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(Invited Paper) 
Abstract—Approximate computing, an advanced computational 

technique which returns inaccurate but acceptable results instead of 
exact results, has emerged as a new preferable paradigm over 
traditional computing architectures for energy efficient system 
designs. It is crucial for nanoscale integrated circuits (ICs) to achieve 
high speed and low power, where some intrinsic errors are acceptable, 
such as (deep-) machine learning, image processing, communication 
and other error-tolerant and cognitive applications. However, 
approximate computing also introduces security vulnerabilities 
mainly due to the uncertainty and unpredictability of intrinsic errors 
during approximate execution which may be indistinguishable using 
malicious modification of the accurate result. On the other hand, 
interestingly, approximate computing can also provide new 
approaches for security. Existing literature in approximate computing 
covers threat models, countermeasures, and evaluations, but lacks a 
framework for analysis and comparison. In this paper, we provide a 
classification of the state of the art in this research field, including 
threat models in approximate computing and promising security 
approaches using approximate computing. 

Index Terms—Approximate computing, hardware security, 
cryptography 

I. INTRODUCTION 

N the last decade, various advanced computing systems, 
including supercomputers, ubiquitous computing centers, 

and servers, have been developed and widely deployed. 
Unfortunately, Moore’s law is approaching its limitation [1], 
and conventional computing techniques are not able to 
provide higher computing performance under the restriction 
of power consumption. Therefore, new nanoscale computing 
paradigms are urgently required for low power and high 
performance computing systems. Hence, appropriate 
reduction of the computational accuracy could effectively 
improve the performance of computing systems without 
sacrificing functionality and perception. 
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Inspired by the fault tolerance capability of the human brain, 

approximate computing can accept errors in calculation 
without affecting the results of certain human perception and 
recognition related computation, such as artificial intelligence 
(AI), (deep-) machine learning (ML), signal processing and 

communication, etc., in which noisy data or redundant 
information is tolerable for the computation. It has attracted a 
significant amount of interest in academia [2], [3], [4]. It is 
crucial for energy efficient systems and some of approximate 
computing techniques has been adopted in high speed and low 
power nanoscale integrated circuit (IC) designs. For example, 
Google’s deep learning (DL) chip, the tensor processing unit 
(TPU), achieves a significant improvement in processing 
performance using common approximate computing 
techniques, such as precision scaling [5]. IBM research has 
pioneered to build on-chip AI accelerators with approximate 
computing techniques [6]. It utilized multiple approximate 
computing techniques, such as precision scaling and training 
compression approaches, and achieved 4-200x speedup over 
existing methods [7]. 

Previous research has made efforts to efficiently improve 
performance with acceptable loss of accuracy [3], [8]. However, 
approximate computing also introduces security 
vulnerabilities mainly because of the uncertainty and 
unpredictability of intrinsic errors during approximate 
execution which may be indistinguishable from malicious 
modification of the accurate result [9]. It also pointed out that 
approximate computing is well-suitable for security tasks. 
However, if approximate computing have security 
vulnerabilities, applications that related to will undoubtedly be 
affected. Interestingly, approximate computing can also 
provide or even enhance security solutions. For example, 
approximate circuits, based on simplified circuits which can 
reduce area and power consumption, have been proposed for 
information hiding [10]. Compared to conventional security 
solutions based on exact circuits, approximate circuit based 
security strategies not only provide the same security level but 
also save hardware resources. Approximate computing opens 
up both challenges and opportunities for security. 

Some initial survey and tutorials have been presented. [11] 
presented potential security vulnerabilities that will affect the 
integrity and security of approximate computing systems. The 
security threats overviewed in [11] mainly focused on 
approximate circuits and storage, including approximate 
DRAM, phase change memory and SRAM. [9] discussed 
security threats of approximate computing in a perspective of 
hardware-related primitives, for example, side-channel 
analysis (SCA), reverse engineering, cloning/counterfeiting and 
active attacks. [12] reviewed approximate computing based 
hardware security applications and also proposed some future 
research directions. These papers provide an initial 
introduction and discussion for this emerging field. 

I 
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However, the existing literature lacks of a comprehensive 
and systematized analysis/comparison of threat models, 
countermeasures, and evaluations. We first provide a 
classification of significant contemporary challenges, including 
threat models in approximate circuits, hardware security 
circuits and approximate storage. We classify hardware 
security threats, including power leakage, reverse engineering, 
hardware Trojans, SCA, in approximate systems, such as 
approximate storage and approximate circuits. We also classify 
the application of approximate computing on building security 
primitives, such as approximate computing for cryptography, 
hardware security, approximate algorithms and biometric 
systems. 

The rest of this paper is organized as follows. Section II 
provides background to approximate computing, including 
approximate computing strategies and techniques. Section IV 
presents a systematization of the security threats in 
approximate computing, which includes approximate circuits 
and approximate storage. A classification of approximate 
computing for security is discussed in Section V, which 
describes how to use approximate computing for security, 
such as cryptography and hardware security. Section VI 
describes future research directions. Conclusions are drawn in 
Section VII. 

II. APPROXIMATE COMPUTING 

Approximate computing [8], [2], [3], [4] is driven by 
applications that are related to human perception and 
inherent error resilience, such as digital signal processing (DSP), 
communication, multimedia, machine learning and pattern 
recognition. It can be applied to these applications due to the 
large and redundant data sets that contain significant noise, 
therefore numerical exactness can be relaxed. In this section, 
the design objectives of approximate computing, including the 
relationship of performance, power and accuracy of an 
approximate computing design will be introduced. Depending 
on approximate level and behaviour determinism, 
approximate computing can be classified into three different 
categories [8], [13]. 

A. Design Objectives 
Approximate computing can reduce power consumption 

and improve system performance by introducing acceptable 
errors. As such, computation accuracy has been introduced as 
a third design parameter in addition to delay and power/area 
consumption as shown in Fig. 1. In a system, there are many 
parameters, for example, delay, execution time and 
complexity, to affect performance, power and area 
consumption. The 2 dimension (2D) design space shows the 
relation ship between performance and power/area 
consumption. The 3 dimension (3D) design space presents the 
relationship between performance, computation accuracy and 
power/area consumption, which has one more dimension, 
computation accuracy, than the 2D accurate computing. The 
more accurate the computation, the slower the performance 

and the higher the power and area consumption. The more 
errors introduced the computation, the faster the 
performance and the lower the power and area consumption. 
This is a tradeoff needed to be considered when designing a 
system involving approximate computing. To achieve good 
performance and consume less power and area, the 
introduced errors should be also acceptable. 

 

Figure 1: A design space (a) of performance and power for 
accurate computing (2D) and (b) of performance, power and 
accuracy for approximate computing (3D). 

B. Classification 

1) Approximate Level: Approximate computing can be 
applied to different categories, in hardware and software and 
in different layers of systems. A classification of approximate 

 

Figure 2: Approximate computing strategies and techniques. 

computing techniques based on approximate level as shown in 
Fig. 2 is summarized as follows. 

• Software Approximation: Power consumption is reduced 
using simplified functions or data in programs. For 
example, loop perforation [14], precision scaling [15], [16], 
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[17], using program versions of different accuracy [18], 
and data sampling [19], 

• Approximate Architectures: Approximate errors can be 
detected or optimized in approximate accelerators [20] or 
programmable processors [21]. Other techniques include 
memory access skipping [22], lossy compression [23], [24], 
and unreliable emerging technologies [25]. 

• Approximate Storage: Approximate storage is emerging 
as an efficient technique to reduce a significant portion of 
system power consumption. The techniques include 
reducing refresh rate for DRAM [26], voltage scaling [27] 
and inexact read/write [28]. 

• Software/Hardware Codesign: Most approximate 
research is mainly focused on a single layer. Software and 
hardware coordinated designs have also been presented 
to achieve efficient, high performance and dedicated 
outputs using approximate approaches. For example, a 
technique using trade-off quality of service or solution 
(QoS) was presented in [14]. [29] presented an 
approximate technique which optimizes uncertain data 
to achieve better performance. An automatic hardware 
platform with approximate operations was demonstrated 
in [30]. The incremental network approximation (INA) 
method has also been proposed to cooperate 
approximate circuits with deep neural networks (DNNs) 
algorithm with little loss of accuracy [31]. 

• Approximate Arithmetic Circuits: simplify circuit designs 
to achieve an approximate operation of the desired 
function, such as addition, multiplication and division. 
The main approximate arithmetic units include 
approximate adder [32], [33], approximate multipliers 
[34], [35], [36] and approximate dividers [37] that have 
been proposed. Other approximate circuits have 
approximate fast fourier transform (FFT) [38] and 
approximate CORDIC [39]. 

• Underprovisioned Circuits: Circuits, adjusted to operate at 
extreme conditions, such as power boundaries, which can 
easily trigger errors, can achieve lower power 
consumption. Relevant techniques include voltage 
overscaling [40] and frequency overscaling [41]. 

2) Deterministic and Non-deterministic: The classification of 
deterministic and non-deterministic for approximate 
computing depends on the output of the approximated design 
[42]. A deterministic design repeatedly returns the same 
output when given the same input as shown in Fig. 3(a). In 
contrast, Fig. 3(b) presents a non-deterministic design which 
has a rarely repeated output for the same input. For a 
deterministic approximate design, a constant error E is 
generated when given the same input A. However, a non-
deterministic approximate design generates different errors, 
Ei,Ej,Ek for the same input A, which leads to different outputs, 
Oi,Oj,Ok. To ensure that the errors, Ei,Ej,Ek, are acceptable for 
the underlying system, an error threshold θ is necessary to be 
utilised for evaluation. However, it is not necessary for a 

deterministic approximate design. Therefore, non-
deterministic approximate designs have limited reproducibility. 

 
(b) 

Figure 3: Approximate computing classification based on 
reproducibility: (a) non-deterministic, (b) deterministic. 

The examples of deterministic approximate computing 
techniques in the above mentioned publications are [14], [16], 
[18], [15], [17], [19], [23], [24], [29], [30], [32], [33], [34], [35], 
[36], [34], [35], [36]. The non-deterministic approximate 
computing techniques of the above mentioned research 
include [20], [21], [25], [26], [27], [28], [40], [41]. 

In principle, a system which includes approximate 
computing to trade off accuracy for delay/power/area should 
ensure the same security as its exact counterpart. However, to 
date the security issues of approximate computing have been 
neglected and it is difficult to guarantee the security of 
operations that are approximated. Adversaries can target 
some components of an approximate computing system, for 
example, software programs, processors, accelerators, 
memories and circuits. The expected cost will go higher when 
the approximation level goes to architecture and hardware 
circuit designs since system developers, engineers, and circuit 
designers all may be involved. When security vulnerabilities 
exist in these approximate designs/systems, the test, detection 
and modification process must be more complicated than 
software debugging. According to the deterministic and 
nondeterministic approximate methods, attacking techniques 
for both should be different. In the subsequent sections, the 
vulnerabilities, attacking techniques and potential 
countermeasures for approximate computation will be 
discussed. 

III. SECURITY AND CRYPTOGRAPHIC PRIMITIVES 

In this section, we will introduce some widely known 
security and attacking techniques which may affect the 
security of approximate computing designs. A summary of 
these concepts is shown in Table I. 

A. Hardware Security 

1) Side Channel Analysis (SCA): SCA reveals the 
implementation of security/cryptographic schemes by 
observing the behaviour of the operation to obtain additional 
information. During the operation, the adversary observes the 
power consumption of hardware implementation to calculate 
the cipher key or reveal details of the execution/data in the 
scheme. SCA can be classified into two groups: one is invasive 
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and noninvasive and the other one is passive and active. 
Invasive SCA requires to depackage/break the device before 
the behaviour 

observation. In contrast, non-invasive SCA doesn’t need to 
open the device during the attack. Obviously, the invasive SCA 
involves other pre-processing requirements and probably not 
applicable for the chip not acceptable to be opened. Passive 
SCA only observes the behaviour of the device’s 
implementation. Active SCA can deliberately manipulate the 
inputs of the device, for example, carrying out fault injections, 
at the same time observing the behaviour. SCA has been 
discussed to be potentially harmful to approximate circuits, 
which will be introduced in details in the next section. 

2) Reverse Engineering: In semiconductor industry, the 
technical information and patent-related information of a 
product are the most valuable and essential components for 
manufacturing companies. However, an adversary can 
deconstruct an IC to reveal the design, architecture or extract 
knowledge from a hardware circuit [43]. This process is 
commonly named as reverse engineering. 

3) Hardware Trojan (HT): Resulting from the 
globalization of the semiconductor supply chain, the design 
and fabrication of ICs are now distributed worldwide. It brings 
great benefit to IC companies, leading to a lower design cost 
and a shorter time-to-market window [44]. However, it also 
raises serious concern about IC trustworthiness triggered by 
the use of thirdparty vendors. As a result, it is becoming very 
difficult to ensure the integrity and authenticity of devices. A 
hardware trojan (HT) can be inserted into IC products at any 
untrusted phase of the IC production chain by third-party 
vendors or adversaries with an ulterior motive [45]. 

4) Physical Unclonable Function (PUF): A PUF is a 
security primitive which utilizes the inherent process 
variations present during manufacturing in order to generate 
a unique digital fingerprint that is intrinsic to the device itself. 
As this natural variation between silicon dies is out of the 
manufacturer’s control, they are inherently difficult to clone, 
as well as providing additional tamper-evident properties [46], 
[47], [48], [49]. PUF architectures can be broadly classified into 
Weak PUF and Strong PUF (SPUF) as discussed in [50]. SPUFs 
have a large number of possible challenge response pairs 
(CRPs), whereby a large number of random challenges will 
return a random response unique to each challenge, as well as 
the physical device. By design, this implies the requirement for 
a much larger entropy pool such that related challenges 
should not lead to related responses on the same device. 

Hence, SPUFs have been proposed for use in applications such 
as lightweight mutual authentication, etc. However, most 
SPUF architectures based on linear and additive functions 

have been shown to be vulnerable to ML attacks. To date, 
linear regression (LR), support vector machine (SVM), and 
Evolutionary Strategies (ES) based ML methods have been 
widely utilized to attack PUFs [51], [52], [53]. 

5) Logic Obfuscation: Logic obfuscation involves hiding 
important information, for example, functionality and 
implementation, related to a circuit design by inserting 
additional logic components into the original design so that 
reverse engineering will not work without authorization. In 
order to execute its valid functionality to generate correct 
outputs, a secret key is input into the logic obfuscated circuit. 
If a wrong key is applied, the functionality will be incorrect and 
wrong outputs are generated by the obfuscated circuit. Logic 
obfuscation techniques have been utilized to protect 
intellectual protection (IP) and evaluate the trust of hardware 
[54]. 

B. Cryptography 

1) Post-Quantum Cryptography (PQC): In the near 
future, quantum computers will break today’s most popular 
public-key cryptographic systems, including RSA, elliptic-curve 
cryptography, DSA, and ECDSA. PQC is a branch of 
cryptography that operates on today’s classical computers but 
are based on mathematical problems that are not under 
threat from attacks by known quantum algorithms [55], [56]. 

2) Lattice-Based Cryptography (LBC): Lattice-based 
cryptography (LBC) is one of the most popular branches of PQC 
due to its versatility, its security hardness and the fact that it 
can be constructed efficiently on various computing platforms. 
Except conventional encryption and signatures, LBC can be 
flexibly applied to other constructions, such as identity based 
encryption and attribute based encryption and fully 
homomorphic encryption. 

3) Homomorphic Encryption (HE): Homomorphic 
encryption is a cryptographic approach that can perform 
calculations directly on encrypted data without needing to 
decrypt the data first. It allows a third party to analyze and 
apply functions on encrypted data without the risk of 
information/privacy leakage, which enables important 
applications, for example, securing data in the cloud and 
providing data analytics in regulated industries. A survey of 

Table I: List of Frequently Used Hardware Security & Cryptographic Primitives 
Category Concept Description 

Hardware Security 
Side channel analysis (SCA) 
Reverse engineering 

The adversary observes the power consumption of hardware during the computation. 
The adversary deconstructs an IC to reveal the design, architecture or extract knowledge from the hardware circuit. 

 Hardware Trojan (HT) A malicious alteration to the original design of an IC during design or fabrication. 

 Physical unclonable function (PUF) A circuit that uses manufacturing process variations to generate a unique unclonable digital fingerprint. 

 Logic Obfuscation A circuit includes logic encryption/locking and IC camouflaging techniques. 
It inserts additional gates to hide the correct functionality and gate-level implementation of a design. 

Cryptography 

Post-quantum cryptography (PQC) 
Lattice based cryptography (LBC) 
Homomorphic encryption (HE) 
Learning with errors (LWE) problem 

Cryptographic algorithms that are invulnerable to known quantum algorithm attacks by a quantum computer. 
One of the most promising candidates for PQC, constructed using lattices. 
A cryptographic scheme allows arbitrary arithmetic function on encrypted data without the need of decryption. 
Defined as As+e=b mod q, given (A, b), find s, where e is an error vector in a Gaussian distribution and q is a field modulus. 
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various homomorphic encryption algorithms and schemes can 
be found in [57]. 

IV. SECURITY THREATS IN APPROXIMATE COMPUTING 
In this section, we will introduce and discuss the security 

threats, including both existing confirmed and potential attack 

models, in approximate computing. We will emphasize the 
operation and effectiveness of these threats to approximate 
computing systems. A comprehensive classification of security 
threats in approximate computing is shown in Fig. 4. In Fig. 4, 
the labeled confirmed attach technique represents the 
attacking method used to break the target approximate object. 
The potential attack technique refers to the attacking 
approach which has been stated to be potentially harmful to 
some approximate applications but no concrete results yet. 
The confirmed affected application is the approximate 
application presented to be vulnerable to specific attack 
techniques, which may be also effective to the potential 
affected application. It reminds that designers should be also 
aware of both the confirmed attach techniques and potential 
attach techniques for the potential affected applications. The 
affected applications are categorized into two groups, 
approximate circuits and approximate storage. The affected 
applications and relevant attack techniques will be discussed 
in details in the following subsections. 

A. Approximate Circuits 

Computing arithmetic units including adders, multipliers and 
dividers are essential for processors, and significantly affect 
the performance and power consumption of the whole 
computing system. For cognitive applications, such as 
recognition, data analysis and computer vision, the aim is to 
achieve higher speed and lower power consumption as well as 

satisfied error tolerance. This has motivated the fast 
development of approximate arithmetic circuit designs. Most 
of the approximate computing circuits proposed to date are 
based on logic reduction and pruning methods. In cognitive 
computing applications, for example, image recognition, 
machine learning and pattern recognition, the key arithmetic 

units include adders and multipliers. Therefore, high 
performance and low power adders and multipliers have been 
extensively studied. However, these may be vulnerable to 
security threats. 

1) Malicious Modification of Inputs or Registers: [11] 
introduced a potential attack, i.e. malicious modification, of an 
approximate adder by deliberately manipulating the adder’s 
inputs to continuously generate erroneous outputs to activate 
error correction code (ECC) or fault tolerant process more than 
usual. It has been shown that the correlation between the 
output and power for the adder with 50% errors is higher than 
that with 25% errors. 

Fig. 5 presents a potential malicious modification of an ALM 
by deliberately tampering with the truncation parameter t, 
which is normally stored in a memory’s register on board. A 
truncation parameter, read out from the register, can be 
maliciously manipulated to provide an unexpected value. As 
an example, the original picture as shown in Fig. 5(a) 
represents the exact result of the ALM calculation with both 8-
bit input and output. Fig. 5(b) to Fig. 5(e) illustrate the results 
generated by different malicious modifications of the 
truncation parameter t (t = 6,4,3 and 2, respectively). For 
example, an attacker may deliberately manipulate to change t 
directly to 2, producing an unacceptable image. There is no 
need to modify the value of inputs. However, an adversary can 
hack/change the value of the truncation parameter in register. 
Finally, the large number of erroneous outputs will also 
activate ECC or fault tolerant process more than usual. It will 

 

Figure 4: Classification of security threats in approximate computing. 
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also increase the power consumption since obviously more 
schemes are frequently activated. 

2) Hardware Trojan: [9] and [11] discussed the potential 
security threats introduced by hardware Trojans. Approximate 
devices might require extra hardware components to control 
the level of approximation, which provides opportunities for 
hardware Trojan insertion. 

Moreover, the approximate circuits also introduce 
possibilities for hardware Trojan insertion compared to exact 
circuits. At the design stage of IC, the transition probability of 
a circuit is a key feature for HT insertion by an adversary. 
Normally, a HT is inserted into a circuit with low transition 
probability since it is easy to hide the HT circuits. The transition 
probability distributions for both an exact 8-bit adder and an 
approximate 8-bit adder are presented in Fig. 6(a) and Fig. 6(b), 
respectively. The transition probability distribution of the exact 
adder is distributed close to the high transition probability area, 
which is near to the highest probability value 0.25. There is no 
transition probability smaller than 0.20. However, for the 
approximate adder, the transition probability presents a 
random distribution in the range [0.05, 0.25]. With a spread of 
low transition probability, this means that HTs have a higher 
possibility of being added into approximate adders than the 
exact adders and hence, approximate circuits are more 
vulnerable to such hardware Trojan attacks. This is an initial 
result for a specific approximate adder and used as an example. 
It is interesting to investigate the security of other approximate 
circuits, for example, other approximate adders, multipliers 
and dividers, which will be further discussed in the future work 
section. 

3) Voltage Scaling and Reverse Engineering: [9] 
discussed that approximate circuits may leak information at 
some operating points using voltage scaling techniques. [58] 
utilized voltage over-scaling based approximate computing 
method to result in different clock period which may lead to 
the delay difference of a signal propagation in a circuit. Due to 
the process variation, different chips will output different 
delays for the critical path. This is similar to the principle of a 
PUF in hardware security. Hence, the erroneous outputs can 
utilize as an identity or possibly leak privacy information. 
Voltage scaling techniques have also been utilized for 
approximate storage which will be discussed in Section IV-B. 

Reverse-engineering can also affect approximate circuits as 
analyzed in [9] since it is difficult to apply approximate circuits 
to implement cryptographic algorithms, which can then be 
differentiated from other blocks implemented as approximate 
circuits. Moreover, applying reverse-engineering techniques to 
reveal and reconstruct an approximate circuit is easier than for 
an original exact circuit. 

 
(a) 

 
(b) 

Figure 6: The transition probability distributions for (a) 8-bit 
exact adder and (b) 8-bit approximate adder. 

B. Approximate Storage 

Storage is another important aspect in approximate 
computing. Memory access is extensive in many error-tolerant 
and cognitive applications including machine learning, 
computer vision, graphics, etc. The error resilience ability 
enables these applications to produce acceptable results even 
if inputs are noisy or erroneous. This has led to the rise of 
designing approximate memories/storage to achieve large 
savings in power consumption. 

1) Approximate DRAM: Due to its low cost, longevity and 
high density, DRAM is still the main option for memory in most 
embedded systems. However, data stored in DRAM must be 
periodically refreshed and leaks charge, which results in a 
significant power waste. Approximate computing provides 
many possibilities for substantial energy savings. [59] first 

 
 (a) (b) (c) (d) (e) 

Figure 5: Potential malicious modifications on the truncation parameter (t) of approximate logarithmic multiplier (approximate 
logarithmic multiplier (ALM)): (a) original result with 8-bit input, (b) t = 6, (c) t = 4, (d) t = 3 and (e) t = 2. 
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presented an approach which splits an application into critical 
and non-critical parts and allocates this data separate parts of 
memory. Different refresh rates are utilized for both parts to 
save energy for the non-critical data. [60] proposed a hardware 
based approximating method to refresh the most important 
bits 

 

Figure 7: The relationship between DRAM refresh rate and 
error rate leads to different operating conditions. 

(MSBs) of operands at a higher refresh rate and alternatively 
the least important bits (LSBs) of operands at a lower rate. 
Software-based approaches have also been proposed. For 
example, [61] proposed a method based on software 
modification and DRAM controller changes to improve energy 
quality and can be applied to commercial off-the-shelf (COTS) 
devices. DRAM has also been developed for hardware security, 
for example, DRAM PUF for identification and authentication 
[62] and for true random number generation [63]. 

Fig. 7 presents the relationship between DRAM refresh rate 
and error rate which leads to different operating conditions. 
The lower the refresh rate for DRAM, the higher the bit error 
rate. Normal refresh rates result in the lowest error rate but 
higher power consumption. When the refresh rate drops 
below an acceptable range, error correcting codes are no 
longer feasible, and the DRAM will not function correctly. 
Approximate DRAMs usually operate at the border of the 
acceptable operating area. If the refresh counter is 
manipulated by an adversary, the precise DRAM could be 
refreshed at an incorrect rate. Then, the data stored in the 
precise DRAM would be approximated and generate 
unacceptable errors. 

[11] demonstrated another example of tampering the 
memory counter of DRAM to initiate DRAM with an incorrect 
refresh frequency. To save energy consumption, a memory 
composed of precise and approximate DRAM cells can be 
refreshed in different refresh rates. The refresh commands are 
generated under a control logic unit inside the DRAM module. 
A counter in the control unit is utilized to calculate the address 
of the next refresh event. An adversary may only need to 
manipulate the configuration signal to damage the stored data 
in the precise DRAM. As shown in Fig. 8, when the 
configuration signal is deliberately modified to go high one 
clock in advance, the counter for the number of MSBs 

calculation starts earlier to increase. Therefore, it will 
deactivate the DRAM refresh enable signal one clock earlier 
than normal. The precise DRAM is refreshed in an abnormal 
condition, which may result in key data lost or unexpected 
errors. 

DRAM PUF based on the decay characteristics of DRAM cells 
was proposed to provide a lightweight security approach to 
devices for key generation or authentication. [64] presented 

 

Figure 8: Timing diagram of DRAM with incorrect refresh 
frequency due to tampered memory counter [11]. 

how to characterize a DRAM PUF by exploring the decay 
characteristics of DRAM cells in approximate DRAM since it 
could not achieve 100% reliability of stored data due to unique 
errors that can be used as an identification/fingerprint. 
However, attackers can use the memory fingerprint to identify 
other approximate outputs from the same system since similar 
patterns of errors in results coming from the same chip. Hence, 
future hardware based approximate designs should be aware 
of design anonymity and avoid to expose privacy sensitive data. 

2) Approximate SRAM: Supply voltage scaling, which can 
reduce the power consumption of each memory access, is a 
preferable technique for SRAM array for image processing and 
multimedia applications although it leads to a higher bit error 
rate. [65] proposed a dynamically reconfigurable SRAM array 
which implements a lower voltage for cells storing the LSBs and 
a nominal voltage for cells storing the MSBs. The error rates 
can be modified in run-time by reconfiguring the number of 
bits in the lower voltage mode. [66] also proposed a voltage 
scalable architecture to save power dissipation by storing 
different “quality” data in various “quantity” of SRAM bit-cells. 
The principle is to save the most sensitive data in video 
applications in higher order 8T bit-cells while the lower order 
bits are stored in 6T bit-cells. The supply voltage in the 8T 
SRAM memory remains normal to ensure the output video is 
of sufficient quality. The supply voltage scaling technique can 
be utilized for the less important lower order bits, stored in 6T 
bit-cells, since errors/failures are acceptable in some 
applications, for example, video processing. The research in 
[67] improved the voltage scaling idea by proposing an 
efficient sizing algorithm to reduce the computation time 
needed to select the SRAM bit-cell sizes. Such techniques still 
have drawbacks. Since the bit error rate (BER) in the MSBs is 
fixed at design time, it is impossible to derive a dynamic 
energyquality trade-off at run time, which has been achieved 
by [68] and [27]. 
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However, approximate SRAMs may also be vulnerable to 
security threats. [11] discussed a potential attack for the above 
mentioned approximate SRAM by introducing more errors 
than that can be tolerant. It will overburden the ECC scheme in 
the memory. As an example, Fig. 9 presents attacks on 
approximate SRAM based on a maliciously manipulation of 
voltage scaling techniques. A typical supply voltage scaling 
technique for SRAM [65] is shown in Fig. 9(a), where a lower 
voltage is applied to the LSBs and a nominal voltage is executed 
for the MSBs. However, an adversary can manipulate and 
introduce errors to the MSBs through the supply voltage 
scaling technique, as in Fig. 9(b). 

Acceptable errors 

Acceptable errors 

Figure 9: An example of attacks on approximate SRAM: (a) 
normal voltage scaling technique for SRAM to generate 
acceptable errors on the LSB and no errors on the MSB, (b) 
maliciously apply voltage scaling technique to the MSB to 
introduce unacceptable errors. 

3) Approximate Phase-Change Memory (PCM): The 
inevitable “scaling limits”, a limit to how small a flash or DRAM 
process can be shrunk, determines the number of electrons 
that can be stored on a memory cell and forces memory 
manufacturers to adopt alternative technologies, such as PCM. 
PCM is a type of non-volatile memory (NVM) and can be 
considered as a replacement for disk, flash and potentially 
DRAM, to solve some of their disadvantages, i.e. DRAM’s 
scaling woes and vastly outpace flash solid-state drivers (SSDs). 
Although PCM also has some drawbacks, such as low speed, 
power hungry and finite lifetime, etc., approximate computing 
techniques can address these. [69] proposed an approximate 
storage technique based on PCM to make efficient data 
storage. Although [69] achieved an improved performance of 
speed over precise PCM, it opens up new attack vectors for 
approximate PCM. [11] discussed potential security 
vulnerabilities along the writing flow of approximate PCM as 
shown in Fig. 10. The threshold Tapprox defines the margin 
between accurate and approximate PCM memory blocks. If the 

threshold Tapprox is altered to an incorrect value, the critical 
data stored in the accurate PCM memory will be affected. 
During the writing operation, the writing voltage v is gradually 

increased in each iteration. N(ur
,σ

r2) represents the noise 
function, where ur and σr are the mean and standard deviation 
of the error effect. The writing operation may be failed when 
the voltage step is maliciously compromised by 
underestimating or overestimating the noise function. Since 
the number of writing iterations depends on the voltage 
difference. If the sensing circuit is compromised, for example, 
adding a voltage offset, the data in the PCM will 

 

Figure 10: Flowchart of approximate PCM writing and 
potential security vulnerabilities [11]. 

be modified. Finally, if the voltage comparator is disabled, the 
attacker can directly overwrite critical data stored in the 
accurate PCM memory. 

V. APPROXIMATE COMPUTING FOR SECURITY 

In the previous section, we discussed previous research on 
potential security threats for approximate computing. Actually, 
a dimension of approximate computing, can bring security to 
address some essential vulnerabilities, as discussed in this 
section. A comprehensive classification of security solutions 
for approximate computing is shown in Fig. 11. The effective 
approaches are categorized into two main groups, 
cryptography and hardware security, and these will be 
discussed in details in this section. 

A. Approximate Computing for Cryptography 

1) Post Quantum Cryptography (PQC): Discrete Gaussian 
sampling is a critical constituent of many LBC based schemes 
[70]. The sampler often becomes the bottleneck of schemes 
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requiring high performance and its implementation has been 
successfully attacked by SCA [71], [72]. 

Rejection sampling, shown in Fig. 12, is a common method 
employed to execute discrete Gaussian sampling in lattice 
based cryptography [73]. An integer x ∈ {−τσ,··· ,τσ}, where τ 
is the ‘tail-cut’ factor, is chosen from a uniform distribution 
depending on the security parameters. The larger the tail-cut, 
the higher the precision for each discrete value of the 
distribution and consequently the higher the security achieved; 
however, the implementation cost is also higher. Hence, there 
is a trade-off between hardware resource consumption and 
security level. For ring learning with errors 

 

Figure 12: The tail-cut of Gaussian sampling. 

(RLWE), the probability of decryption error is mainly 
determined by the tail-cut and the standard deviation (STD) of 
the Gaussian distribution. [74] presented the performance, 
resource consumption and quality of six conditions of the 
implemented comparator-based Gaussian sampler for 
different tail cuts and statistical distances. 

Apart from the Gaussian sampling, the modular polynomial 
multiplication in a RLWE algorithm is the main bottleneck in 
the realization of a practical resource-constrained design for 
embedded Internet of things (IoT) devices. Exploiting the 

inherent approximate nature of RLWE problem, [75], [75] 
presented an approach utilizing approximate computing for 
RLWE based applications as shown in Fig. 13. Fig. 13(a) 
presents an accurate multiplication for the hardware 
architecture of RLWE decryption. An optimized dynamic range 
multipliers (DRUM) approximate multiplier, as shown in Fig. 
13(b), has been proposed by [75] to improve the speed, reduce 
the area usage and power consumption for RLWE decryption 
hardware only. 

 

 

Figure 13: Hardware architecture of RLWE decryption, where 
(a) includes an exact mulitplication [76] and (b) demonstrates 

 

Figure 11: Classification of approximate computing for hardware security and cryptography. 
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an approximated multiplication using DRUM approximate 
multiplier. 

Later on [77] proposed a design of an area/power efficient 
approximate modular multiplier (so called AxMM) for 
complete RLWE hardware, by exploiting the statistics of 
Gaussian noise in addition to the technique of [78]; 
transforming the unsigned Gaussian data to signed format. Fig. 
14 presents the design of AxMM, comprising of approximate 
multiplier (AxMult) followed by an approximated modular 
reduction circuitry (AxMR). The leading one detector (LOD) of 
AxMult performs a single bit truncation on the Gaussian data 
(B) there by reducing its width from 6-bit to 4-bit for modulus 
q = 7,681, whereas MSB signed bit (b[5]) is not utilized during 
the modular multiplication rather than applied at the end to 
get the required result for a negative number. Compared to 
the smallest exact RLWE multiplier design [78], the AxMM is 
able to reduce the area by over 35% and power consumption 
by over 23% with slight reduction in STD of Gaussian 
distribution as well as the security level. 

 

Figure 14: Approximate modular multiplier (AxMM) [77] 

2) Homomorphic Encryption: [79] proposed a 
homomorphic encryption scheme using approximate 
arithmetic based on the RLWE. It utilized encryption noise as a 
form of error involving approximate computations. Modular 
reduction is an important operation in homomorphic 
decryption. [79] achieved linear complexity in the growth of 
the cipher-text modulus compared to other work with 
exponential complexity growth. Subsequent work by the 
authors [80] presented an approximate bootstrapping 
operation for homomorphic decryption. Also, [81] utilized the 
approximate computing techniques proposed in [75] to 
improve the efficiency of homomorphic decryption. It also 
proposed a theoretical model to examine the error behavior of 
secure inference and presented parameters that can achieve 
smaller ciphertext size. 

3) ApproxHash: As a basic building block (see Fig. 15(a)), 
hash functions have been significantly developed and utilized 
in many security primitives [82]. Approximate 
implementations of Secure Hash Algorithm-1 (SHA-1) as 
shown in Fig. 15(b), have been proposed [83] to optimize the 

delay, power and area consumption for cryptographic 
applications. Approximate modular-32 adders, specifically 
approximate mirror adders (AMAs), have been utilized to 
replace accurate modular-32 adders at 80 out of N stages of 
conventional SHA-1 to improve the delay, power and area 
metrics at the cost of degradation in its classical security 
strength. Hence, one can select appropriate ApproxSHA-1 with 
N stages of approximation according to the security strength 
as required by the application. Such ApproxHash can be 
utilized in error tolerant applications and pseudo random 
number generator (PRNG) hardware. 

 

 (a) (b) 

Figure 15: Approximate adders applied to Hash functions, 
where (a) and (b) are basic building blocks of a conventional 
SHA-1 algorithm using accurate adders and an approximate 
SHA-1 algorithm using approximate adders, respectively. 

4) Bitcoin Mining: Bitcoin is a crypto-currency, mainly 
created to simplify transaction processes without needing a 
third-party, increase the speed of cross-border transactions, 
and reduce government restrictions. Bitcoin mining is a 
process of creating and adding transactions to the Bitcoin 
ledger, called Blockchain. Bitcoin mining, based on complex 
computation process, is inherently error tolerant. With this 
property, approximate computing can be applied to Bitcoin 
mining as proposed by [84]. Approximate circuits can be built 
to reduce delay and area consumption but trading off 
reliability. Two forms of approximation, functional 
approximation and operational approximation, have been 
proposed in [84]. For functional approximation, approximate 
circuits have been utilized to replace original circuits to reduce 
area and delay. Operational approximation, carried out by 
running the circuits at different timings, such as executing 
circuits at a higher frequency, accepts Better-than-Worst-Case 
operation. However, Bitcoin mining utilizes a hashcash based 
proof-of-work, which can apply approximate circuits for the 
hardware implementation. For other distributed ledgers, it is 
unknown if the approximation approach [84] is applicable. 

B. Approximate Computing for Hardware Security 

Cryptographic algorithms and protocols depend on 
hardware implementation to achieve real-time performance 
and more inherent security than software implementation. 
However, the recent Meltdown and Spectre vulnerabilities on 

AxMult 

LOD 

AxMR 

A B 

B[5] 

4 B[4:0] 



 11 

processors demonstrated examples of hardware based attacks. 
[85] shows that hardware security threats have spread to every 
corner of the semiconductor supply chain. In this subsection, 
we introduce countermeasures and potential research 
directions for hardware security using approximate computing. 

1) Information Hiding for Approximate Computing: The 
ubiquitous of IoT will revolutionize our lives but also opens up 
new attack vectors for criminal hackers. Providing security to 
IoT devices is a major challenge as small devices tend to be 
limited in terms of resources and power. Conventional security 
approaches, based on computationally complex cryptographic 
algorithms, are typically too resource intensive for 
implementation on these devices. To reduce the power 
consumption for IoT devices and simultaneously provide a 
practical security solution, Gao et al. proposed an intrinsic 
security strategy [10], based on basic arithmetic operations 
executed by approximate function units, enabling embedded 
information for authentication and other security related 
applications. The principle is presented in Fig. 16, where the 
floating-point based approximate arithmetic computing has 1 
sign bit, 8 exponent bits and 23 fraction bits. The left 
component is the MSB, and the right p bits in the fraction, and 
the LSB, have little impact on the value. Hence, they can be 
directly used as security bits to hide information without 
affecting the other 32 − p bits. The error introduced to the 
precision value is 0.0074, which means the last p bits introduce 
less than 2p−24 error compared to the precision format. 

 31 (bit index) 0 
3.14159 
(Decimal) 

sign exponent  fraction (1 bit) (8 bits)
 (23 bits) 

(a) 
 p-1 0 

3.13574 
(Decimal) 

3.14159 
 sign  exponent  fraction (Decimal) 

Security 
(1 bit) (8 bits) (23 bits) 

(p bits) 

(b) 

Figure 16: The application of approximate computing to 
extract security: (a) IEEE 754 single-precision floating-point 
format for 32-bit data, (b) approximate format with security 
extraction. The last p LSB bits can be used as security bits to 
embed information. 

With this in mind, we will show two examples of hiding 
information into approximate computing, one is using an 
approximate adder and the other one is using and approximate 
multiplier. 

[86] presented an information hiding strategy using an 
approximate adder based on an accuracy configurable adder 
[87]. A short message M can be deliberately hidden in the 

operation of an approximate adder to detect incorrect results 
which can be used as a proof that the adder carries hidden 
information. 

Fig. 17 shows the process and an example of applying an 
approximate multiplier for information hiding [10]. Two real 
numbers A and B can be written as A = A0 ⊕ KA and B = B0 ⊕KB 

using the approximate format, where A0 and B0 are the 
numbers A and B in the approximate format with the last p bits 
are replaced by 0s; KA and KB are the last p bits of A and B. ⊕ 
is an XOR operation. 

As an example, assume the numbers A and B are 3.14159 
and 12.31, respectively. A × B = 3.14159 × 12.31 = 
38.6729729 is obtained for the precise computation, A0 × B0 = 
3.1413574 × 12.30957 = 38.6687588 is calculated for the 
approximate computation with p = 10. The final result with 
security information embedded (Kr) is computed 

 

Figure 17: An example of the application of an approximate 
multiplier for information embedding. 

as A0×B0⊕KA⊕KB⊕Kr = 38.67124, with only a 0.00448 
percentage accuracy loss over the accurate result. Hence, 
compared to direct approximate computing, this approach 
achieves approximate computing and information hiding at 
the same time, which can significantly reduce power and 
hardware resource consumption. 
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2) VOS based Authentication: Due to the ubiquitous nature 
of IoT devices, lightweight authentication of an entity is one of 
the most fundamental problems in providing IoT security. A 
novel voltage over-scaling (VOS) based lightweight 
authentication approach is presented in [54] to address this 
challenge. VOS technique commonly uses approximate 
computing method to reduce power consumption and can 
extract information through exacerbating the effects of 
process variation. Digital circuits and systems normally operate 
under a nominal voltage to guarantee correct outputs. 
Properly reducing the operating voltage under the prescribed 
margin can considerably save power consumption. However, 
process variation is effected by scaling voltage, which can 
generate timing errors and thus sacrifice the output quality. 
Hence, a two-factor authentication scheme that uses 
passwords and hardware properties was proposed to achieve 
lightweight authentication for IoT applications [54]. [54] 
introduced an example of the effect of process variations in 
voltage overscaling based computation as shown in Fig. 18. An 
image processing technique, superimposition, is applied to 
images (a) and (b) to generate a new image (c)without voltage 
overscaling technique. The process is carried out using an 
accurate adder. When two voltage over-scaled ripple-carry 
adders with process variations are applied, images (d) and (e) 
with the error patterns (f) and (g), respectively, are received. 
The difference between two error patterns is shown in image 
(h). Hence, it can be used for digital fingerprint generation and 
then applied to authentication. However, it may also have the 
same deanonymization issues as mentioned in Section IV-B1. 

An adversary could deanonymize the approximate circuit 
based on the physical variations by analyzing the error patterns 
of a the two error patterns (f) and (g). voltage over-scaled 
circuit. 
C. Approximate Computing for Machine Learning Based 
Security 

1) Side Channel Analysis (SCA) of Cryptographic 
Algorithms: In recent years, machine learning techniques have 
been used to improve SCA attacks. A relatively new approach 
to SCA profiling attacks involves the application of machine 
learning techniques to improve their efficiency and success 
rate. It has been shown that these attacks can be even more 

powerful than the more traditional template attacks in 
practice, as less assumptions are required on the distribution 
of the underlying trace data [88], [89]. Much of the research to 
date has centered on the use of SVMs [90], [91] and random 
forests [88]. Research by Lerman et al. [88] showed how such 
approaches can be used to uncover the key of a (masked) 
advanced encryption standard (AES) implementation, that 
include protection against attacks, such as power analysis. 

 

Figure 19: An example of the application of machine learning 
to SCA. Approximate computing can be used to accelerate the 
machine learning process and improve the attack efficiency. 

An illustration of this idea is shown in Fig. 19. Gilmore et al. 
in [92] built on this research by investigating the novel 
application of a neural network (NN)-based attack (that can be 
accelerated by approximate computing) against a masked AES 
design. This two stage attack first uses a NN model to recover 
the mask, with a second NN model built to recover the masked 
secret data. Combining the knowledge recovered from both 

attacks allows subsequent key recovery with only a single trace. 
Parallel work has shown how to recover the secret key with 
only a single model with no knowledge of the mask at a cost of 
additional traces in the attack stage [89]. 

 

Figure 18: An example of the effect of process variations in voltage over-scaling based computation. Two images (a) trees and 
(b) snowflakes are superimposed to generate (c) snowfall. When the computation is under voltage over-scaling technique and 
two adders are identical except the process variations of the hardware, (d) and (e) images are different with the error patterns 
(f) and (g), respectively, which are the deviations of each adder from the correct image (c). (h) presents the difference between
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Figure 20: An example of the application of PAC to model an 
Arbiter PUF design [93]. 

2) PUF: The probably approximately correct (PAC) 
algorithm has been utilized to model k−XORed Arbiter PUFs 
(APUFs) suitable for k < 4 [93] as shown in Fig. 20. In order to 
prevent modeling attacks, SPUF designs have been enhanced 
by increasing their complexity. Since approximate computing 
can be used to significantly improve the performance of 
machine learning attacks, applying approximate computing 
based modeling attacks to break SPUF designs will improve 
efficiency and success rates. 

3) Logic Obfuscation: Most traditional circuit 
obfuscation techniques have been proven to be vulnerable to 
a boolean satisfiability (SAT) based attack [94]. The principle of 
a SAT attack is presented in [95], as shown in Fig. 21(a). SAT 
resistant countermeasures have been proposed by 
exponentially increasing the minimum number of queries 
needed for addressing the problem. However, an exact 
deobfuscation 

Correct Key space Correct Key space Correc Key space Correct Key space key

 t key 

 

Figure 21: The application of approximate computing to SAT 
attacks on logic obfuscation: (a) illustration of the iterative SAT 
attack process [95], (b) an approximate deobfuscation 
algorithm based on SAT attacks and random testing [97]. 

accuracy is required for the countermeasure based on implicit 
assumptions. To address this, [96] and [97] proposed an 
approximate attack, AppSAT, as shown in Fig. 21(b) to 
deobfuscate circuits by terminating the attack at an early stage. 

High corruptibility, or ‘compound’ schemes, have been 
proposed to prevent SAT attacks. [98] proposed an 
approximate SAT-based attack framework to enhance the 
efficiency of the attack using approximate techniques to 
convert a compound SAT attack to a general SAT attack. 

4) Hardware Trojan Detection: Deep Learning (DL) is a data 
driven approach, where the goal is to ensure the learning 
algorithm is agnostic to the problem at hand, only the data 
changes [99]. This type of approach is often based on NN type 
architectures with multiple hidden layers. With advances in 
training algorithms and computational power, it is now 
possible to train vast amounts of data leading to today’s rapid 
advancements and adoption. As mentioned in Section IV-A2, a 
HT is a type of malicious modification to circuits by an attacker. 
Recently, Hasegawa et al. [100] proposed a Trojan 
classification method for gate-level netlists using SVMs. By 
analyzing the netlists from the Trust-HUB benchmark suite 
[101], they identify several features strongly related to HTs. 
Trained by these features their SVM approach results in high 
true positive rates, but relatively poor true negative rates 
when applied to the benchmark suite. They also proposed the 
first use of DL in HT detection for gate-level netlists. Fig. 22 
shows 

 

Figure 22: The application of approximate computing to 
accelerate the detection of HTs. 

an approach using approximate computing to accelerate DL 
algorithms for HT detection. According to the effectiveness of 
the approximate circuit and algorithm development, the 
efficiency of the HT detection will be significantly improved. 

VI. FUTURE RESEARCH DIRECTIONS 

The area of security in approximate computing and 
approximate computing for security is not mature. There are a 
number of open questions needed to be addressed for 
practical applications, which lead to the future research 
directions. 

A. Security in Approximate Computing 

1) The Impact of Error: As shown in Fig. 2, one of the biggest 
differences between accurate computing and approximate 
computing is the appearance of errors. An accurate computing 
design generates exact results without any errors. In contrast, 
an approximate computing design, acceptable to errors, may 
have many possible outputs. An interesting phenomenon is 
adversaries can also introduce errors to both accurate and 
approximate designs. Based on this, some challenges or open 
questions need to be discussed. 
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• For the accurate computing design, the malicious 
actions/errors can be easily detected. However, it is more 
difficult for the approximate computing design to 
differentiate normal errors generated by the 
approximate design and malicious errors deliberately 
manipulated by adversaries. Moreover, the impact of the 
security of the approximate computing is still unknown. 

• A threshold value can be set for the errors within the 
reasonable range of approximate designs. Any error 
beyond the threshold can be considered as potential 
malicious attacks. However, the selection or setting of the 
threshold is also challenging. 

• A normal test and approximate test have different yield 
and security challenges. Future test techniques for 
approximate computing need to consider how to 
effectively evaluate security vulnerabilities of an 
approximate system/design. 

• Previously, we mentioned that approximate computing 
designs can be also classified as deterministic and 
nondeterministic approximate designs. The error 
patterns and approximate schemes of both the 
deterministic and nondeterministic approximate designs 
are different, which may open up various opportunities 
for new security attacks. Relatively, the testing 
techniques for both the deterministic and non-
deterministic approximate designs should also be 
different. 

• The error characteristics of approximate design and 
malicious circuits are also important, which has different 
impact on the results. Need to model, analyze and control 
the error. 

• In Section IV-A2, the potential threats introduced by 
hardware Trojans has been discussed. An initial result 
presented that the approximate adder circuit is probably 
more vulnerable than the exact adder since the 
approximate adder has a lower transition probability 
distribution compared to the exact adder. It is interesting 
to investigate whether the low transition probability is 
related to the errors of approximate circuits. For example, 
whether the more approximate the lower transition 
probability? It is also worth to investigate that the impact 
of the types of approximates (adder, multiplier or divider) 
to the possibility of hardware Trojan insertion. 

2) Countermeasures for Attacks: The final objective is to 
securely apply approximate computing techniques to the 
practical scenarios. The feasibility and effectiveness of 
conventional cryptographic and security approaches need a 
concrete evaluation when utilized to approximate computing 
system/designs. New countermeasures will be probably 
required if the conventional methods are less effective. How 
to design and evaluate new countermeasures for the attacks 
on approximate computing system/design is a new question. 
Since the most outstanding properties of approximate 
computing techniques are less energy consumption and faster 
speed, the countermeasures for such techniques should be 
also low-cost and more general. 

3) Cross-Layer Approximate Computing: Is it necessary 
to perform cross-layer security analysis of approximate 
computing? Cross-layer is required due to the personalising 
and customization. Over the years, previous research on 
approximate computing has spanned from devices to systems. 
However, most of the current research has mainly focused on 
a single layer. For example, the research of an approximate 
computer arithmetic circuits is only applied to simple fault-
tolerant applications with a small amount of arithmetic 
operations, while current approximate algorithms mostly run 
on precise hardware. In the case where an approximate 
algorithm is executed on approximate hardware, the current 
research has not fully considered how to make the 
approximate hardware and the approximate algorithm 
mutually compensate for and tolerate errors to realize synergy 
and achieve the best ‘3D’ (precision, performance and power 
consumption) trade-off. Some initial work has been presented 
in [31]. However, security threats associated with such multi-
level approximate designs have been neglected. It is essential 
to investigate and evaluate the security vulnerabilities in these 
designs and consider countermeasures for securing multi-level 
co-designs. For example, approximate computing is promising 
for dealing with DNN. An approximate multiplier is a good 
candidate in the hardware implementation for the 
construction of flexible NNs. The application of approximate 
multiplication for the hardware implementation of an 
approximate NN is illustrated in Fig. 23. 

B. Approximate Computing for Security 

1) The Impact of Approximate Computing for Security: It 
is necessary to know how the security of a system/design will 
be affected by introducing approximate computing to an 
existed system. In this situation, the existed system may 
already have a protection scheme. The introduction or 
replacement of approximate computing components may 
reduce the security level while improve the energy efficiency. 
It may also bring in unknown vectors for attackers. As 
previously mentioned, there is a tradeoff between the security 
and performance for approximate computing based designs. It 
is worth to think 

  

 

Figure 23: The application of an approximate multiplier for the 
hardware implementation of an approximate NN. 
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about the balance of both security and performance before 
developing an approximate design. 

2) Benefits By Applying Approximate Computing: In this 
paper, we have discussed that approximate computing 
techniques have been utilized in cryptography or security, 
including the following aspects: 

• Efficiency Improvement for cryptography: the PQC in 
Section V-A1, the Homomorphic encryption in Section V-
A2, the approxHash in Section V-A3 and the bitcoin 
mining in Section V-A4. 

• Acceleration for attacking techniques: the SCA attack 
acceleration in Section V-C1, the PAC attack on PUF in 
Section V-C2, the SAT attack acceleration on logic 
obfuscation in Section V-C3. 

• Security enhancement: providing a low-cost information 
hiding scheme in Section V-B1, a lightweight 
authentication method in Section V-B2. 

These raise up another concern, the impact of approximate 
computing for the above strategies. For example, how much 
efficiency the cryptography can be improved, how machine 
learning based SCA is affected and how much information can 
be hided when different degrees of approximate computing 
are applied. Except these, other promising research areas can 
be also further investigated. In the following content, we will 
introduce three new topics using approximate computing 
techniques for hardware security. 

a) Approximate Circuit Based PUF: In Section IV-B1, an 
approximate DRAM-based PUF [64] was presented for 
identification/authentication. The DRAM memory-based PUF, 
is only one of a range of types of PUF designs. Other types 
include circuit based Arbiter PUFs [49] and ring oscillator (RO) 
PUFs [102]. Moreover, in Section V-C2, an approximate 
algorithm, PAC, was utilised to attack PUF designs [93]. 
However, there has been no research to date on approximate 
circuitbased PUF design, which is another promising approach. 

b) Logic Obfuscation: In circuits logic obfuscation, an 
attacker can decipher the key by sensitizing the key values to 
the output or isolating the key related gates since the logic 
obfuscation circuit, can be removed from the original circuit 
[103]. To counter this, Fig. 24 shows a potential application of 
approximate arithmetic circuits in logic obfuscation. If the 
underlying design to be obfuscated is an approximate 
arithmetic circuit, logic obfuscation can be applied to the MSB 
or LSB of the circuit to ensure it only be used correctly by 
applying the key required for the logic obfuscation circuit. 
Otherwise, the computation results will be too erroneous to 
be used. 

 

Figure 24: A potential application of an approximate arithmetic 
circuit for logic obfuscation. 

3) Other Security Applications Adopt Approximate 
Computing: We use biometric security as an example to show 
the potential security applications can adopt approximate 
computing. Due to the high probability of hacking threats in 
traditional security strategies based on user-names and 
passwords, biometric approaches are often considered for 
security applications, such as finger printing, iris scanners and 
face recognition. They have been widely adopted in several 
scenarios: smartphones, banking, borders, and so on. There 
are two main reasons for the widespread application of these 
biometric approaches. One is that they have a large data pool 
and the other is that the data has high uniqueness. A certain 
portion of errors is tolerable for an iris encoding. For example, 
the possibility that two different individuals have 25% of the 
same hamming distance is only 1 in 13 billion. However, the 
data processing speed is a challenge in iris recognition systems 
which includes many computational components, for example, 
focus assessment, image segmentation, normalization and 
data encoding [104]. To accelerate the response time of iris 
scanning from image collection to iris encoding, [104] recently 
proposed a new method to speed up the iris recognition 
process using approximate computing at both the software 
and hardware level. Compared to a pure software 
implementation, the approximate computing based software 
and hardware codesign achieved a speedup of 378× while 
maintaining an acceptable accuracy. 

4) Emerging Approximate Techniques: A significant 
growth on approximate computing technologies will 
revolutionize modern computing systems and platforms. It 
may bring in new security vulnerabilities or require security 
approaches for protection. For example, emerging nonvolatile 
memory technologies, such as resistive random access 
memory (RRAM) and magnetic random-access memory 
(MRAM), which combine the advantages of conventional 
memory technologies, have become very attractive for future 
memory hierarchies. [105] shows that RRAM-based analog 
approximate computing systems are very energy efficient; 
however, their accuracy is difficult to control and quantify. 
Research outputs [106], [107], [108] have presented new 
achievements which can be applied to memory technologies. 
An approximate multilevel cell (MLC) spin transfer torque-
random access memory (STT-RAM) [109] has been proposed 
to eliminate the ECC requirement and significantly improve 
memory utilization with negligible image quality degradation. 
A scaled STT-RAM [110] has also been proposed for 
approximate computing to reduce power consumption and 
area usage. A comprehensive evaluation of using STT-RAM to 
replace DRAM technology is investigated in [111]. It shows that 
STT-RAM achieved comparable performance compared to 
DRAM and is a very promising memory technology. An 
approximate MLC STTRAM [112] has also been shown to 
achieve high energy efficiency without degrading the image 
quality requirement of applications. This research 
demonstrates that approximate computing has been applied 
to emerging memory technologies. However, the security of 
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these approximate technologies is unknown and needs to be 
investigated. 

VII. CONCLUSION 

Due to a high demand for low power but high performance 
computing systems, approximate computing, which 
outperforms traditional computing architectures, is being 
rapidly developed and applied to practical systems. It is 
beneficial for many applications, such as AI, machine learning, 
image processing, etc., where accurate results are not essential 
and intrinsic errors are tolerable for the calculation. However, 
security related challenges and opportunities for approximate 
computing have been neglected to some extent. In this paper, 
approximate computing circuit designs, multi-layer codesign, 
state-of-the-art security threats in approximate computing 
and approaches using approximate computing for both 
security and cryptography, have been comprehensively 
reviewed. A classification of the state-of-the-art in this 
research area, including threat models, existing and potential 
approaches, has been presented. We hope the classification 
and review can give researchers a clear understanding of this 
research area. Currently, security in/for approximate 
computing has not been widely studied. In particular, the 
utilisation of approximate computing to enhance 
security/cryptographic primitives has a promising future. 
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