

at stopping relay attacks using e.g. mobile phones and wi-fi.

However, neither protocol (when implemented on standard

hardware) will be effective at stopping relays that add a delay

of less than 5ms. We find that a factor here is the variance

of the card processing time, and therefore no protocol im-

plemented on such a card could stop such a relay. This work

provides the first public empirical analysis of MasterCard’s

PayPass-RRP and it also shows that using TPMs can be an

effective measure for stopping mobile phone based relay

attacks.

Outline. We first recall in Section 2 the protocols presented in [7]

which are studied in this work. We present our formal model in

Section 3. Then, we revisit the characterisation proposed in [18].

Thanks to this reduction result presented in Section 4, we are able to

analyse the security of the protocols presented in [7] relying on the

verification tool ProVerif. These results are presented in Section 4.3.

In Section 5, we report on the implementations we have performed,

as well as the experiments we have done to evaluate the efficiency

and the robustness to relay attacks of our own implementations of

PayPass-RRP and PayBCR.

2 BACKGROUND
In this section, we recall relevant details on the protocols introduced

in [7] and which are both based on Mastercard’s PayPass-RRP.
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2.1 On TPMs
Our payment protocols (described below) make use of a Trusted

Platform Module (TPM). A TPM is a tamper-resistant hardware

chip providing various functionalities, mainly of a cryptographic

nature. TPMs also facilitate robust timing functionalities, which we

use in our protocols. Concretely, the TPM2_GetTime command
2
of

the TPM takes the handle for a signature scheme and some input,

and it returns a signature over said input and over

TPM-AttestedTime = (Clock, Time).

The latter is the timing data-structure that the TPM keeps: with

the first being a non-volatile representation of the real time, set

when the TPM is created [16], and the second being a volatile

value corresponding to the time passed since the last boot-up of

the TPM (see page 205 of [16]). So, as such, TPM2_GetTime() can
produce a signed version of a timestamped nonce, with attested

time-information.

According to the body standardising the TPM, namely TCG,

the attacks onto TPM-AttestedTime are mainly relevant w.r.t. the

TPM Clock (see 36.3 and 36.6 [16]), as this has a non-volatile di-

mension, unlike Time. Notably, if the TPM is powered down, the

Clock value is correct when the TPM reboots. The threats w.r.t.

Clock documented by TCG, are arguably immaterial in practice

(see page 206 of [16]), and –as such– in this paper and as in [7], we

assume that the timestamps given by the TPM via the command

TPM2_GetTime are timing-secure (in the sense that TCG considers

it overwhelmingly impossible to tamper with timestamping in this

command).

2.2 PayBCR & PayCCR: High-level Description
Both of our protocols enhance PayPass-RRP by adding a TPM

onto a PayPass-RRP reader. This TPM is called twice, each time to

timestamp an input, such that the difference of the two timestamps

closely approximates the roundtrip time (RTT) between the card

and the reader. Moreover, PayCCR and PayBCR record this times-

tamping information, later to be used by the card or the issuing

bank to re-verify the RTT measurements alongside other checks

they normally make in PayPass-RRP. On the one hand, PayBCR
does not modify the card side of PayPass-RRP and thus it is the

issuing bank who does the verification of the TPM’s timestamps. On

the other hand, PayCCR leaves the PayPass-RRP reader-to-bank

specifications unchanged, and modifies the PayPass-RRP card so

that it is now the card (and not the bank – as per PayBCR) who
checks the RTT time-stamping mediated by the TPM onboard the

PayPass-RRP reader. Below, we will mainly recall PayBCR (see

Figure 1).

The PayPass-RRP protocol, that is at the basis of the two proto-

cols considered here, is summarised in Appendix B; this protocol is

similar to the “PaySafe” protocol that was originally proposed and

analysed in [9]. More details about the protocols PayBCR and Pay-
CCR can be found in [7]. In PayBCR, firstly, the EMV reader sends

its nonce NR to the TPM to be timestamped. The TPM uses the

TPM2_GetTime command to timestamp this nonce and it produces a

randomised signature σ1 on the timestamped nonce. The signature

2
This command is supported only in TPM 2.0, which is the current set of specifications

of the TPM. More precisely, on TPM2.0, TPM2_GetTime() is supported from revision

1.38 (and not on earlier revisions). TPM 2.0 v 1.38 is available by several manufacturers.

σ1 from the TPM is sent to the card instead of the first nonce UN in

PayPass-RRP. To keep the protocol compliant with PayPass-RRP,
the PayBCR reader actually sends the card only a truncation of σ1,
denoted as σ ′

1
. The card’s response (NC as per PayPass-RRP) is sent

to the TPM, which similarly yields a randomised signature σ2. The
SDAD (Signed Dynamic Application Data) is a digital signature by

the card on the AC, the timing information td and σ ′
1
(in place of

UN ). Finally, the card’s PayPass-RRP time-bound td , σ1, σ2, t1 and
t2 and the AC are sent to the bank. With these, the bank can check

the difference between the timestamps to ensure the card and EMV

reader where close.

For completeness, we give the description of PayCCR too; see

Figure 6, in Appendix C. Its details are very similar to those of Pay-
BCR, only that the card does the verification of the timestamping

signatures.

3 A SECURITY MODEL WITH MOBILITY
In this section, we describe a formalism allowing us to faithfully

model security protocols based on time and location like those

introduced in Section 2. Our security model is expressive enough

to model a variety of cryptographic primitives, and is also suitable

to capture mobility, i.e., the fact that agents executing the protocol

may move during the execution, including during the timing phase.

Our formalism is close to the applied-pi calculus [1] which is the

calculus used in input of the ProVerif tool [3]. On the one hand,

we extend this calculus with several features in order to model

time, location and mobility. On the other hand, some applied-pi

constructions, e.g., replication, parallel, are only used to define

configurations (and not the protocols themselves), i.e., these are

not part of our protocol syntax.

3.1 Agents and Messages
Participants in a protocol are called agents, and the set of agents

is denoted A. We also consider a fixed and arbitrary set M ⊆ A

to represent malicious agents. During a protocol execution, partici-

pants exchange messages through the network. Messages can be

atomic data such as nonces, keys denoted n,k ∈ N , agent names

denoted a,b ∈ A, or simply public constants denoted c, c1, c2 ∈ Σ0.
We denote Σ+

0
= Σ0 ⊎ A. More complex messages can also be

exchanged relying on cryptographic primitives modelled through

a set of function symbols Σ called a signature. Such a signature Σ
is split into constructor and destructor symbols, i.e., Σ = Σc ⊎ Σd .
We also consider a set X of message variables, denoted x,y, z . . .,
as well as a setW of handles, denoted w1,w2, . . .. Variables in X

model arbitrary data expected by a protocol participant, while vari-

ables inW are used to store messages learnt by the attacker. The

set R+ denotes non-negative real numbers and is used to model

time. Given a signature F and a set D of atomic data, we denote

T(F ,D) the set of terms built from D using symbols in F . Given a

termu, we denote vars(u) the variables occurring inu. A constructor
term is a term in T(Σc ,N ∪ Σ+

0
∪ X ∪ R+).

Example 1. To model the PayBCR protocol presented in Section 2,
we consider the signature ΣBCR = Σc ⊎ Σd :

• Σc = {senc, shk, sign, pubk, seck, mac, ⟨ ⟩, ok}, and
• Σd = {sdec, verify, proj

1
, proj

2
, eq}.
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Bank TPM Reader Card

td , KM , Pr ivC
Cer tPr ivCA(PubB)
Cer tPr ivB (PubC)

NC ∈R {0, 1}32

PubCA , NR ∈R {0, 1}32Pr ivSiдnT PMCer t (PubSiдnT PM ), KM

TPM2_GetTime(NR )

t1 := TPM-AttestedTime;
σ1 = SiдnT PM (t1 ,NR )

t1 , σ1 σ ′
1

NC , tdTPM2_GetTime(NC )timed

t2 := TPM-AttestedTime;
σ2 = SiдnT PM (t2, NC )

t2 , σ2
READ RECORD

Certs

GEN AC, data, . . .

KS = EncKM (ATC)

AC=MACKs (ATC,data,σ
′
1
,..)

SDAD= SignPr ivC (AC, NC , td ,
σ ′
1
,. . . )

SDAD, AC

Check SDAD
AC, t1 , t2 , σ1 , σ2 , td , SDAD, Certs,. . .

Check t1 in σ1 , t2 in σ2
Check σ1, σ2 & NC , NR , td in SDAD
Check AC, Check t2 − t1 ≤ td

Figure 1: PayBCR [7]: Mastercard’s PayPass-RRP with Collusive-Relay Protection & No Changes to the Card

The symbols in ΣBCR allows one to construct terms to represent crypto-
graphic messages, e.g., ciphertext based on the symmetric encryption
symbol senc (of arity 2), and signature using the symbol sign (of
arity 2). The corresponding decryption and verification schemes are
modelled by the sdec and verify symbols. The symbols pubk and seck,
each of arity 1, are used to model public/private keys, whereas the
symbol shk of arity 2 is used to model symmetric key shared between
two agents. The symbol mac models a MAC scheme. The symbols
⟨ ⟩, proj

1
, and proj

2
represent the pairing and projections operators.

Lastly, we consider two symbols eq (arity 2) and the constant ok that
are used to check an equality between two terms.

In order to give a meaning to constructor symbols, we equip

constructor terms with an equational theory. We assume a set

of equations E over T(Σc ,X) and define =E as the smallest con-

gruence containing E that is closed under substitutions and un-

der bijective renaming. Then, we give a meaning to destructors

through a rewriting system, i.e., a set of rewriting rules of the form

g(t1, . . . , tn ) → t where g ∈ Σd and t, t1, . . . , tn ∈ T (Σc ,X). A

term u can be rewritten in v if there is a position p in u, and a

rewriting rule g(t1, . . . , tn ) → t such that u |p = g(t1, . . . , tn )θ for

some substitution θ , and v = u[tθ ]p , i.e., u in which the term at

position p is replaced by tθ . Moreover, we assume that t1θ , . . . , tnθ
as well as tθ are constructor terms. As usual, we consider sets of

rewriting rules that yield a convergent rewriting system, and we

denote u↓ the normal form of a term u.

Example 2. The properties of the cryptographic primitives intro-
duced in Example 1 are reflected through the following rewriting
system:

sdec(senc(x,y),y) → x
verify(sign(x,y), pubk(y)) → x
eq(x, x) → ok

proj
1
(⟨x1, x2⟩) → x1

proj
2
(⟨x1, x2⟩) → x2

The first rule is the usual rewriting rule tomodel symmetric encryption.
Depending on whether we want to model a decryption algorithm
that may fail or not, we can either consider sdec as a destructor
together with the rewrite rule sdec(senc(x,y),y) → x as we did here,
or consider both symbols as constructors, together with the equation
sdec(senc(x,y),y) = x . In the latter case, sdec(c,k)will be considered
as a “valid” message. The second rule is used both to check a signature
and to extract its content. The term seck(a) is used to represent the
private key of the agent a, whereas pubk(seck(a)) models its public
counterpart. The third onemodels an equality check. Note that eq(u,v)
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reduces to a constructor term if, and only if, u =E v (i.e., u = v here
since E = ∅). The two rules in the second column model the projection
operators.

For modelling purposes, we split the signature Σ into two parts,

Σpub and Σpriv. An attacker builds his own messages by applying

public function symbols to terms he already knows and which are

available to him through variables in W. Formally, a computation

done by the attacker is a recipe, i.e., a term in T(Σpub, Σ
+
0
∪W∪R+).

Example 3. Among the symbols in ΣBCR, only the symbols shk
and seck are in Σpriv. Given the two termsu0 = senc(⟨n,k⟩, shk(b, c)),
and u1 = shk(b, c), we have that proj

2
(sdec(u0,u1))↓ = k . The term

proj
2
(sdec(u0,u1))models the application of the decryption algorithm

on top of u0 using the key u1 followed by the application of the second
projection.

3.2 Protocols
Single protocol roles are modelled through a process algebra closed

to the one used as input in the ProVerif verification tool. Processes

are given by the following grammar:

P,Q := 0

| new n.P
| in(x).P
| out(u).P
| let x = v in P else Q
| gettime(x).P
| check(u1,u2,u3).P
| claim(u1,u2,u3,u4).P

where x ∈ X,n ∈ N ,v ∈ T (Σ,N∪Σ+
0
∪X∪R+), andu,u1, . . . ,u4 ∈

T (Σc ,N ∪ Σ+
0
∪ X ∪ R+).

The first four instructions are all standard to the applied pi-

calculus. As usual, the null process does nothing. The restriction

new n.P generates a fresh name and then executes P . We have con-

structions to model input and output actions. The let construction
tries to evaluate v to get a constructor term u, then x is bound to u
and P is executed; if the evaluation of v fails, then Q is executed.

The last three instructions are used to model distance bounding

protocols. The instruction gettime(x) bounds the current time to

the variable x . This is used to add a timestamp in some messages.

The check(u1,u2,u3) instruction indicates that a process is check-

ing the times u1 and u2 against some expected time bound u3. The
claim(u1,u2,u3,u4) indicates that an agent executing it believes

that there has been a successful run of the protocol between u1 and
u2 with the challenges and responses exchanged between times u3
and u4. As we will see below, the two events, namely claim and

check do not interfere with the semantics of the processes rather

we rely on them to express our security properties.

We write fv(P) for the set of free variables occurring in P , i.e., the
set of variables that are not in the scope of an in, a let, or a gettime
instruction.We consider parametrised processes, P(z0, . . . , zn ), where
z0, . . . , zn are variables from a special setZ (disjoint fromX andW).

Intuitively, these variables will be instantiated by agent names,

and z0 corresponds to the name of the agent who executes the pro-

cess. A role R = P(z0, . . . , zn ) is a parametrised process such that

fv(R) ⊆ {z0, . . . , zn } and that does not contain element in R+. This

allows us to ensure that elements in R+ occurring in an execution

have been either introduced by our gettime instruction, or by the

attacker. A protocol is a finite set of roles.

Example 4. The TPM check time functionality will access a nonce
and sign this along with the current time. We write this functionality
using our syntax as:

TPM(z0) = in(xn ).
gettime(xt ).
out(sign(⟨xt , xn⟩, seck(z0))).0

The parameter z0 will be instantiated by an agent name. Such a process
is waiting for a message, and outputs its signature. The signature
is done using the key seck(z0) and a timestamp is added into the
signature. The current time is obtained using the gettime instruction.

3.3 Mobility Model
In order to faithfully model the fact that transmitting a message

takes time, we use the notion of mobility plan whose main purpose

is to indicate the location of each agent at a given time. Then, a

messagem sent by an agent a at time ta and received by another

agent b at time tb must satisfy that the Euclidean distance between

the two locations:

(1) Loc(a, ta ), i.e., the location of a at time ta , and
(2) Loc(b, tb ), i.e., the location of b at time tb

is less or equal than (tb − ta ) · c0. Here, c0 is the transmission speed,

and is supposed to be constant in our model (e.g., the speed of the

light). In this way, the physical law that messages cannot travel

faster than the speed of light is made explicit. As c0 is to be constant
in our model, distance between two locations will be represented by

the time it takes for a message to travel from one point to the other.

Hence, we have that Dist : R3 × R3 → R+ is defined as follows:

Dist(l1, l2) =
∥l2 − l1∥

c0
for any l1, l2 ∈ R3

with ∥·∥ : R3 → R+ the Euclidean norm.

A mobility plan Loc is a function: A × R+ → R3 defining the

position of each agent in space at any time. To avoid unrealistic be-

haviours where agents will travel faster than messages, we assume

that for any a ∈ A and t1, t2 ∈ R+ such that t1 ≤ t2, we have that:

Dist(Loc(a, t1), Loc(a, t2)) ≤ t2 − t1.

We note that this requires that our mobility plans are continuous,

with no agents making discrete jumps in location.

Example 5. To illustrate the notion of mobility plan, we may
consider the function Loc0 such that Loc0(tpm0

, t) = (0, 0, 0), and
Loc0(card0, t) = (10, 0, 0), and Loc0(bk0, t) = (100, 0, 0) for any
t ∈ R+, and Loc0(a, t) = (0, 0, 0) otherwise (i.e., for any a ∈ A ∖
{tpm

0
, card0, bk0}). This models a very simple mobility plan where

all the agents are actually at a fixed position and they never move:
card0 is at distance 10 from tpm

0
and the agent bk0 is even further.

The other entities are all located at position (0, 0, 0) at the same place
as tpm

0
.
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TIM (P;Φ; t) −→Loc (P;Φ; t + δ ) with δ > 0

NEW ( ⌊new n.P⌋ a ⊎ P;Φ; t)
a,t ,τ
−−−−→Loc ( ⌊P{n 7→ n′}⌋ a ⊎ P;Φ; t) with n′ ∈ N fresh

OUT ( ⌊out(u).P⌋ a ⊎ P;Φ; t)
a,t ,out(u)
−−−−−−−−−→Loc ( ⌊P⌋ a ⊎ P;Φ ⊎ {w

a,t
−−−→ u}; t) with w ∈ W fresh

LET-THEN ( ⌊let x = v in P else Q⌋ a ⊎ P;Φ; t)
a,t ,τ
−−−−→Loc ( ⌊P{x 7→ v↓}⌋ a ⊎ P;Φ; t) when v↓ ∈ T (Σc ,N ∪ Σ+

0
∪ R+)

LET-ELSE ( ⌊let x = v in P else Q⌋ a ⊎ P;Φ; t)
a,t ,τ
−−−−→Loc ( ⌊Q⌋ a ⊎ P;Φ; t) when v↓ < T(Σc ,N ∪ Σ+

0
∪ R+)

CLAIM ( ⌊claim(u1,u2,u3,u4).P⌋ a ⊎ P;Φ; t)
a,t ,claim(u1,u2,u3,u4)
−−−−−−−−−−−−−−−−−−−→Loc ( ⌊P⌋ a ⊎ P;Φ; t)

CHECK ( ⌊check(u1,u2,u3).P⌋ a ⊎ P;Φ; t)
a,t ,check(u1,u2,u3)
−−−−−−−−−−−−−−−−→Loc ( ⌊P⌋ a ⊎ P;Φ; t)

GTIM ( ⌊gettime(x).P⌋ a ⊎ P;Φ; t)
a,t ,gettime
−−−−−−−−−−→Loc ( ⌊P{x 7→ t}⌋ a ⊎ P;Φ; t ′) with t ′ > t

IN ( ⌊in(x).P⌋ a ⊎ P;Φ; t)
a,t ,in(u)
−−−−−−−−→Loc ( ⌊P{x 7→ u}⌋ a ⊎ P;Φ; t)

when there exist b ∈ A, and tb ∈ R+ such that t ≥ tb + Dist(Loc(b, tb ), Loc(a, t)) and:

• either b ∈ A ∖M and there exists (w
b ,tb
−−−−→ u) ∈ Φ

• or b ∈ M and Φ ⊢ u by b at time tb w.r.t. Loc.

Figure 2: Semantics of our calculus parametrised by the mobility plan Loc.

3.4 Semantics
Our semantics is given by a transition system over configurations

that manipulates extended processes, i.e., expressions of the form

⌊P⌋ a with a ∈ A and P a process such that fv(P) = ∅. Intuitively,

P describes the actions of agent a. In order to store the messages

that have been outputted so far, we extend the notion of frame to
keep track of the time at which the message has been outputted

and by whom. We rely on the special symbol ⋆ to indicate that a

message is known by any agent. This will be used to define the

initial frame.

Definition 1. A configuration K is a tuple (P;Φ; t) where:

• P is a multiset of extended processes ⌊P⌋ a ;

• Φ = {w1

a1,t1
−−−−→ u1, . . . ,wn

an ,tn
−−−−−→ un } is an extended frame,

i.e., a substitution such that wi ∈ W, ui ∈ T (Σc ,N ∪ Σ+
0
∪

R+), ai ∈ A ∪ {⋆} and ti ∈ R+ for 1 ≤ i ≤ n;
• t ∈ R+ is the global time of the system.

Example 6. A typical configuration for our running example is
K0 = (P0;Φ0; 0) with:

P0 = { ⌊TPM(tpm
0
)⌋ tpm

0

; ⌊Bank(bk0)⌋ bk0 ; ⌊Card(card0)⌋ card0 }.

This simply models a scenario where tpm
0
, bk0, and card0 execute

a single session of their role. Regarding the initial frame, we may
consider:

Φ0 = { w1

⋆,0
−−−→ pubk(seck(tpm

0
)),

w2

⋆,0
−−−→ pubk(seck(bk0)),

w3

⋆,0
−−−→ pubk(seck(card0))}.

This initial frame reveals the public key of the 3 agents to the attacker.
We may want to also reveal the certificates built by the bank for the
card and the tpm. This will correspond to add the following terms into
the frame:

• sign(⟨cardCert, ⟨card0, pubk(seck(card0))⟩⟩, seck(bk0));
• sign(⟨tpmCert, ⟨tpm

0
, pubk(seck(tpm

0
))⟩⟩, seck(bk0)).

The terms cardCert and tpmCert are public constants from Σ0 used
to avoid a possible confusion between the two kinds of certificates (the
one issued by the bank to certify a card, and the one used to certify
a TPM). In case such a confusion is possible, we may model the two
types of certificates relying on the same constant cert.

Given an extended frame Φ, and a mobility plan Loc, we say that
a term u is deducible from Φ by b ∈ A at time t0, denoted Φ ⊢ u by b
at time t0 w.r.t. Loc, if there exists a recipe R such that RΦ↓ =E u,

and for all w ∈ vars(R) we have that (w
c ,t
−−→ v) ∈ Φ for some v ,

and

• either c = ⋆;
• or t0 ≥ t + Dist(Loc(c, t), Loc(b, t0)).

In other words, u has to be forgeable by the agent b at time t0 and
thus messages needed to forge u have to be available in due time.

Given a mobility plan Loc, the semantics of processes is formally

defined by a transition system over configurations. This transition

system is given in Figure 2 and is parametrised by Loc. This piece
of information is omitted when clear from the context. We will only

comment on some key cases.

The rule TIM allows time to elapse, and the rule GTIM allows an

agent to get the global time of the system. Note that two consecutive

gettime instructions will return two different values since we force
time to elapse. This models the fact that such an instruction cannot

be executed instantaneously, and that two remote agents cannot

perfectly co-ordinate their actions. This also helps us establish

the soundness of our abstraction by making it possible for us to

get rid of time by replacing real numbers issuing from a gettime
instruction by different public constants.

The IN rule is more complex (than in normal applied-pi) since

we have to ensure that enough time has passed to make it possible
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for the message to travel from where it was produced Loc(b, tb ) to
where it is being received Loc(a, t).

As noted above, the claim and check instructions are simple

events (as those used in ProVerif). They do not interfere with the

semantics but are used to model security properties.

Example 7. To illustrate the semantics, we consider the configura-
tion K ′

0
= ( ⌊TPM(tpm

0
)⌋ tpm

0

;Φ0; 0) and the mobility plan Loc0 as
given in Example 5.

K ′
0
−→ ( ⌊TPM(tpm

0
)⌋ tpm

0

;Φ0; 1.1)

tpm
0
,1.1,in(ok)

−−−−−−−−−−−−−→
tpm

0
,1.1,gettime

−−−−−−−−−−−−−−−→ ( ⌊out(m)⌋ tpm
0

;Φ0; 1.2)
tpm

0
,1.2,out(m)

−−−−−−−−−−−−−−→Loc0 ( ⌊0⌋ tpm
0

;Φ1; 1.2)

where:

• m = sign(⟨1.1, ok⟩, seck(tpm
0
)), and

• Φ1 = Φ0 ∪ {w4

tpm
0
,1.2

−−−−−−−→m}.

The first input is possible sinceΦ0 ⊢ ok by c ∈ M at time 1.1. Actually
such a constant is even deducible at time 0.

We may note that m is deducible from Φ1 by tpm
0
at time 1.2.

Actually any agent other than card0 and bk0 are able to deducem
at time 1.2. Remember that Loc0(a, t) = (0, 0, 0) for any t and any a
different from tpm

0
and bk0.

3.5 Threat Model
Before we present the security property we wish to analyse, we

summarise the threat model implied by Section 2 (for the TPM) and

this current section (for the rest), via the language, mobility/time

encodings, and all the (other) protocol semantics described above.

Thus, our attacker model is as follows:

• readers, cards, TPMs
3
can become malicious/corrupted;

• with respect to cryptographic primitives, we assume a nor-

mal Dolev-Yao (DY) attacker-model for all malicious agents;

• with respect to communication channels, malicious agents

acts as expected (i.e., can block, inject, modify message as a

DY adversary), but they are bound by our mobility plan and

our timing rules as follows:

– in total, there can be an unbounded number of (statically
4
)

corrupted/malicious agents, at any given location;

– all corrupted/malicious agents adhere to the laws of our

model/physics: i.e., corrupt agents cannot transmit mes-

sages faster than the other agents, and they cannot move

faster than the other agents (who, in turn, travel over-

whelmingly more slowly than messages).

3.6 Security Properties
As explained in above, we are interested in analysing a property

(formalised in Def. 3) that pertains to secure/correct contactless

3
In practice, TPMs can only be corrupted within the TCG-driven model described in

Section 2: that is, the global clocks of TPMs can essentially not be tampered with. In

our formalism however, the threat model is stronger, allowing even for time-corruption

on the TPM.

4
This means that all corruption occurs before the protocol starts executing, which is

usual in symbolic verification.

payments made in physical proximity. Roughly, this property en-

sures that when a bank finishes the protocol successfully it is be-

cause a transaction took place between a card and a reader/TPM,

and the card and the reader have been close during this transac-

tion. This proximity is ensured through the use of the instruction

check(t1, t2, δ ) whose intended meaning is that timing constraint

t2 − t1 ≤ δ has been verified by some honest agent.

As usual to analyse a security property, we rely on events. The

event claim(tpm
0
, card0, t0

1
, t0
2
) will be launched when the bank

finishes the protocol, seemingly with tpm
0
and card0, and, this

claim event occurs after a check event took place – whereby card0
was close to tpm

0
between times t0

1
and t0

2
.

Before we can give our security definition, we need to define a

few helper-notions, like that of configuration. An initial frame Φ0 is

an extended frame such that a = ⋆ and t = 0 for any (w
a,t
−−−→ u) ∈

Φ0.

Definition 2. A configuration K = (P0;Φ0; 0) is a valid initial

configuration for a set of rolesR, ifΦ0 is an initial frame, and for each
⌊P⌋ a ∈ P0, there exists R(z0, z1, . . . , zk ) ∈ R and a1, . . . ,ak ∈ A

such that P = R(a,a1, . . . ,ak ).

Roughly, we consider initial configurations made up of instances

of the roles of the protocols, and we only consider roles executed

by agents located at the right place, i.e., the agent a who executes

the role must correspond to the first argument of the parametrised

process. Note that, according to the definition above, a single agent

can play different roles (e.g., the bank and the card).

Example 8. The frame Φ0 described in Example 6 is an initial
frame, and the configurations K0, as well as the configuration K ′

0

given in Example 7 are valid initial configurations for the protocol
payBCR. Although valid, these configurations are rather poor and
additional scenarios will be (of course) considered when performing
the security analysis. Typically, we will consider many agents, and
we will assume that each agent can execute the protocol many times.

Our result applies on all the valid initial configurations. However,

to give the possibility to discard some unrealistic configurations

(that may depend on the use case) during the security analysis, our

main result is parametrised by a set S of valid initial configurations.

We are now able to formally state the security property we want

to consider.

Definition 3. A protocol P is DB-secure w.r.t. a set S of valid
initial configurations if for all K0 ∈ S, for all mobility plan Loc, for
all execution exec such that:

K0

(a1,t1,act1)...(an ,tn ,actn )·(b0,t ,claim(b1,b2,t 0
1
,t 0
2
))

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→Loc K

we have that:
• either b1 ∈ M, or b2 ∈ M;
• or actk = check(t0

1
, t0
2
, t0
3
) for some k ≤ n such that:

t0
2
− t0

1
≥ Dist(Loc(b1, t0

1
), Loc(b2, t))

+ Dist(Loc(b2, t), Loc(b1, t0
2
))

for some t0
1
≤ t ≤ t0

2
.

We now discuss Definition 3, from different viewpoints.
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Main Meaning of Definition 3. First note that Definition 3 does

not bind entities b0,b1, . . . , to roles. So, in the next, we will try to

render the meaning of the definition via one of its several possible

representation. Namely, in such an instance of Definition 3, we say

that a payment protocol is secure if at the end of its execution an

agent b0 (e.g., the bank) can make a claim that links an agent b1
(e.g., a TPM) and an agent b2 (e.g. a card) to two timestamps t0

1

and t0
2
in the following sense: in the execution, there was a check

w.r.t. t0
1
and t0

2
and another time-value t0

3
(which is given generally

as a constant time-bound in the protocol) and this check denotes

that the distance between b1 and b2 was within the bound between

the timepoints t0
1
and t0

2
(i.e., t0

2
− t0

1
≤ t0

3
, and this gives an upper

bound on the distance between b1 and b2.).

Observations w.r.t Definition 3. Firstly, note that the check is

performed by agent ak which is not fixed to being b0, b1 or b2.
Importantly, as such, in this definition, we may have the check be

performed by an agent that is not b0 who in fact makes the final

claim.

Secondly, note that indeed it is in one of the possible executions

that the agent b0 is the bank, the agent b1 is a TPM and b2 is a card;
this type of execution is of interest to us. To this end, Definition 3

stipulates two alternate security-relevant cases:

• be it: the card b2 is dishonest, or the TPM b1 is dishonest, or
both are dishonest, in which case Definition 3 does not re-

quire any further condition and one can declare the protocol

trivially DB-secure;

• alternatively, we are in the case where the TPM and the card

are honest, in which case the definition contains further con-

ditions (namely the restrictions on check have to be fulfilled

for the protocol to be declared DB-secure.)

We are implicitly interested in the second case of the above, and

particularly in the case where the reader is malicious.

Finally, the property is meant to capture an extension of relay-

resistance or security against a man-in-the-middle attacker that

performs a relay-based attack, applied to contactless payments.

Our definition is in the spirit of [18]. However, note that in our

semantics/model, it is strictly stronger than the definition in [18],

as follows: (a) the property is extended to make a statement w.r.t.

three parties instead of two parties; (b) it contains a statement on

the checking of the timestamps (as [18] did), but also a claim made

on top of this timestamps’ check potentially by another party in

the protocol (which was not the case in [18]); (c) the parties b1 and
b2 are mobile (which was not the case in [18]). In this vain, not only

does our definition lift [18] to cover the notion of collusive-relaying

in [7], but also it strengthen that – for instance, w.r.t. to allowing

for mobility of parties.

Time-bounds vs. Distance-bounds in Definition 3. The bound in

Definition 3 is given in terms of the total travel time of the message

between the agents. As the agents may move while the message is

in transit, characterising the exact distance between the agents at a

particular time is more subtle. The furthest the agents could be from

each other occurs when they are a fixed distance from each other

at all times between t0
1
and t0

2
and the receiver move towards the

message being sent at almost the same speed as the message travels.

On the one hand, in practice, in this case, the distance between the

agents would be bound at (t0
2
− t0

1
−message processing time) × c0.

In our model (unlike in practice), this would be (t0
2
− t0

1
) × c0, as

the processing of messages is instantaneous. However, it is highly

unrealistic to assume that agents can travel at close to the speed

of light; and in fact, in our model, we do state that agents move

overwhelmingly more slowly than messages. On the one hand, in

practice, if the agents were stationary, or their speed is negligible

compared to the speed of the messages, then the distance between

them would be bound at (t0
2
− t0

1
−message processing time) × c0/2.

In our model (unlike in practice), this would be (t0
2
− t0

1
) × c0/2, as

the processing of messages is instantaneous. We take the view that

the distance implied by Definition 3 is an upper bound on both of

these thresholds.

4 SECURITY ANALYSIS USING PROVERIF
To provide automated tool support for checking our definition

of DB-security we will encode our processes into the language

used by the verification tool ProVerif [3], and automatically verify a

property (namely the one in Definition 4) that we show is equivalent

to Definition 3.

4.1 ProVerif in a nutshell
ProVerif [3] is a well-established automated protocol verifier of-

fering very good support to detect flaws and prove security. This

verifier takes as input processes written in a syntax close to one

introduced in Section 3 but does not feature location and time.

ProVerif can cover a wide class of cryptographic primitives and

various protocols structures, yielding a very flexible tool that can

be used to analyse various encoding of protocols and security prop-

erties. It handles an unbounded number of sessions and even if

termination is not guaranteed, it works well in practice. For in-

stance, this tool has been successfully used to analyse two avionic

protocols that aim to secure air-ground communications [4], to per-

form a comprehensive analysis of the TLS 1.3 Draft-18 protocol [5],

or more recently to analyse some e-voting protocols [10, 17].

Some recent work has looked at encoding and checking DB

protocols in ProVerif [8, 12] however this work requires the reader

to be honest, does not allow for mobility, and only allows times to

be compared on completion of the DB protocol. Therefore, those

methods in [8, 12] cannot be used to analyse protocols such as those

described in Section 2.

4.2 Main result
We consider a subset Σ

spe
0

of special constants in Σ0 that will be
used to abstract time. We explain how to transform a configuration

K = (P;Φ; t) into a simple configuration that does not contain

time. For sake of simplicity, we assume that variables occurring

in P are at most bound once. The transformation · applied on K

gives us a pair (P0;ϕ0) where:

• P0 is the untimed counterpart of P, i.e. each gettime(x)
instruction occurring in P is replaced by timestamp(cx )
where cx ∈ Σ

spe
0

, and the occurrences of x in the remaining

process are replaced by cx ;

• ϕ0 = {w −→ u | (w
c ,t
−−→ u) ∈ Φ}.
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NEW
′ ( ⌊new n.P⌋ a ⊎ P;Φ)

a,τ
( ⌊P{n 7→ n′}⌋ a ⊎ P;Φ) with n′ ∈ N fresh

...
...

CHECK
′ ( ⌊check(u1,u2,u3).P⌋ a ⊎ P;Φ)

a,check(u1,u2,u3)
( ⌊P⌋ a ⊎ P;Φ)

GTIM
′ ( ⌊timestamp(cx ).P⌋ a ⊎ P;Φ)

a,timestamp(cx )
( ⌊P⌋ a ⊎ P;Φ)

IN
′ ( ⌊in(x).P⌋ a ⊎ P;Φ)

a,in(u)
( ⌊P{x 7→ u}⌋ a ⊎ P;Φ) with RΦ↓ =E u for some recipe R

Figure 3: Semantics a la ProVerif.

We denote

(a,act)
the relaxed semantics that corresponds to

the semantics used in a tool like ProVerif (see Figure 3). The TIM

rule does not exist anymore. The rules NEW, OUT, LET-THEN and

LET-ELSE are adapted in a straightforward way, i.e. by removing

the timing information t . The rules CLAIM, and CHECK will cor-

respond to “events” in ProVerif. Finally the rule GTIM is modified

to become a simple event instruction, whereas the IN rule is much

more simple since the travel time of messages is not taken into

account anymore.

The equivalent of our DB-Secure property is then:

Definition 4. A protocol P is causality-based secure w.r.t. a set S
of valid initial configurations, if for allK0 ∈ S, for all execution exec
such that:

K0

(a1,act1)...(an ,actn )·(b0,claim(b1,b2,c1,c2))
(P ′

;ϕ ′)

we have that either b1 ∈ M, or b2 ∈ M, or there exist i, j,k,k ′ ≤ n
with i ≤ k ′ ≤ j, and u ∈ T (Σc ,N ∪ Σ+

0
) such that:

• actk = check(c1, c2,u);
• (ai , acti ) = (b1, timestamp(c1));
• (aj , actj ) = (b1, timestamp(c2)); and
• ak ′ = b2.

This definition states that for every claim that b2 is in the vicinity
of b1 between times c1 and c2, a timing constraint must have been

checked and b2 must have been active in between the two events.

Before stating our main result, we have to introduce an hypoth-

esis; since, causality-based requires the existence of timestamp
events, we have to ensure that those events will be available.

Definition 5. A protocol P iswell-timedw.r.t. a setS of valid initial
configurations if for all K0 ∈ S, for all execution exec such that:

K0

(a1,act1)...(an ,actn )·(b0,claim(b1,b2,c1,c2))
(P ′

;ϕ ′)

we have that there exist i, j ≤ n such that:
• (ai , acti ) = (b1, timestamp(c1));
• (aj , actj ) = (b1, timestamp(c2)).

We are now able to state our main result that establishes the

equivalence between the two notions DB-security and causality-

based security. Causality-based security does not rely on time and

location anymore and can therefore be analysed relying on ProVerif.

Theorem 1. Let P be a protocol and S be a set of valid initial
configurations. Assuming that P is well-timed w.r.t. S, we have that:

P is DB-secure w.r.t. S
if, and only if,

P is causality-based secure w.r.t. S.

A proof sketch is available in Appendix and a detailed proof

can be found in [6]. First, we may note that if P is causality-based

secure w.r.t. S then P is well-timed w.r.t. S. The first implication

is rather easy to establish. It mainly consists in retiming a witness

of an attack against the causality-based secure property. Re-timing

such an execution depends on the underlying mobility plan, and

we consider the mobility plan where all the agents are located at

the same place (and never move) but the two agents b1 and b2 are
far away. Since no action will be performed by b2 between the two

timestamps events, we know that all the actions are performed by

the agents located at the same place and the time elapsed between

these two timestamp actions can be fixed to be less than the distance

between b1 and b2.
The other implication is more complex to establish. We start

with an attack trace w.r.t. DB-security with a value tj − ti smaller

than some value δ corresponding to the distance between b1 and b2,
and then we consider the following steps:

• We first weaken this timed trace in the untimed semantics;

• Then, we clean up the trace between the two timestamps

actions to ensure that all the actions between these two

timestamps can not be pushed before or after. Thanks to

causality-based security, we know that an action from b2 is
performed in between.

• We then lift this trace into the timed model keeping the exact

same value for tj − ti , and due to the action performed by

b2, we know that some time has elapsed between the two

timestamps, and thus tj − ti is necessary bigger than δ . We

therefore reach a contradiction.

4.3 Case studies
We consider the two protocols PayBCR and PayCCR respectively

described in Section 2 and Appendix C, and we report the results

we have obtained using ProVerif. All the ProVerif models mentioned

in this section are available in [6].

ProVerif models. We model the protocol PayBCR following the de-

scription given in Section 2. Regarding PayCCR, it is actually not

possible to state the causality-based security property (and even

more the DB-security property). The problem is that, in PayCCR,
the bank never receives the reader/TPM identity or the two time-

stamps; so, the data needed to state the final claim claim are not
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available to the bank. To overcome this limitation, we propose

a slightly modified version of the protocol named PayCCR++ in

which the TPM identity and the two timestamps are added in the

AC message
5
. More formally, we have that:

ACPayCCR++ = MAC(KS ,ATC,data,σ1,TPM, t1, t2)

with KS = senc(ATC, shk(Card,Bank)) as presented in Figure 6.

Scenarios. For each protocol, we have considered a scenario with an
arbitrary number of banks, cards, and TPMs. We do not model the

reader which is assumed to be dishonest and thus fully executable

by the attacker. More precisely, the role of the bank is played by

many possible entities. Each bank issues many cards, and is also

used to certify many TPMs. Among these cards and these TPMs,

some are honest, and some are dishonest meaning that their key

material is revealed to the attacker. However, a given honest entity

can not act as a card and a TPM as the same time. This is not true for

a dishonest participants, and thus to avoid a dishonest participant

to act as a card and a TPM, it is important to differentiate the

certificates: given a bank name bankID, a TPM certificate of agent

a, noted certT (a), is

sign(⟨TPMCert,a, pubk(seck(a))⟩, seck(bankID))

whereas a card certificate, certC(a) will be

sign(⟨cardCert,a, pubk(seck(a))⟩, seck(bankID)).

The initial knowledge given to the attacker is:

• pub(seck(a)) for any agent a, and his associated certificate

certX (a);
• seck(a), and shk(a,bankID) when the agent a is dishonest.

Security Properties. Firstly, we consider the causality-based prop-
erty as stated in Definition 4.

In addition, we consider the following extra authentication
property:
query TPMID:bitstring, cardID:bitstring,

t1:bitstring, t2:bitstring,
event(claim(TPMID, cardID, t1, t2)) ==>
(event(TPM(TPMID)) && event(card(cardID))).

This property expresses the fact that when the bank ends a

session apparently with TPMID and cardID, then TPMID is a TPM

identity whereas cardID is a card identity.

In these protocols the times are checked against a time-bound td
that is specific to each card and sent by the card in the SDAD

message. In this context, an attacker may try to replace it by an

excessively large value to make the bank accept the transaction.

To avoid this undesired behaviour, we add at the end of the bank

process a new event receivedBound(card0, td ) and check the fol-

lowing extra property:

query card_0:bitstring, timeboundinfo:bitstring;
event(receivedBound(card_0, timeboundinfo)) ==>
timeboundinfo = timebound(card_0).

where card_0 is an honest agent.

This property means that for each accepted transaction with an

honest card, the time-bound received by the bank is correct, i.e. it

is the correct time-bound for the card.

5
In practice, this is feasible via optional fields inside the AC , which issuing-banks

already use for further data-collection.

Verification Results. The protocols have been analysed w.r.t. the

causality-based security property and the authentication property

mentioned above. To make ProVerif conclude, we added additional

data in the check and timestamp events (e.g., the fresh nonce nC
generate by the card during a session). In addition to highlight the

actions performed by the card (i.e. b2 in Definition 4) we had a new

event proverAction in the role of the card. One may note that if

a protocol satisfies the resulting query then it is causality-based

secure. Indeed, the more precise the events are the stronger the

security property is.

ProVerif always returns in less than 1s. All the results are pre-

sented in the following table:

Protocol

Role Time-bound Causality-based

authentication authentication security

PayCCR++ ✗ ✓ ✓

PayBCR ✓ ✓ ✓

Results Significance. As expected the two protocols are causality-
based secure, i.e., the physical proximity of the two agents involved

in a transaction is ensured, as soon as they are honest.

Moreover, note that, for such transactions, if time-bound au-

thentication holds, then this inherently implies that the check of

timestamps occurring in the causality-based property had been

correctly performed.

However, if the PayBCR protocol satisfies role authentication,

PayCCR++ does not. This means that, in PayCCR++, a bank may

accept a rogue transaction, for instance one involving a card acting

as a TPM (or inversely).

This weakness exhibited is however not surprising. Indeed, check-

ing the TPM certificates is part of the role of the card in PayCCR++,

while it is performed by the bank in PayBCR. This means that cer-

tificates may not have been checked if the card’s role is executed

by a malicious agent in PayCCR++, whereas in PayBCR they will

be always correctly checked since the bank is assumed honest.

Properties’ Significance. Lastly, to go further, one can ask them-

selves if the DB-security/causality-based definition is too strong

(since it cannot even be cast to PayCCR), or it is the correct property

to require. Note that the property’s last claim does link the card’s

ID and the TPM’s ID together with specific timestamps, which

can arguably be seen a strong demand for a payment protocol. In-

stead, one could –for instance– view that the final claim be made

just on a session ID of the whole protocol execution for which a

check took place. However, we cannot prove the DB-security to

causality-based security reduction for such a weaker claim. In other

words, the causality-based definition we verify (which can be cast

on PayCCR++ but not on PayCCR) is also imposed by our theo-

retical results. That said, we are pleased to say that not only can

we cast this property and the authentication property on PayBCR,
but we see that they both hold for this protocol. This is a measure

of showing that DB-security (together with the accompanying au-

thentication property) may indeed be the right security definitions

for strong-relay resistant payments.
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5 IMPLEMENTATION
Our formal work above lets us verify the protocol design, however

certain practical questions remain, e.g., is it possible to integrate

a TPM and an EMV reader? Is the clock on the TPM accurate

enough to enforce a reasonable distance bound on the card and

reader? To answer these questions, in this section we describe

our implementation of PayBCR, and discuss its experimentally-

ascertained functional correctness, efficiency and security. We also

include a discussion of our own implementation of a PayPass-RRP
reader. All of the code for our implementations is available in [6].

5.1 Implementing a PayPass-RRP and PayBCR
Reader

Why Implement a PayPass-RRP Reader. Despite the fact that the
PayPass-RRP specification has existed since 2016, the PayPass-RRP
protocol is not deployed “in the wild”. However, we were able to

obtain PayPass-RRP test cards, one implemented by ICC Solutions

and one directly given to us by MasterCard. These cards run JAVA

card OS and a proprietary Mastercard applet, designed fully com-

pliant with EMV v4. On the reader side, no public implementation

of the PayPass-RRP reader is available, and there are no public

experiments to say if the protocol will work in practice on stan-

dard hardware. So, we have created our own implementation of the

PayPass-RRP reader.

Why Implement PayBCR. Given the above, we chose to imple-

ment PayBCR rather than PayCCR as the former is arguably of

more interest for real-life deployment, in that –unlike PayCCR–
it does not require change to the widest-spread elements of EMV,

that is the cards. Also, as Section 4.3 concludes, PayBCR has the

advantage of authenticating the TPM to the bank, which PayCCR
does not.

Using TPMs & NFC Readers for PayBCR. Due to the lack of TPMs

on current EMV readers, we use a Vostro Notebook 5471 Base
6
with

a TPM2.0 v1.38 on board, running Windows 10 and a standard NFC

reader
7
. To emulate the banks side of the transaction, we use a

proprietary EMV emulation and test suite, known as “CardCracker”,

from EMV manufacturer and consultancy called Consult Hyperion

(https://chyp.com/). We note that this proprietary software is not

necessary to replicate our data, it does however ensure that our

reader implementation can correctly complete a transaction from

the point of view of the back end banking network.

The PayBCR Terminal. The modification that we make to a Pay-
Pass-RRP terminal to lift it to a PayBCR terminal is the fact that

–as part of the ERRD command
8
– we include TPM2_GetTime calls

to the on-board TPM. In terms of interactions with the TPM, the

two TPM calls are done over one connection to the TPM, unless

the connection has been (incidentally) cut by the latter. As part

of this, we also had to declare new “EMV” fields for the terminal

to store the two signatures generated by the TPM commands, as

well as implement the logic of these be sent to the (CardCracker-

emulated) bank and be verified by the later. We implement two

6
CPU: Intel i5-8250U (6MB Cache, up to 3.4GHz), memory: 8GB, DDR4, 2400MHz.

7
We used a SCM Microsystems INC SDI011G.

8
This is the EMV command that views the round-trip measurements and it is explained

in Appendix D.1.

versions of the terminal an honest version that behaves as expected,

and a ‘’timing-rogue” version that does not perform any checks

and forwards messages to the TPM for time-stamping directly. For

these implementation details, please refer to Appendix D.

We implemented our own EMV relay-attack. We tested it using

an iZettle EMV reader. We ascertained that our implementations

of both PayPass-RRP and PayBCR do stop the relay when the

implementations are those with an honest reader; and, indeed, the

bank would accept a relayed transaction from a “timing-rogue”

PayPass-RRP terminal, but would reject a relayed transaction from

a “timing-rogue’ PayBCR terminal. In Appendix D, we give details

on this implementation, and on our testing of the correct as well as

“under-relay” functionalities.

5.2 Performance Testing: Honest and
Relayed Cases

To show that the protocols discussed here are useful in practice, we

will need to show that time bounds exist that will protect the card

against relaying. I.e., we need to show that the time variance of the

transaction must be small when compared to the time added by a

practical relay.

To get the needed time data from our implementation, we used

CardCracker to time software steps and an external “APDU-spying”

tool – National Instruments (Micropross) ACL1 – to measure the

times of messages in transit. This allows us to time each step of the

transactions. The timing of the distance bounding ERRD command

for both PayBCR and PayPass-RRP is shown in Table 1. The card

processing times and transmission times are the same for PayBCR
and PayPass-RRP, the difference comes in the reader processing

step which takes longer, and has a higher standard deviation in the

PayBCR protocol due to the calls to the TPM.

We note that for these tests, we only considered single attempt of

the protocol, aborting failed runs. Therefore, care would have to be

taken when generalising our results to implementations that would

automatically try to resend messages following a failed exchange
9
.

Transaction Mean Standard Deviation

Card Processing Time 13,399 1,850

Card-to-reader

Transmitting Time

1,548 418

Reader Processing

Time PayPass-RRP
8,238 938

Reader Processing

Time PayBCR
24,615 3,815

Reader-to-card

Transmitting Time

1,217 205

Total PayPass-RRP 24,402 2,121

Total PayBCR 40,779 4,265

Table 1: Durations of ERRD Commands/Responses for our
PayPass-RRP and PayBCR Implementations (in microsec-
onds)

9
As Appendix D explains, we implemented PayPass-RRP and PayBCR as per the EMV

standard for PayPass-RRPand the ERRD will be repeated twice if it fails to get the

correct time-bound, under the first attempt.
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Figure 4: The possible false negative and false positive rates
for our implementation of RRP and PayBCR for a range of
possible relay speeds

Discussion. We consider these protocols to be practical if it is

possible to find a time bound that will allow honest transactions to

go through while still stopping relayed transactions. We make the

assumption that a time bound will be set to make false positives (i.e.,

rejected but honest transactions) and false negatives (i.e, accepted

yet relayed transactions) equally likely, i.e., the time bound is half

the relay speed plus the mean transaction time. In Figure 4 we

use the standard deviation from Table 1 to plot the false positive

and negative rates for our implementation of PayPass-RRP and

PayBCR for a range of possible relay speeds.

Both implementations would be easily vulnerable to a relay that

added a total additional delay of 1ms or less, and both would work

well to stop relays that added a delay of more than 10ms. PayPass-
RRP can enforce a much tighter bound than PayBCR, namely in the

5ms to 10ms range. Past work on EMV relay that used standard, off-

the-shelf equipment (smart phones) (e.g. [9, 15]) has reported a delay

of anywhere between 36ms to 100ms. To this end, we can conclude

that both of our PayPass-RRP and PayBCR implementations will

stop relay attacks with such COTS hardware.

Relay attacks that target cars and use specialist equipment can

achieve relay speeds of a few microseconds [14]. It is clear that

neither protocol can defend against such a relay. Indeed, based on

the card processing time variance alone, a relay that adds a 3ms

delay (or less) will lead to a false positive and false negative rate of

more than 2%. Therefore, we can entail that it is not possible for

any design of reader to time bound a MasterCard PayPass-RRP,
built using the same methods as our test card, to protect against

specialist equipment that can relay in microseconds.

Overall, the take-home message of our experiments is that both

PayPass-RRP and PayBCR are capable of stopping relay attacks

based on COTS hardware, such as mobile phones, so are practical

for protecting EMV transactions, especially since the value of a con-

tactless EMV transaction is capped. Additionally, our experiments

add to the work in [7] and show that enhancing an EMV-reader

specification with a TPM as a hardware root of trust (a la PayBCR)

can be a practical option for protecting relays in the presence of

rogue readers.

6 CONCLUSION
Payments and their security have been formally looked at for some

time. However, their newer and rising contactless dimension has

been less investigated and, certainly, less so from a formal per-

spective. What is more, whilst the EMV standard has added relay-

protection to contactless payments in 2016, this protection has not

been deployed and, as such, has not been probed in practice. Also,

most security and robustness of EMV payments is formulated un-

der the assumption that the EMV readers/terminals are honest; in

this day and age, where many of these run on open and updatable

firmware, this crux assumption is at least challengeable and was

indeed effortlessly refuted in 2019, in [7]. The latter work proposed

that EMV terminals be retrofitted with hardware roots of trust

(such as TPMs) to aid enhance aspects of their contactless security

(namely, measurements of time and distance that are used in relay-

counteractions). Last but not least, the said terminals are no longer

fixed points-of-sale, they are mobile iZettle, with the merchants

moving them around even as payments take place. To this end, their

contactless range and measurements fluctuate with such motions.

To sum up, in this work, we addressed the aforementioned gaps

and new developments in contactless-payments security, both from

a formal analysis and from a practical/implementation perspective.

Concretely, we presented a calculus to model relay-resistant proto-

cols, included themost recent ones that offer strong relay-protection

via their integration with hardware roots of trust (HWRoT). In the

same modern and novel vain, our calculus is also the first to allow

for mobility of cards and readers within the proximity-checking

primitive used for relay-protection. To be able to formally analyse

these protocols, the physical aspects of time and distance are cum-

bersome to deal with in practical, security analysis tools. As such,

we also extended a causality-based characterisation of proximity-

checking security which was initially developed by S. Mauw et al.
in 2018, such that we eliminate the need to account for physicalities

in our (even stronger) protocol models and security analyses. In

turn, this allowed us to verify the proximity-related security of a

series of contactless payments, included the new ones in [7], in

the popular verification tool ProVerif. Last but not least, we pro-

vided the first implementation of Mastercard’s relay-resistant EMV

protocol called PayPass-RRP, as well as of its 2019 extension with

HWRoT – called PayBCR; we evaluated their efficiency and robust-

ness of these payment protocols to relays attacks, in presence of

both honest and rogue readers. Importantly, our experiments are

the first experiments to show that both PayPass-RRP and PayBCR
are actually practical protocols in offering this type of relay pro-

tection for EMV (for delays in the 5ms to 10ms range, which have

deemed meaningful [9] in this application domain).

In future work, we would like to pursue a series of avenues,

part of which are linked to more faithful modelling of the mobil-

ity of agents. For instance, we are keen to analyse more distance-

bounding protocols where the mobility of participants can lead to

(in)security concerns, in ways akin to the area of authenticated

ranging.
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A PROOFS OF THEOREM 1
To ease the proofs, we now extend the semantics with annotations.

The annotations will feature labels identifying which process in

the multiset has performed the action (session identifier). This will

allow us to identify which specific agent performed some action.

We also put in the annotation the global time at which the action

has been done. In case of an output, the annotation will indicate the

name of the handle w that has been used to store the output in the

frame. In case of an input, the annotation will indicate by a tuple

(b, tb ,R) the name b of the agent responsible of the corresponding

output, the time at which this output has been performed, as well

as the recipe R used to build this output.

Formally, a label is either empty (for the TIM rule) or of the

form (a, t,α) with α of the form: τ , gettime, claim(u1,u2,u3,u4),
check(u1,u2,u3), out(u), or in(u)}. Thus, an annotated action is:

• empty for the TIM rule;

• (a,α, s, t,w)when the underlying label (a, t,α) is of the form
(a, t, out(u)). In such a case, s is the session identifier of the

agent responsible of this action, and w is the handle added

in the frame.

• (a,α, s, t, (b, tb ,R)) when the underlying label (a, t,α) is of
the form (a, t, in(u)). In such a case, s is the session identifier

of the agent responsible of this action, b is the agent respon-

sible of the corresponding output, tb the time at which this

output has been done (tb ≤ t ), and R the recipe that has been

used to forge this output.

• (a,α, s, t, ∅) otherwise.

In the untimed semantics, similar annotations can be added. Of

course, in such a case, timing information are not relevant. Annota-

tions are thus of the form (a,α, s, r ) with either r = w (case of the

output), r = (b,R) (case of the input), or r = ∅ otherwise.

In order to establish Theorem 1, we prove two propositions: one

for each direction of our main result.

A.1 From DB-security to causality
This section is devoted to the proof of the following proposition.

Proposition 1. Let P be a protocol and S be a set of valid initial
configurations. Assuming that P is well-timed w.r.t. S, and P is
DB-secure, we have that P is causality-based secure.

This proof is quite straightforward and consists in re-timing a

witness of attack against the causally-based secure property. Re-

timing an execution depends on the underlying mobility plan. We

therefore introduce the notion of timed formula CLoc
exec associated

to an annotated relaxed execution exec , and a mobility plan Loc.

Given a trace tr1 . . . trn we note IN(tr1 . . . trn ) the set of all

the indices corresponding to input actions. Similarly TS(tr1 . . . trn )
denotes the set of all the indices corresponding to timestamp events.

Given a set S we note #S its size. Finally, we note orig(i) the index
of the i

th
output in the trace.
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Timed formula associated to an execution. Given an annotated

execution exec = K0 = (P0;Φ0)
tr1 .....trn

Kn (with tri =
(ai ,αi , si , ri ) for 1 ≤ i ≤ n) of size n and a mobility plan Loc,
the timed formula CLoc

exec , built upon the set of variables Z =

{z1, . . . , zn } ∪ {zbi | i ∈ IN(tr1, . . . , trn )}, is the conjunction of

the following formulas:

• 0 ≤ z1 ≤ z2 ≤ . . . ≤ zn ;
• zi < zi+1 for all i ∈ TS(tr1, . . . , trn−1);
• for all i ∈ IN(tr1, . . . , trn ),

zi ≥ zbi + Dist(Loc(ai , zi ), Loc(bi , z
b
i ));

• for all i ∈ IN(tr1, . . . , trn ), for all j such that wj ∈ vars(Ri )∖
dom(Φ0),

zbi ≥ zorig(j) + Dist(Loc(bi , z
b
i ), Loc(aorig(j), zorig(j))).

We note that given a configuration K , the transformation ·

defined in Section 4.2 is uniquely defined as soon as each variable

is bound at most once inK . In such a case, ρ : x 7→ cx is a bijective

renaming.

Lemma 1. Let P be a protocol andK0 = (P0;Φ0; 0) be a valid initial
configuration. Let Loc be a mobility plan.

For any execution exec = K0

tr1 ...trn
Kn with tri = (ai ,αi , si , ri )

and function φ satisfying CLoc
exec we have:

K0

tr ′
1
...tr ′n

−−−−−−−−→Loc K
′
n

with:

tr ′i =

{
(ai , gettime, si ,φ(zi ), ∅) if αi = timestamp(ci )

(ai ,αiφc , si ,φ(zi ), riφc ) otherwise

and φc (ci ) = φ(zi ) for all i ∈ TS(tr1 . . . trn ). Moreover, K ′
nφc = Kn .

Proof. The proof follows the definition of CLoc
exec . Indeed this

formula contains all the timing constraints to trigger each action.

Moreover, by definition of CLoc
exec we obtain that φc is a bijective

function. This preserves equalities and inequalities between the

untimed and the timed execution.

□

We are now able to prove Proposition 1.

Proof. We assume that P is not causality-based secure, we

establish that P is not DB-secure. Since P is not causality-based

secure, we know that there exist a valid initial configuration K0 =

(P0;Φ0; 0) and an annotated execution exec such that:

exec = K0

tr1 ...trn .(b0,claim(b1,b2,c0
1
,c0

2
),s ,∅)

(P ′
;ϕ ′)

with tri = (ai ,αi , si , ri ) (1 ≤ i ≤ n) and b1 < M, b2 < M and

either:

(1) there is no k ≤ n such that αk = check(c0
1
, c0

2
,u) for some

u ∈ T (Σc ,N ∪ Σ+
0
); or

(2) there is no i ≤ n (resp. j ≤ n) such that

(ai ,αi ) = (b1, timestamp(c0
1
))

(resp. (aj ,α j ) = (b1, timestamp(c0
2
))); or

(3) there exist i0, j0,k0 ≤ n and u ∈ T (Σc ,N ∪ Σ+
0
) such that

αk0 = check(c0
1
, c0

2
,u), (ai0 ,αi0 ) = (b1, timestamp(c0

1
)), and

(aj0 ,α j0 ) = (b1, timestamp(c0
2
)) but there is no i0 ≤ k ′ ≤ j0

such that ak ′ = b2.

Let trn+1 = (b0, claim(b1,b2, c
0

1
, c0

2
), s, t, r )). We consider each

case separately.

Case 1: Let Loc be the mobility plan such that Loc(a, t) = (0, 0, 0)

for any a ∈ A and t ∈ R+. Since the location of each agent does

not depend on time, for sake of readability, we write Loc(a) instead
of Loc(a, t).

Let φ be the function such that:

• φ(zi ) = #TS(tr1 . . . tri−1) for i ∈ {1, . . . ,n + 1},
• for all i ∈ IN(tr1 . . . trn ), we have that:
– φ(zbi ) = φ(zorig(j)) if bi <M and Ri = wj ,

– φ(zbi ) = φ(zi ) otherwise.

We can show that this function φ satisfies CLoc
exec . Indeed, we have

that:

• 0 ≤ φ(z1) ≤ φ(z2) ≤ . . . ≤ φ(zn );
• φ(zi ) < φ(zi+1) for i ∈ TS(tr1, . . . , trn−1);
• for all i ∈ IN(tr1, . . . , trn ), we have that either φ(zbi ) =
φ(zorig(j)) ≤ φ(zi ) for some j such that orig(j) ≤ i , or

φ(zbi ) = φ(zi ). In both cases, we have that:

φ(zi ) ≥ φ(zbi ) + Dist(Loc(ai ), Loc(bi ))

sinceDist(Loc(ai ), Loc(bi )) = 0. Remember that all the agents

are at the same location.

• for all i ∈ IN(tr1, . . . , trn ), for all j such that wj ∈ vars(Ri )∖
dom(Φ0), we have that orig(j) < i , and thus φ(zorig(j)) ≤

φ(zi ). Therefore, we have that:

φ(zbi ) ≥ φ(zorig(j))

and we conclude since Dist(Loc(bi ), Loc(aorig(j))) = 0. Re-

member that all the agents are at the same location.

Finally, applying Lemma 1 we obtain that the execution can be

lifted into the timed semantics. This timed execution immediately

falsifies the DB-secure property because there is no check event

in the timed execution. Indeed the timed execution is equal to the

untimed one up to the times and the bijective function φc defined
in Lemma 1.

Case 2: since P is well-timed w.r.t. S, this case is not possible.

Case 3: Let Loc be the mobility plan such that:

• Loc(a, t) = (0, 0, 0) for any a , b2, and any t ∈ R+;
• Loc(b2, t) = (1, 0, 0) for any t ∈ R+.

Since the location of each agent does not depend on time, for sake

of readability, we write Loc(a) instead of Loc(a, t).
Let φ be the function such that φ(zi ) is as follows:

• 2 · #IN(tr1 . . . tri ) + #TS(tr1 . . . tri−1) for i < i0;
• φ(zi0−1) + 1 +

1

c0 ·n #TS(tri0 . . . tri−1) for i0 ≤ i ≤ j0;

• φ(zj0 )+2 ·#IN(tr j0+1 . . . tri )+#TS(tr j0+1 . . . tri−1) for 1 > j0.

Informally, for all action outside the critical phase delimited by

indices i0 and j0, we apply a delay of 2 before each input, and a

delay of 1 after each timestamp. During the critical phase we do not
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apply delay before inputs and only apply a short delay of 1/(c0 · n)
after each timestamp to ensure that time increases between two

timestamps as required by the semantics.

In addition, for all i ∈ IN(tr1 . . . trn ), if bi <M then

φ(zbi ) = φ(zorig(j)) where Ri = wj , otherwise:

φ(zbi ) =

{
φ(zi ) − 1 if i < i0 or i > j0

φ(zi ) if i0 ≤ i ≤ j0.

We can show that this function φ satisfies CLoc
exec . Indeed, we have

that:

• 0 ≤ φ(z1) ≤ φ(z2) ≤ . . . ≤ φ(zn );
• φ(zi ) < φ(zi+1) for i ∈ TS(tr1, . . . , trn−1);
• Regarding the remaining constraints in CLoc

exec , we consider i ∈
IN(tr1, . . . , trn ), and we show the result by distinguishing

two sub-cases: Case i < i0 or j0 < i , and Case i0 ≤ i ≤ j0.

Once this is done, we can apply Lemma 1 to re-time the execution.

We obtain that:

K0

tr ′
1
...tr ′n .(b0,claim(b1,b2,c0

1
φc ,c0

2
,φc ),s ,∅)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→Loc K
′
n+1

with:

tr ′i =

{
(ai , gettime, si ,φ(zi ), ∅) if αi = timestamp(ci )

(ai ,αiφc , si ,φ(zi ), riφc ) otherwise

and φc (ci ) = φ(zi ) for all i ∈ TS(tr1 . . . trn ).
By construction, we have that φc (c

0

1
) = φ(zi0 ), φc (c

0

2
) = φ(zj0 ),

and, by definition of φ, we have that φ(zi+1) − φ(zi ) ≤ 1/(c0 · n)
when i ∈ {i0, . . . , j0 − 1}. Therefore, we have that:

φ(zj0 ) − φ(zi0 ) ≤ (j0 − i0 + 1)/(c0 · n) ≤ 1/c0
< 2/c0
≤ 2 × Dist(Loc(b1), Loc(b2))

Hence, we have that P is not DB-secure. □

A.2 From causality to DB-security
This section is devoted to the proof of the following proposition.

Proposition 2. Let P be protocol and S a set of valid initial config-
urations. If P is causality-based secure w.r.t. S then P is DB-secure
w.r.t. S.

This implication is more complex than the previous one, and

we start by establishing some lemmas allowing one to reorder

some actions in a trace, and to derive timing constraints between

dependent actions.

A.2.1 Preliminaries. First, we introduce the notion of dependence

between actions.

Definition 6. Given an execution K0

L1
−−→Loc · · ·

Ln
−−→Loc Kn with

Li = (ai ,αi , si , ti , ri ), Lj = (aj ,α j , sj , ti , r j ), we say that Lj is depen-
dent of Li , denoted Lj ↪→ Li , if i < j, and:

• either si = sj (and thus ai = aj ), and in that case Lj is
sequentially-dependent of Li , denoted Lj ↪→s Li ;

• or αi = out(v), α j = in(u), and ri ∈ vars(Rj ) with r j =

(bj , t
b
j ,Rj ), and in that case Lj is data-dependent of Li , de-

noted Lj ↪→d Li .

We note ↪→∗ the transitive closure of ↪→. Finally we note Lj ↪̸→∗ Li
when Lj is not dependent of Li .

As established in [12] in a slightly different setting, we have the

following result.

Lemma 2. Given an execution K0

L1
K

L2
K2 such that L2 ↪̸→

L1. We have that K0

L2
K ′ L1

K2 for some K ′.

Proof. Let K0 = (P0;Φ0), K = (P;Φ), and K2 = (P2;Φ2) be

such that K0

L1
K

L2
K2 with L2 ↪̸→ L1. Let L1 = (a1,α1, s1, r1)

and L2 = (a2,α2, s2, r2). Since L2 ↪̸→ L1 we have that s1 , s2.
Therefore, we have that:

• P0 = ⌊act1.P1⌋ a1 ∪ ⌊act2.P2⌋ a2 ⊎ Q,

• P = ⌊P ′
1
⌋ a1

∪ ⌊act2.P2⌋ act2 ⊎ Q,

• P2 = ⌊P ′
1
⌋ a1

∪ ⌊P ′
2
⌋ a2

⊎ Q

where act1 and act2 are actions of the form in(x), gettime(x),
let x = v in P else Q , claim(u1,u2,u3,u4), new n, out(u), or
check(u1,u2,u3).

In case α1 = out(v) and α2 = in(u), we have that Φ2 = Φ = Φ0⊎

{w
a1
−−→ v} and since L2 ↪̸→d L1, we know that w < vars(r2). Thus,

we have that vars(r2) ⊆ dom(Φ0). Now, let K
′ = ( ⌊act1.P1⌋ a1 ⊎

⌊P ′
2
⌋ a2

⊎ Q;Φ0). Relying on the fact that w < vars(r2) in case

α1 = out(v) and α2 = in(u), it is easy to see thatK0

L2
K ′ L1

K2.

The other cases can be treated in a rather similar way. □

Corollary 1. Given a traceK0

tr1 ...trn
Kn with n ≥ 2 there exists

a bijection φ : {1, . . . ,n} → {1, . . . ,n} such that:
• tri = tr ′φ(i) for all i ∈ {1, . . . ,n};
• for all j such that φ(1) < j < φ(n), we have that tr ′φ(n) ↪→

∗

tr ′j ↪→
∗ tr ′φ(1);

• for all j1, j2 such that φ(1) ≤ j1 < j2 ≤ φ(n), we have that
φ−1(j1) < φ−1(j2); and

• K0

tr ′
1
...tr ′n

Kn .

Proof. (sketch) We split the proof in two parts: first we prove

that there exists a bijection φ1 cleaning the trace between tr1 and
trn moving actions independent from tr1 before it. Then we prove

that there exists a bijection φ2 cleaning the trace moving actions

from which trn does not depend on after it. Considering φ = φ2 ◦φ1
we will be able to conclude. □

The next lemma consists in transforming a timed execution

into an untimed one. Even if this transformation can be done in a

rather straightforward way, we state it with some details in order

to maintain s strong relationship between the two executions.

To do so, we first precise the transformation · presented in

Section 4.2. When we apply this transformation, we rely on the

function σspe : X → Σ
spe
0

which is used to replace an action of the

form gettime(x) by the action timestamp(σspe(x)).

Similarly, given an execution exec = K0

tr
−−→Loc K0, we denote

σtime : X → R+ the function that associates to each variable

occurring in a gettime instruction, the current time at which this

instruction has been executed.
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Lemma 3. LetP be a protocol andK0 be a valid initial configuration
for P. For any execution

exec = K0

tr1 ...trn
−−−−−−−−→Loc Kn

such that tri = (ai ,αi , si , ti .ri ) for i ∈ {1, . . . ,n}, we have that

K0

tr ′
1
...tr ′n

K ′
n where K ′

n = Knσ and for any i ∈ {1, . . . ,n}, we
have that:

tr ′i =


(ai , timestamp(tiσ ), si , ∅) if αi = gettime

(ai ,αiσ , si , (bi ,Riσ )) if ri = (bi , t
b
i ,Ri )

(ai ,αiσ , si , riσ ) otherwise

where σ = σspe ◦ σ
−1
time assuming that σspe is the function used to

transformK0 intoK0 and σtime is the one associated to the execution
exec.

Proof. This proof is immediate because the configurations only

differ from the bijective function σ (the equalities are thus pre-

served) and the rules in the untimed semantics are less restrictive

than the rules in the timed semantics □

The following lemma gives us some constraints about dependent

actions. Indeed given two actions tr1 and tr2 such that tr2 ↪→
∗ tr1

we know that enough time must has elapsed after the execution

of tr1 to be able to trigger tr2.

Lemma 4. Let Loc be a mobility plan, and exec = K0

tr1 .....trn
−−−−−−−−−→Loc

K1 be an execution with tri = (ai ,αi , si , ti , ri ) for i ∈ {1, . . . ,n}. Let
i, j ∈ {1, . . . ,n} such that tr j ↪→∗ tri . We have that:

tj ≥ ti + Dist(Loc(ai , ti ), Loc(aj , tj )).

Proof. By definition of ↪→∗
, we know that there exists a se-

quence n ≥ i1 > i2 > . . . > ik ≥ 1 such that:

tr j = tri1 ↪→ tri2 ↪→ . . . ↪→ trik = tri .

We do the proof by induction on the length of this sequence. If

k = 1 then tri = tr j and thus ti = tj and ai = aj . The result trivially
holds. Otherwise, we have that:

tr j = tri1 ↪→ tri2 ↪→ . . . ↪→ trik = tri .

By induction hypothesis, we have that:

ti2 ≥ ti + Dist(Loc(ai , ti ), Loc(ai2 , ti2 )).

We distinguish two cases depending on the nature of the depen-

dency tr j ↪→ tri2 .

Case tr j ↪→s tri2 . In such a case, we have that aj = ai2 and j ≥ i2.

Moreover, we have that tj ≥ ti2 , and by definition of a mobility

plan we know that

tj − ti2 ≥ Dist(Loc(aj , tj ), Loc(aj , ti2 )).

Relying on our induction hypothesis, we have that:

tj ≥ ti2 + Dist(Loc(aj , tj ), Loc(aj , ti2 ))
≥ ti + Dist(Loc(ai , ti ), Loc(ai2 , ti2 ))
+ Dist(Loc(aj , tj ), Loc(aj , ti2 ))

≥ ti + Dist(Loc(ai , ti ), Loc(aj , tj )).

Note that the last inequality comes from the fact Dist is a distance,
and thus satisfies the triangle inequality.

Case tr j ↪→d tri2 . In such a case, we have that r j = (b, tb ,R), ri2 =

w and w ∈ vars(R). By definition of the IN rule we have that:

• tj ≥ tb + Dist(Loc(aj , tj ), Loc(b, tb )), and
• tb ≥ ti2 + Dist(Loc(b, tb ), Loc(ai2 , ti2 )).

Combining these two inequalities together with the triangle in-

equality we obtain:

tj ≥ ti2 + Dist(Loc(aj , tj ), Loc(ai2 , ti2 )).

Finally, relying on our induction hypothesis, we have that:

tj ≥ ti + Dist(Loc(ai , ti ), Loc(ai2 , ti2 ))
+ Dist(Loc(aj , tj ), Loc(ai2 , ti2 ))

≥ ti + Dist(Loc(aj , tj ), Loc(ai , ti )).

This concludes the proof. □

A.2.2 Proposition 2. We are now able to prove Proposition 2. The

proof starts with an attack trace w.r.t. DB-security such that t0
2
−t0

1
<

δ (for some threshold δ ) and then follows the following steps:

(1) We first apply Lemma 3 to weaken the trace in the untimed

semantics.

(2) Then, we apply Corollary 1 to clean up the trace between

the two timestamp actions.

(3) We apply Lemma 1 to lift this execution in the timed model

keeping the value t0
2
− t0

1
unchanged.

(4) Assuming that the protocol is causality-based secure, there

is still an action executed by the prover between the two

timestamps. By construction this action depends on the two

timestamps. Applying Lemma 4, we will therefore obtain

that t0
2
− t0

1
≥ δ leading to contradiction.

Proposition 2. Let P be protocol and S a set of valid initial config-
urations. If P is causality-based secure w.r.t. S then P is DB-secure
w.r.t. S.

Proof. (sketch) We assume that P is not DB-secure, and thus

there exist a valid initial configuration K0 ∈ S and an execution

exec such that:

exec = K0

tr1 ...trn .(b0,claim(b1,b2,t 0
1
,t 0
2
),s ,t ,∅)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→Loc Kn+1

with b1 <M and b2 <M and either:

(1) there is no check event, i.e. index k ≤ n such that trk =
(ak , check(t

0

1
, t0
2
, t0
3
), sk , tk , ∅); or

(2) for any t with t0
1
≤ t ≤ t0

2
, we have that:

t0
2
− t0

1
< Dist(Loc(b1, t0

1
), Loc(b2, t))

+Dist(Loc(b2, t), Loc(b1, t0
2
))

Below, we note tri = (ai ,αi , si , ti , ri ) for i ∈ {1, . . . ,n}. First, we
apply Lemma 3. Therefore, we have that:

exec′ = K0

tr ′
1
...tr ′n .(b0,claim(b1,b2,t 0

1
σ ,t 0

2
σ ),s ,∅)

K ′
n+1
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where K ′
n+1 = Kn+1σ and for any i ∈ {1, . . . ,n + 1}, we have that:

tr ′i =


(ai , timestamp(tiσ ), si , ∅) if αi = gettime

(ai ,αiσ , si , (bi ,Riσ )) if ri = (bi , t
b
i ,Ri )

(ai ,αiσ , si , riσ ) otherwise

where σ = σspe ◦ σ−1
time assuming that σspe is the function used

to transform K0 into K0 and σtime is the one associated to the

execution exec.

We assume by contradiction that P is causality-based secure,

thus we know that there exist i0, j0,k,k
′ ≤ n with i0 ≤ k ′ ≤ j0, and

u ∈ T (Σc ,N ∪ Σ+
0
) such that:

• αkσ = check(t0
1
σ , t0

2
σ ,uσ );

• (ai0 ,αiσ ) = (b1, timestamp(t0
1
σ ));

• (aj0 ,α jσ ) = (b1, timestamp(t0
2
σ )); and

• ak ′ = b2.

By definition of exec′, we have that trk = (ak , check(t
0

1
, t0
2
,u), sk , tk , ∅)

for some time tk ∈ R+, and this leads to a contradiction with item

1). Thus, we can assume from now that the condition stated in item

2) holds.

Now, we apply Corollary 1 to the sub-executionK ′
i0−1

tr ′i
0

...tr ′j
0

K ′
j0 of exec′, and we obtain that there exists a bijection φact :

{i0, . . . , j0} → {i0, . . . , j0} such that:

• tr ′i = tr ′′φact(i)
for all i ∈ {i0, . . . , j0};

• for all j such that φact(i0) < j < φact(j0), we have that

tr ′′φact(j0)
↪→∗ tr ′′j ↪→

∗ tr ′′φact(i0)
;

• for all j1, j2 such that φact(i0) ≤ j1 < j2 ≤ φact(j0), we have
that φ−1act(j1) < φ−1act(j2); and

• K ′
i0−1

tr ′′i
0

...tr ′′j
0

K ′
j0 .

We have thus an execution exec′′ such that:

exec′′ = K0

tr ′
1
...tr ′i

0
−1

K ′
i0−1

tr ′′i
0

...tr ′′j
0

K ′
j0

tr ′j
0
+1 ...tr

′
n .(b0,claim(b1,b2,t 0

1
σ ,t 0

2
σ ),s ,∅)

K ′
n+1.

For sake of simplicity, for i < i0 and i > j0 we define tr
′′
i = tr ′i .

For all i ∈ {1, . . . ,n} we define a′′i the name of the agent executing

tr ′′i . If i ∈ IN(tr ′′
1
. . . tr ′′n ), we also define R′′

i (resp. b ′′i ) the recipe
(resp. agent name) occurring in tr ′′i . We have that a′′φact(i)

= ai ,

R′′
φact(i)

= Riσ and b ′′φact(i)
= bi .

Then, we aim at re-timing the trace exec′′ without changing the

amount of time that elapses between the two timestamps instruc-

tions. Once this is done, the dependencies

tr ′′φact(j0)
↪→∗ tr ′′j ↪→

∗ tr ′′φact(i0)

for any j such that φact(i0) < j < φact(j0) together with the fact

that there exists such a j such that aj = b2 (since P is assumed to

be causality-based secure) will lead us to a contradiction thanks to

Lemma 4. □

Reader Card

KM , PrivC
CertPr ivCA(PubB)
CertPr ivB (PubC, SSAD)
SSAD = H (PAN , exDate, . . . )

PubCA

UN ∈R {0, 1}32 nC ∈R {0, 1}32

SELECT 2PAY.SYS.DDF01

AID1,AID2,. . .

SELECT PAYPASS_AID

SELECTED

GPO

AIP,AFL

ERRD (UN )

timed

ERRD-r(nC )

READ RECORD

CertPr ivCA(PubB)

READ RECORD

CertPr ivB (PubC,SSAD), PAN, CDOL1, . . .

GENERATE AC(UN, amount, currency, . . . )

KS = EncKM (ATC)

AC = MACKs (amount,ATC,UN,. . . )

SDAD = SignPr ivC (AC,UN,amount,

currency,ATC, . . . )

SDAD(AC), ATC

Figure 5: The PayPass-RRP Protocol

B DETAILS ON EMV PAYPASS-RRP
High-level Description of PayPass-RRP. We include here some

essentials on PayPass-RRP, to help the reader grasp immediately

the main idea of the protocol. In essence, in 2016, when Mastercard

introduced PayPass-RRP(shown in Figure 5 below), they added

a subprotocol/process called the Relay Resistance Protocol (RRP)
to their de-facto contactless-payment protocol called PayPass. A
PayPass transaction is lifted to a PayPass-RRP transaction in the

the following way: a new command, called ERRD (“Exchange Relay

Resistance Data”) is introduced, and it is sent by a PayPass-RRP-
capable reader to a PayPass-RRP-capable card right after the GPO
(GET PROCESSING OPTIONS) command.

As with all EMV protocols, the PayPass-RRP card includes:

(1) a private key PrivC ;
(2) a symmetric key KM that it shares with the bank;

(3) a certificate chain CertPr ivCA (PubC ) for the card’s public
key PubC .

The reader has the public key PubCA of the Certificate Authority,

and so can extract and verify the card’s public key. PayPass-RRP
starts with a setup phase (not shown in Figure 5), inwhich the reader

asks the card what protocols it supports and selects one to run. The
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TPM Reader Card

td , KM , Pr ivC ,Cer tB (PubC )

Cer t (PubSiдnT PM ),

NC ∈R {0, 1}32

PubCA
NR ∈R {0, 1}32

Pr ivSiдnT PM ,. . .

TPM2_GetTime(NR )

t1 := TPM-AttestedTime;
σ1 = SiдnT PM (t1 ,NR )

t1, σ1 σ1

NCTPM2_GetTime(NC )timed

t2 := TPM-AttestedTime;
σ2 = SiдnT PM (t2, NC )

t2, σ2 t2 ,σ2 ,t1 ,NR
Cer t (PubSiдnT PM )

Certs

GEN AC, data, . . .

Check signatures & values in σ1 & σ2 ,
Check t2 − t1 < td and check Certs

KS = EncKM (ATC)
AC=MACKs (ATC,data,trunce32(σ1), )
SDAD= SignPr ivC (AC, NR , td , NC ,..)

SDAD, AC

Check SDAD
To Bank: AC,. . .

Figure 6: PayCCR [7]: Mastercard’s PayPass-RRP with
Collusive-Relay Protection & No Changes to the Issuing
Bank

card and reader then generate single-use random numbers NC
and UN , respectively.

The reader then sends an ERRD command to the card, which

contains the nonce UN . The card immediately replies with its own

nonce NC , and the reader times this round trip time. The card also

provides timing information, which tells the reader how long this

exchange should take. The reader compares the time taken with the

timing information on the card. If the time taken was too long, the

reader stops the transaction as a suspected relay attack. Otherwise,

the reader requests that the card generates a “cryptogram” (a.k.a.

AC). The card uses the unique key KM , which it shares with the

bank, to encrypt its application transaction counter ATC (which

equals the number of times the card has been used). This encryption

equates to a session-key denoted KS . The cryptogram AC is a MAC

keyed with KS of data including the ATC, the nonce UN , and the

transaction information. As the reader cannot check the AC, the
card generates the “Signed Dynamic Application Data (SDAD)”: the
card’s signature on amessage includingUN , amount, currency,ATC,
NC . The reader checks the SDAD before accepting the payment.

C DETAILS ON PAYCCR
PayCCR from [7] is shown in Figure 6. It modifies the EMV pro-

tocol on the card and the EMV reader’s side, yet the bank system

backend remains unchanged from the current standard. As with

MasterCard’s PayPass-RRP protocol, the time bound td (cardID) to
be enforced for the proximity-checking phase is embedded in each

card; we denote it td . Before the RRP process, the reader sends the

card a certificate chain for the TPM’s public part of the signing key.

The EMV reader will then send a nonce NR to the TPM to be

timestamped. The TPM receives this bitstring NR passed to the

TPM2_GetTime command, the TPM timestamps it with

TPM-AttestedTime, and using a randomised signing algorithm to

produce the signature σ1. Then, the EMV reader forwards σ1 to the
card. The rest follows as per PayBCR only that it is the card which

does the timestamps’ checks and the bank does not receive the data

for this.

D IMPLEMENTATION DETAILS
We implemented the PayPass-RRP and PayBCR terminals/readers’

logic. The implementation is in C#, in order to be (easily) integrated

with the CardCracker tool. We recall that CardCracker is a tool by

the EMV-orientated company called ConsultHyperion. It is devel-

oped in C# and it offers rich smart-card testing suite. It provides

in-built functions, e.g. crypto libraries, EMV functionality, etc, but

also a full scripting language that supports EMV commands. This

is useful in both development and testing of any EMV prototype.

We developed/extended CardCracker, in C#, so that we can ex-

pand it primarily as follows: (a) with the ERRD command ; (b) with

a new ERRD command that included communicating with a TPM

2.0. We also developed the scripting language of CardCracker so

that then we can run easily the tests we describe below. We used

this implementation for all our security/efficiency measurements

described below.

On the one hand, for all PayPass-RRP-inherent matters, our

reader-side implementation are based on the “EMV Contactless

Book C-2” of the EMV specifications [13], which we will henceforth

refer to as EMV-C2. On the other hand, any TPM-related aspects (in

PayBCR), which are added on top of PayPass-RRP, are as per [7].
We implement two types of terminals: (a) the type of readers

that behave as per the specifications; (b) the type of readers that

attempt to cheat on the RTT measurements. We call the former

variety “honest’’ and the latter – “timing rogue”. We detail this

below.

D.1 The PayPass-RRP Terminal
More details on EMV commands and responses we will describe

below can be found in the EMV-C2 specs [13].

Any PayPass-RRP-compliant terminal should implement and

exhibit in testing the following flow w.r.t. EMV commands and

responses:

(1) Their transactions should exhibit EMVmessages in a flow/order

as per the EMV-C2 specs, that is: “Select PPSE”, “Select
AID”, “GPO”, “ERRD”, “Read Records”, “GEN AC”.

(2) In the above, the ERRD command should contain the “Termi-

nal Relay Resistance Entropy” (i.e., in our Figure 5 which de-

scribes PayPass-RRP, this is denoted as the reader-generated
UN nonce; in our Figure 1 which describes PayBCR, this is
denoted σ

′

1
);

(3) The ERRD response should contain the following:
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• Device Relay Resistance Entropy, i.e., the nonce returned

by the card and denoted on Figure 5 as NC , or to be precise
– “ERRD-r(NC )”)

• three timing estimates from the card:

– Min Time for Processing Relay Resistance APDU, i.e.,

the minimal time the card takes to process this ERRD
command;

– Max Time for Processing Relay Resistance APDU, i.e.,

the maximal time the card takes to process this ERRD
command;

– Device Estimated Transmission Time For Relay Resis-

tance R-APDU, i.e., the RTT-estimate as specified on the

card.

(4) The RRP process
10

should be performed as per EMV-C2,

Sections 3.10, 5.3 and 6.6. I.e., this means that every check

passed or failed should be reflected in the bytes of the APDU

as per these specifications.

D.1.1 The Honest PayPass-RRP Terminal. To determine if the Pay-
Pass-RRP terminal is exhibiting the (in)correct functional behaviour,

one should inspect the following APDU responses, inside gathered

EMV logs:

• AIP (Application Interchange Profile) response

• TVR (Terminal Verification Result) response.

Any honest PayPass-RRP terminal must:

(i) Approve a successful transaction having performed PayPass-
RRP when no relay attack occurred.

Concretely, as per EMV-C2, the following should occur:

(a) AIP = 1981 (meaning the card supports PayPass-RRP);
(b) TVR = 0000000002 (meaning PayPass-RRPwas performed

and passed).

(ii) Detect and abort a transaction having performed PayPass-
RRP if a relay attack occurs.

Concretely, as per EMV-C2, the following should occur:

(a) AIP = 1981 (meaning the card supports PayPass-RRP);
(b) TVR = 000000000E (meaning that PayPass-RRP was per-

formed but the relay-resistance threshold was exceeded and

the relay-resistance time limits were exceeded).

D.1.2 The Timing-Rogue PayPass-RRP Terminal. The timing-rogue

PayPass-RRP terminal will always report the bit of TVR linked

to PayPass-RRP as per case (i) above. Moreover, in the error sec-

tions/APDUs of EMV, it will report no errors. This conveys that

a rogue PayPass-RRP terminal would detect relay attacks by per-

forming PayPass-RRP, but approve said transactions anyway.

D.2 The PayBCR Terminal
First, recall that PayBCR is designed such that its terminal looks

identical to the PayPass-RRP terminal as far as the EMV input/outputs

are concerned (i.e., the communication with TPM is internal to the

reader and the visible outputs of the reader are as per PayPass-
RRP). So, in the honest case, there should be absolutely no difference
between the two terminals: concretely, they both behave like in

case (i) above. Second, recall that the difference between PayBCR

10
This is the process of checking the above parameters against the reader’s clock. We

stress that we use “PayPass-RRP” for a protocol and “RRP” for the process standardised
by Mastercard inside this protocol.

and PayPass-RRP terminal appears in the “timing-rogue” case: the
terminal’s implementation should be such that it detects and re-

ports relay attacks. In other words, the “timing-rogue” PayBCR
terminal is in fact not corruptible, and, in case of relays, it behaves

as an honest PayPass-RRP terminal – as per case (ii) above.
The actual modification that we make to a PayPass-RRP terminal

to lift it to a PayBCR terminal is the fact that –as part of the ERRD
command– we include TPM2_GetTime calls to the on-board TPM.

In terms of interactions with the TPM, the two TPM calls are done

over one connection to the TPM, unless the connection has been

(incidentally) cut by the latter. As part of this, we also had to de-

clare new “EMV” fields for the terminal to store the two signatures

generated by the TPM commands, as well as implement the logic of

these be sent to the (CardCracker-emulated) bank and be verified

by the later. This will become clearer when we detail further on

the functional correctness and security of the implementation in

Section D.4.

D.3 A PayPass relay application
We implemented a software-based EMV-relay mechanism tailored

for Mastercard’s PayPass protocol. Our relay “box” is formed of

two Android apps running on two phones: one as a PayPass-card
emulator and one as a PayPass-reader emulator. These are con-

nected to the same wireless network to a communicate wirelessly

with a “server” which technically implements all the relay logic;

this server is written in Python 3.7.

There are no special optimisations in the relay logic or in the

applications, neither at the NFC-stack level nor at the EMV stack

level: i.e., we just send back and forth plain EMV APDU commands.

This is because this relay “box” is simply a supporting apparatus for

testing the behaviour of our PayBCR and PayPass-RRP implemen-

tations. That said, when tested using working, bank-issued PayPass
cards and a working iZettle reader, this relay “box” performs ro-

bustly and reasonably fast. Concretely, a relay payment from a card

found at 20m from the reader takes on average 3s (over 100 itera-

tions). And, the iZettle reader accepts these payments without any

intervention/modification onto it. About 2% of relay transactions

fail due to synchronisation-issues between the card and the reader

emulator.

D.4 Functional & Security Testing
In the functional-testing part, we look to see that the terminals

implemented as per above behave as expected: i.e., when no relay

“box” is present and the terminals are honest, the execution logs

should correspond to the descriptions in EMV-C2 and [7]. To do

this, we ran experiments with CardCracker (over 30 PayBCR and

30 PayPass-RRP payments), and the results are evidenced via the

logs
11

gathered and discussed below. Due space constraints, we

mainly detail herein for the case of PayBCR (and not the case of

PayPass-RRP).
Figure 7 shows part of the ERRD command as demonstrably

executed by our honest PayBCR terminal. Lines 89-91 show that

we store if RRP is performed and, for this honest terminal, the logs

11
These logs contain some code in CardCracker-proprietary syntax, however in their

overwhelming majority they contain standard-EMV keywords and, as such, they are

largely self-explained to a reader familiar with EMV language.
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85/ /! --------------------------------
86/ /! ERRD
87/ /! -------------------------------
88/ /
89/ /[DECLARE RRP_PERFORMED = Y]
90/ /[PRINT RRP_PERFORMED]
91/ /:RRP_PERFORMED = Y

...
95/ /[IN_CLA = 80]
96/ /[IN_INS = EA]
97/ /[IN_P1 = 00]
98/ /[IN_P2 = 00]
99/ /[IN_LC = 04]

100/ /[IN_CDATA = [IN_RRP_TRRE]]
101/ /[IN_CDATA = 11121314]
102/ /[IN_LE = 00]
103/ /! ------------
104/ /![START_TIMER = MICROTICKS()]
105/ /[TMP = START]
106/ /[TPM_CONN = TPM2CONNECT()]
107/ /[TESTEQ [TPM_CONN], TRUE]
107/ /[TESTEQ TRUE, TRUE]
108/ /[DOIFEQ [TMP], START]
108/ 1/ /[DOIFEQ START, START]
108/ 2/ /!CALL TPM GET2TIME([IN_RRP_TRRE]{UN})
108/ 3 /[GETTIME_RESULT = TPM2GETATTESTEDTIME([IN_RRP_TRRE])]
108/ 4 /[GETTIME_RESULT = TPM2GETATTESTEDTIME(11121314)]
108/ 5/ /[TPM_TIMESTAMP_1 = TPM2GET("TIMEINFO","TIME")]
108/ 6/ /[TPM_SIGNATURE_1 = TPM2GET("SIGNATURE","SIG")]
108/ 7/ /[IN_RRP_TRRE = LEFT([TPM_SIGNATURE_1], 04)]
108/ 8/ /[IN_RRP_TRRE = LEFT(405C6808E4153207973FF84A133

430EFA07B298433D2F2A1E9E60F76E8433D7EAC058C4F78C04D967F3D29A19044C59
26093564847EE991364B4D65AA63A489CF9245A48378B138B74483C925A5E48866F8
6D40049DD5C03845F83DD73028FFD2BC0140B53936AE07A5257A97F123EA661781EF
14A9352319C1064A5C052B9A83A00DAA70CD7C6BCC07022B6E39788F337C9A97F4DF
CF40E574F6CA389BB0FDF054BE6DA155A13430C1436FD597AF47BE3CAB280DDB796C
C168EFA5CCC3130F5AF517115522A6A271BAB8CE96CAED270D66A8EE8EAADD
108/ 9/ /[IN_CDATA = 405C6808]
108/ 10/ /[DOIFEND] ...
108/ 11/ /[DOIFEQ [TMP], STOP]
108/ 12/ /[DOIFEQ START, STOP]
108/ 13/ /! DOIF !!CALL TPM GET2TIME(Card Nonce)
108/ 14/ /! DOIF ![IN_RRP_DRRE = MID([OUT], 03, 04)]
108/ 15/ /! DOIF ![GETTIME_RESULT = TPM2GETATTESTEDTIME([IN_RRP_DRRE])]
108/ 16/ /! DOIF ![TPM_TIMESTAMP_2 = TPM2GET("TIMEINFO","TIME")]
108/ 17/ /! DOIF ![TPM_SIGNATURE_2 = TPM2GET("SIGNATURE","SIG")]
108/ 18/ /! DOIF ![TPM_CONN = TPM2CLOSE()]
108/ 19/ /! DOIF ![TESTEQ [TPM_CONN], ]

Figure 7: Snippet of CardCracker Logs – Part1 of ERRD Com-
mand in a Honest PayBCR Terminal

show that it is indeed carried out. Lines 95–102 show standard EMV

APDU headers. In our implementation, IN_RRP_TRRE stands for a
list that stores data linked to the RRP process on the terminal side.

In a similar list, denoted IN_RRP_DRRE, we do this for the card side

as well. Line 106 shows that a connection to the TPM is opened,

and in lines 108/2 and 108/3 – the UN nonce from the reader is

gathered inside the IN_RRP_TRRE and passed to the TPM as an

argument to the TPM2_GetTime command. Lines 108/13 show that,

similarly, the nonce from the card is gather inside IN_RRP_DRRE
and passed to the TPM. In variables denoted TPM_TIMESTAMP_1 and
TPM_SIGNATURE_1 (respectively . . . _2), we stored the timestamps

and signatures returned from the TPM2_GetTime commands called

to the TPM.

In Figure 8, we partly show that our (honest) PayBCR reader

does also then follow the RRP process as per EMV-C2’s Sections

3.10, 5.3 and 6.6 and partly recalled by us in Subsection D.1.

Line 104 in Figure 7 shows that we are taking timings for perfor-

mance analysis purposes.

The last crucial part of the functional testing is to attest that

the bank checks the timestamps and the signatures by the TPM.

In Figure 9, we show a short snippet of logs: this exhibits that an

honest PayBCR reader –alongside the AC– does send the TPM

signatures (see lines 259–262 in Figure 9). The last lines of logs

9/ /[RRP_TIME_TAKEN = SUB([RRP_TIME_TAKEN],
[TERM_EXPECT_TRANSMIT_TIME_RRP_CAPDU])]

10/ /[RRP_TIME_TAKEN = SUB(14A0, 0012)]
11/ /[RRP_TIME_TAKEN = SUB([RRP_TIME_TAKEN], [RRP_MIN_CALC])]
11/ /[RRP_TIME_TAKEN = SUB(148E, 0018)]
12/ /
13/ /[DOIFGE 0, [RRP_TIME_TAKEN]]
13/ /[DOIFGE 0, 1476]
14/ /! DOIF ![RRP_MAX_CALC = 0]
15/ /[DOIFELSE]
16/ /[RRP_MAX_CALC = [RRP_TIME_TAKEN]]
16/ /[RRP_MAX_CALC = 1476]
17/ /[DOIFEND]
18/ /
19/ /[MEASURED_RRP_PROCESSING_TIME = [RRP_MAX_CALC]]
19/ /[MEASURED_RRP_PROCESSING_TIME = 1476]
20/ /[PRINT MEASURED_RRP_PROCESSING_TIME]
20/ /:MEASURED_RRP_PROCESSING_TIME = 1476
21/ /[AS_BCD = HEXTOBCD([MEASURED_RRP_PROCESSING_TIME])]
21/ /[AS_BCD = HEXTOBCD(1476)]
22/ /[PRINT AS_BCD]
22/ /:AS_BCD = 5238
23/ /
24/ /! C-2 SR1.19
25/ /[RRP_MAX_CALC = SUB([RRP_MIN_GRACE_PERIOD],

[IN_RRP_MIN_TFPRRAPDU])]
25/ /[RRP_MAX_CALC = SUB(0014, 0000)]

Figure 8: Snippet of CardCracker Logs – Part2 of ERRD Com-
mand in a Honest PayBCR Terminal

in Figure 9 indicate that the bank does the checks of timings and

outputs the result back.

259/ [PRINT OUT_AC]
259/ :OUT_AC =
260/ [PRINT TPM_TIMESTAMP_1]
260/ :TPM_TIMESTAMP_1 = F56959
261/ [PRINT TPM_TIMESTAMP_2]
261/ :TPM_TIMESTAMP_2 = F57348
262/ [PRINT TPM_SIGNATURE_1]
262/ :TPM_SIGNATURE_1 =
94EF2052B4753010B28419A88E0CF3B3CF2682468D6708EBD7DCC9959F41916
A5ECAD3786557C556FA0918ADDA1012E98F44F4146E96669024064E478E37BF
49F147114D3B9913024B100E2EEF22B059E48812B273608B39C16F0F77D042C
057D7FF68A4C07DE3EE861B71CBAB37FF89483A07C9F789647F230DCD360487
A04FD707C7E3D53459F48C488D8B1E3B5EA0A1F0B3E7FD393BEA989EC01933B
DE44BDF3A36288C6B2F19F3E1CF4D3E1BC3F8FE79AE1C8C6D681ECCE900F7AD
40659F3FEEDE75C4804319B0BF3D5CAC91DA51AFDD3ABCE3A949128EC4789F5
FE8301DE755405C320C7B9663776253ABEBF22D915F8C03F9534991AF2BF9F9
C6212B0D
263/ [PRINT TPM_SIGNATURE_2]
263/ :TPM_SIGNATURE_2 =
A9DF2C92173E30D3EB9562FA05A7CF9EB9DAED9367C7D9719673FD6BCF3CB64
4460ABD6E8A90E7802481A041808DA55475F1E7D2066FF28B632105441B98B2
28B0A377519B026538A3E52C50E54882A0ABFC49D6E13460CABC1F0A07BDC3D
973467F1F6AEFB139E144EB09B5631A5B500210F39B1F1FC1A7CAABC566AEF6
E95EA288A418D517BA8F948A372FF24148E8B138D23828BB92C629EB71D8238
7DC73784161527BEFEF5EF96E95CD0DE1C1A02BD3140D34A1BAA8285D4FCF1A
4EEECF66D76CF421B6FC6AACFE78A4C38CC2D19E812C8F268AF2C6D2A6F50FC
477EB997D855667381263EE10BF1A76EE5C431FC9EC7E996E151F1232B45734
1AAAB2F3
...
25/ [RECALC_RRP_MAX_CALC = [RECALC_TIMETAKEN]]
26/ [RECALC_RRP_MAX_CALC = 632C]
27/ [DOIFEND]
28/
29/ [RECALC_MEASURED_RRP_PROCESSING_TIME = [RECALC_RRP_MAX_CALC]
...
30/ [PRINT RECALC_MEASURED_RRP_PROCESSING_TIME]
...
31/ [AS_BCD = HEXTOBCD([RECALC_MEASURED_RRP_PROCESSING_TIME])]
31/ [AS_BCD = HEXTOBCD(632C)]
32/ [PRINT AS_BCD] 32/ :AS_BCD = 25388

Figure 9: Snippet of CardCracker Logs – Part of the Bank
Rechecking RTTs

In the security-testing cases, we used our relay “box”. These

ascertain that the implemented behaviour complies to the expecta-

tions: (a) the “timing-rogue” terminals implemented would elude

the RTT checks; (b) that in PayPass-RRP this is not caught by the

bank and in PayBCR this is caught by the bank.
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