
Security in Approximate Computing and Approximate Computing for
Security: Challenges and Opportunities

Liu, W., Gu, C., O'Neill, M., Qu, G., Montuschi, P., & Lombardi, F. (2020). Security in Approximate Computing
and Approximate Computing for Security: Challenges and Opportunities. The Proceedings of the IEEE, 108(12),
2214 - 2231. https://doi.org/10.1109/JPROC.2020.3030121

Published in:
The Proceedings of the IEEE

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2020 IEEE.
This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Open Access
This research has been made openly available by Queen's academics and its Open Research team. We would love to hear how access to
this research benefits you. – Share your feedback with us: http://go.qub.ac.uk/oa-feedback

Download date:20. Jul. 2023

https://doi.org/10.1109/JPROC.2020.3030121
https://pure.qub.ac.uk/en/publications/5dce0fff-30c1-40fd-88d0-eaaf44bfe5c8

 1

Security for Approximate Computing, Approximate
Computing for Security

Weiqiang Liu, Senior Member, IEEE, Chongyan Gu, Member, IEEE, Maire O’Neill,´ Senior Member, IEEE, Gang Qu,
Senior Member, IEEE, Paolo Montuschi, Fellow, IEEE, and Fabrizio Lombardi, Fellow, IEEE

(Invited Paper)
Abstract—Approximate computing, an advanced computational

technique which returns inaccurate but acceptable results instead of
exact results, has emerged as a new preferable paradigm over
traditional computing architectures for energy efficient system
designs. It is crucial for nanoscale integrated circuits (ICs) to achieve
high speed and low power, where some intrinsic errors are acceptable,
such as (deep-) machine learning, image processing, communication
and other error-tolerant and cognitive applications. However,
approximate computing also introduces security vulnerabilities
mainly due to the uncertainty and unpredictability of intrinsic errors
during approximate execution which may be indistinguishable using
malicious modification of the accurate result. On the other hand,
interestingly, approximate computing can also provide new
approaches for security. Existing literature in approximate computing
covers threat models, countermeasures, and evaluations, but lacks a
framework for analysis and comparison. In this paper, we provide a
classification of the state of the art in this research field, including
threat models in approximate computing and promising security
approaches using approximate computing.

Index Terms—Approximate computing, hardware security,
cryptography

I. INTRODUCTION

N the last decade, various advanced computing systems,
including supercomputers, ubiquitous computing centers,

and servers, have been developed and widely deployed.
Unfortunately, Moore’s law is approaching its limitation [1],
and conventional computing techniques are not able to
provide higher computing performance under the restriction
of power consumption. Therefore, new nanoscale computing
paradigms are urgently required for low power and high
performance computing systems. Hence, appropriate
reduction of the computational accuracy could effectively
improve the performance of computing systems without
sacrificing functionality and perception.

Weiqiang Liu is with College of Electronic and Information Engineering,
Nanjing University of Aeronautics and Astronautics (NUAA), China, 211106,
email:liuweiqiang@nuaa.edu.cn.

Chongyan Gu and Maire O’Neill are with Centre for Secure Information´
Technologies (CSIT), Institute of Electronics, Communications & Information
Technology (ECIT), Queen’s University Belfast (QUB), U.K., BT3 9DT, email:
cgu01@qub.ac.uk, m.oneill@ecit.qub.ac.uk.

Gang Qu is with Electrical and Computer Engineering (ECE), University of
Maryland, College Park, email: gangqu@umd.edu.

Paolo Montuschi is with the Department of Control and Computer
Engineering, Politecnico di Torino, Italy, email: paolo.montuschi@polito.it.
Fabrizio Lombardi is with Electrical and Computer Engineering (ECT),
Northeastern University, Boston, email: lombardi@ece.neu.edu.

Manuscript received xx xx, 2020; revised xx xx, 2020.
Inspired by the fault tolerance capability of the human brain,

approximate computing can accept errors in calculation
without affecting the results of certain human perception and
recognition related computation, such as artificial intelligence
(AI), (deep-) machine learning (ML), signal processing and

communication, etc., in which noisy data or redundant
information is tolerable for the computation. It has attracted a
significant amount of interest in academia [2], [3], [4]. It is
crucial for energy efficient systems and some of approximate
computing techniques has been adopted in high speed and low
power nanoscale integrated circuit (IC) designs. For example,
Google’s deep learning (DL) chip, the tensor processing unit
(TPU), achieves a significant improvement in processing
performance using common approximate computing
techniques, such as precision scaling [5]. IBM research has
pioneered to build on-chip AI accelerators with approximate
computing techniques [6]. It utilized multiple approximate
computing techniques, such as precision scaling and training
compression approaches, and achieved 4-200x speedup over
existing methods [7].

Previous research has made efforts to efficiently improve
performance with acceptable loss of accuracy [3], [8]. However,
approximate computing also introduces security
vulnerabilities mainly because of the uncertainty and
unpredictability of intrinsic errors during approximate
execution which may be indistinguishable from malicious
modification of the accurate result [9]. It also pointed out that
approximate computing is well-suitable for security tasks.
However, if approximate computing have security
vulnerabilities, applications that related to will undoubtedly be
affected. Interestingly, approximate computing can also
provide or even enhance security solutions. For example,
approximate circuits, based on simplified circuits which can
reduce area and power consumption, have been proposed for
information hiding [10]. Compared to conventional security
solutions based on exact circuits, approximate circuit based
security strategies not only provide the same security level but
also save hardware resources. Approximate computing opens
up both challenges and opportunities for security.

Some initial survey and tutorials have been presented. [11]
presented potential security vulnerabilities that will affect the
integrity and security of approximate computing systems. The
security threats overviewed in [11] mainly focused on
approximate circuits and storage, including approximate
DRAM, phase change memory and SRAM. [9] discussed
security threats of approximate computing in a perspective of
hardware-related primitives, for example, side-channel
analysis (SCA), reverse engineering, cloning/counterfeiting and
active attacks. [12] reviewed approximate computing based
hardware security applications and also proposed some future
research directions. These papers provide an initial
introduction and discussion for this emerging field.

I

 2

However, the existing literature lacks of a comprehensive
and systematized analysis/comparison of threat models,
countermeasures, and evaluations. We first provide a
classification of significant contemporary challenges, including
threat models in approximate circuits, hardware security
circuits and approximate storage. We classify hardware
security threats, including power leakage, reverse engineering,
hardware Trojans, SCA, in approximate systems, such as
approximate storage and approximate circuits. We also classify
the application of approximate computing on building security
primitives, such as approximate computing for cryptography,
hardware security, approximate algorithms and biometric
systems.

The rest of this paper is organized as follows. Section II
provides background to approximate computing, including
approximate computing strategies and techniques. Section IV
presents a systematization of the security threats in
approximate computing, which includes approximate circuits
and approximate storage. A classification of approximate
computing for security is discussed in Section V, which
describes how to use approximate computing for security,
such as cryptography and hardware security. Section VI
describes future research directions. Conclusions are drawn in
Section VII.

II. APPROXIMATE COMPUTING

Approximate computing [8], [2], [3], [4] is driven by
applications that are related to human perception and
inherent error resilience, such as digital signal processing (DSP),
communication, multimedia, machine learning and pattern
recognition. It can be applied to these applications due to the
large and redundant data sets that contain significant noise,
therefore numerical exactness can be relaxed. In this section,
the design objectives of approximate computing, including the
relationship of performance, power and accuracy of an
approximate computing design will be introduced. Depending
on approximate level and behaviour determinism,
approximate computing can be classified into three different
categories [8], [13].

A. Design Objectives
Approximate computing can reduce power consumption

and improve system performance by introducing acceptable
errors. As such, computation accuracy has been introduced as
a third design parameter in addition to delay and power/area
consumption as shown in Fig. 1. In a system, there are many
parameters, for example, delay, execution time and
complexity, to affect performance, power and area
consumption. The 2 dimension (2D) design space shows the
relation ship between performance and power/area
consumption. The 3 dimension (3D) design space presents the
relationship between performance, computation accuracy and
power/area consumption, which has one more dimension,
computation accuracy, than the 2D accurate computing. The
more accurate the computation, the slower the performance

and the higher the power and area consumption. The more
errors introduced the computation, the faster the
performance and the lower the power and area consumption.
This is a tradeoff needed to be considered when designing a
system involving approximate computing. To achieve good
performance and consume less power and area, the
introduced errors should be also acceptable.

Figure 1: A design space (a) of performance and power for
accurate computing (2D) and (b) of performance, power and
accuracy for approximate computing (3D).

B. Classification

1) Approximate Level: Approximate computing can be
applied to different categories, in hardware and software and
in different layers of systems. A classification of approximate

Figure 2: Approximate computing strategies and techniques.

computing techniques based on approximate level as shown in
Fig. 2 is summarized as follows.

• Software Approximation: Power consumption is reduced
using simplified functions or data in programs. For
example, loop perforation [14], precision scaling [15], [16],

Approximate
Storage

Approximate
 Arithmetic

Circuits

Approximate
Architecture

Software
Approximation

•
 Loop perforation

•
 Precision scaling

•
 Using Program versions of different accuracy

•
 Data sampling

•
 Refresh rate reducing

•
 Voltage scaling

•
 Inexact read/write

•
 Approximate adders

•
 Approximate multipliers

•
 Approximate dividers

•
 Approximate FFT

•
 Approximate CORDIC

Strategies

•
 Approximate accelerators

•
 Programmable processors

•
 Unreliable emerging technologies

•
 Memory access skipping

Underprovisioned
Circuits •

 Voltage /Frequency
 overscaling

Approximate Computing
Techniques

Software
Hardware
Codesign

•
 Tradeoff quality of service/solution (QoS)

•
 Optimizing uncertain data

•
 Automatic hardware platform with

approximate operations

Category

Software

Architecture

Software &
hardware

hardware

 3

[17], using program versions of different accuracy [18],
and data sampling [19],

• Approximate Architectures: Approximate errors can be
detected or optimized in approximate accelerators [20] or
programmable processors [21]. Other techniques include
memory access skipping [22], lossy compression [23], [24],
and unreliable emerging technologies [25].

• Approximate Storage: Approximate storage is emerging
as an efficient technique to reduce a significant portion of
system power consumption. The techniques include
reducing refresh rate for DRAM [26], voltage scaling [27]
and inexact read/write [28].

• Software/Hardware Codesign: Most approximate
research is mainly focused on a single layer. Software and
hardware coordinated designs have also been presented
to achieve efficient, high performance and dedicated
outputs using approximate approaches. For example, a
technique using trade-off quality of service or solution
(QoS) was presented in [14]. [29] presented an
approximate technique which optimizes uncertain data
to achieve better performance. An automatic hardware
platform with approximate operations was demonstrated
in [30]. The incremental network approximation (INA)
method has also been proposed to cooperate
approximate circuits with deep neural networks (DNNs)
algorithm with little loss of accuracy [31].

• Approximate Arithmetic Circuits: simplify circuit designs
to achieve an approximate operation of the desired
function, such as addition, multiplication and division.
The main approximate arithmetic units include
approximate adder [32], [33], approximate multipliers
[34], [35], [36] and approximate dividers [37] that have
been proposed. Other approximate circuits have
approximate fast fourier transform (FFT) [38] and
approximate CORDIC [39].

• Underprovisioned Circuits: Circuits, adjusted to operate at
extreme conditions, such as power boundaries, which can
easily trigger errors, can achieve lower power
consumption. Relevant techniques include voltage
overscaling [40] and frequency overscaling [41].

2) Deterministic and Non-deterministic: The classification of
deterministic and non-deterministic for approximate
computing depends on the output of the approximated design
[42]. A deterministic design repeatedly returns the same
output when given the same input as shown in Fig. 3(a). In
contrast, Fig. 3(b) presents a non-deterministic design which
has a rarely repeated output for the same input. For a
deterministic approximate design, a constant error E is
generated when given the same input A. However, a non-
deterministic approximate design generates different errors,
Ei,Ej,Ek for the same input A, which leads to different outputs,
Oi,Oj,Ok. To ensure that the errors, Ei,Ej,Ek, are acceptable for
the underlying system, an error threshold θ is necessary to be
utilised for evaluation. However, it is not necessary for a

deterministic approximate design. Therefore, non-
deterministic approximate designs have limited reproducibility.

(b)

Figure 3: Approximate computing classification based on
reproducibility: (a) non-deterministic, (b) deterministic.

The examples of deterministic approximate computing
techniques in the above mentioned publications are [14], [16],
[18], [15], [17], [19], [23], [24], [29], [30], [32], [33], [34], [35],
[36], [34], [35], [36]. The non-deterministic approximate
computing techniques of the above mentioned research
include [20], [21], [25], [26], [27], [28], [40], [41].

In principle, a system which includes approximate
computing to trade off accuracy for delay/power/area should
ensure the same security as its exact counterpart. However, to
date the security issues of approximate computing have been
neglected and it is difficult to guarantee the security of
operations that are approximated. Adversaries can target
some components of an approximate computing system, for
example, software programs, processors, accelerators,
memories and circuits. The expected cost will go higher when
the approximation level goes to architecture and hardware
circuit designs since system developers, engineers, and circuit
designers all may be involved. When security vulnerabilities
exist in these approximate designs/systems, the test, detection
and modification process must be more complicated than
software debugging. According to the deterministic and
nondeterministic approximate methods, attacking techniques
for both should be different. In the subsequent sections, the
vulnerabilities, attacking techniques and potential
countermeasures for approximate computation will be
discussed.

III. SECURITY AND CRYPTOGRAPHIC PRIMITIVES

In this section, we will introduce some widely known
security and attacking techniques which may affect the
security of approximate computing designs. A summary of
these concepts is shown in Table I.

A. Hardware Security

1) Side Channel Analysis (SCA): SCA reveals the
implementation of security/cryptographic schemes by
observing the behaviour of the operation to obtain additional
information. During the operation, the adversary observes the
power consumption of hardware implementation to calculate
the cipher key or reveal details of the execution/data in the
scheme. SCA can be classified into two groups: one is invasive

 4

and noninvasive and the other one is passive and active.
Invasive SCA requires to depackage/break the device before
the behaviour

observation. In contrast, non-invasive SCA doesn’t need to
open the device during the attack. Obviously, the invasive SCA
involves other pre-processing requirements and probably not
applicable for the chip not acceptable to be opened. Passive
SCA only observes the behaviour of the device’s
implementation. Active SCA can deliberately manipulate the
inputs of the device, for example, carrying out fault injections,
at the same time observing the behaviour. SCA has been
discussed to be potentially harmful to approximate circuits,
which will be introduced in details in the next section.

2) Reverse Engineering: In semiconductor industry, the
technical information and patent-related information of a
product are the most valuable and essential components for
manufacturing companies. However, an adversary can
deconstruct an IC to reveal the design, architecture or extract
knowledge from a hardware circuit [43]. This process is
commonly named as reverse engineering.

3) Hardware Trojan (HT): Resulting from the
globalization of the semiconductor supply chain, the design
and fabrication of ICs are now distributed worldwide. It brings
great benefit to IC companies, leading to a lower design cost
and a shorter time-to-market window [44]. However, it also
raises serious concern about IC trustworthiness triggered by
the use of thirdparty vendors. As a result, it is becoming very
difficult to ensure the integrity and authenticity of devices. A
hardware trojan (HT) can be inserted into IC products at any
untrusted phase of the IC production chain by third-party
vendors or adversaries with an ulterior motive [45].

4) Physical Unclonable Function (PUF): A PUF is a
security primitive which utilizes the inherent process
variations present during manufacturing in order to generate
a unique digital fingerprint that is intrinsic to the device itself.
As this natural variation between silicon dies is out of the
manufacturer’s control, they are inherently difficult to clone,
as well as providing additional tamper-evident properties [46],
[47], [48], [49]. PUF architectures can be broadly classified into
Weak PUF and Strong PUF (SPUF) as discussed in [50]. SPUFs
have a large number of possible challenge response pairs
(CRPs), whereby a large number of random challenges will
return a random response unique to each challenge, as well as
the physical device. By design, this implies the requirement for
a much larger entropy pool such that related challenges
should not lead to related responses on the same device.

Hence, SPUFs have been proposed for use in applications such
as lightweight mutual authentication, etc. However, most
SPUF architectures based on linear and additive functions

have been shown to be vulnerable to ML attacks. To date,
linear regression (LR), support vector machine (SVM), and
Evolutionary Strategies (ES) based ML methods have been
widely utilized to attack PUFs [51], [52], [53].

5) Logic Obfuscation: Logic obfuscation involves hiding
important information, for example, functionality and
implementation, related to a circuit design by inserting
additional logic components into the original design so that
reverse engineering will not work without authorization. In
order to execute its valid functionality to generate correct
outputs, a secret key is input into the logic obfuscated circuit.
If a wrong key is applied, the functionality will be incorrect and
wrong outputs are generated by the obfuscated circuit. Logic
obfuscation techniques have been utilized to protect
intellectual protection (IP) and evaluate the trust of hardware
[54].

B. Cryptography

1) Post-Quantum Cryptography (PQC): In the near
future, quantum computers will break today’s most popular
public-key cryptographic systems, including RSA, elliptic-curve
cryptography, DSA, and ECDSA. PQC is a branch of
cryptography that operates on today’s classical computers but
are based on mathematical problems that are not under
threat from attacks by known quantum algorithms [55], [56].

2) Lattice-Based Cryptography (LBC): Lattice-based
cryptography (LBC) is one of the most popular branches of PQC
due to its versatility, its security hardness and the fact that it
can be constructed efficiently on various computing platforms.
Except conventional encryption and signatures, LBC can be
flexibly applied to other constructions, such as identity based
encryption and attribute based encryption and fully
homomorphic encryption.

3) Homomorphic Encryption (HE): Homomorphic
encryption is a cryptographic approach that can perform
calculations directly on encrypted data without needing to
decrypt the data first. It allows a third party to analyze and
apply functions on encrypted data without the risk of
information/privacy leakage, which enables important
applications, for example, securing data in the cloud and
providing data analytics in regulated industries. A survey of

Table I: List of Frequently Used Hardware Security & Cryptographic Primitives
Category Concept Description

Hardware Security
Side channel analysis (SCA)
Reverse engineering

The adversary observes the power consumption of hardware during the computation.
The adversary deconstructs an IC to reveal the design, architecture or extract knowledge from the hardware circuit.

 Hardware Trojan (HT) A malicious alteration to the original design of an IC during design or fabrication.

 Physical unclonable function (PUF) A circuit that uses manufacturing process variations to generate a unique unclonable digital fingerprint.

 Logic Obfuscation A circuit includes logic encryption/locking and IC camouflaging techniques.
It inserts additional gates to hide the correct functionality and gate-level implementation of a design.

Cryptography

Post-quantum cryptography (PQC)
Lattice based cryptography (LBC)
Homomorphic encryption (HE)
Learning with errors (LWE) problem

Cryptographic algorithms that are invulnerable to known quantum algorithm attacks by a quantum computer.
One of the most promising candidates for PQC, constructed using lattices.
A cryptographic scheme allows arbitrary arithmetic function on encrypted data without the need of decryption.
Defined as As+e=b mod q, given (A, b), find s, where e is an error vector in a Gaussian distribution and q is a field modulus.

 5

various homomorphic encryption algorithms and schemes can
be found in [57].

IV. SECURITY THREATS IN APPROXIMATE COMPUTING
In this section, we will introduce and discuss the security

threats, including both existing confirmed and potential attack

models, in approximate computing. We will emphasize the
operation and effectiveness of these threats to approximate
computing systems. A comprehensive classification of security
threats in approximate computing is shown in Fig. 4. In Fig. 4,
the labeled confirmed attach technique represents the
attacking method used to break the target approximate object.
The potential attack technique refers to the attacking
approach which has been stated to be potentially harmful to
some approximate applications but no concrete results yet.
The confirmed affected application is the approximate
application presented to be vulnerable to specific attack
techniques, which may be also effective to the potential
affected application. It reminds that designers should be also
aware of both the confirmed attach techniques and potential
attach techniques for the potential affected applications. The
affected applications are categorized into two groups,
approximate circuits and approximate storage. The affected
applications and relevant attack techniques will be discussed
in details in the following subsections.

A. Approximate Circuits

Computing arithmetic units including adders, multipliers and
dividers are essential for processors, and significantly affect
the performance and power consumption of the whole
computing system. For cognitive applications, such as
recognition, data analysis and computer vision, the aim is to
achieve higher speed and lower power consumption as well as

satisfied error tolerance. This has motivated the fast
development of approximate arithmetic circuit designs. Most
of the approximate computing circuits proposed to date are
based on logic reduction and pruning methods. In cognitive
computing applications, for example, image recognition,
machine learning and pattern recognition, the key arithmetic

units include adders and multipliers. Therefore, high
performance and low power adders and multipliers have been
extensively studied. However, these may be vulnerable to
security threats.

1) Malicious Modification of Inputs or Registers: [11]
introduced a potential attack, i.e. malicious modification, of an
approximate adder by deliberately manipulating the adder’s
inputs to continuously generate erroneous outputs to activate
error correction code (ECC) or fault tolerant process more than
usual. It has been shown that the correlation between the
output and power for the adder with 50% errors is higher than
that with 25% errors.

Fig. 5 presents a potential malicious modification of an ALM
by deliberately tampering with the truncation parameter t,
which is normally stored in a memory’s register on board. A
truncation parameter, read out from the register, can be
maliciously manipulated to provide an unexpected value. As
an example, the original picture as shown in Fig. 5(a)
represents the exact result of the ALM calculation with both 8-
bit input and output. Fig. 5(b) to Fig. 5(e) illustrate the results
generated by different malicious modifications of the
truncation parameter t (t = 6,4,3 and 2, respectively). For
example, an attacker may deliberately manipulate to change t
directly to 2, producing an unacceptable image. There is no
need to modify the value of inputs. However, an adversary can
hack/change the value of the truncation parameter in register.
Finally, the large number of erroneous outputs will also
activate ECC or fault tolerant process more than usual. It will

Figure 4: Classification of security threats in approximate computing.

 6

also increase the power consumption since obviously more
schemes are frequently activated.

2) Hardware Trojan: [9] and [11] discussed the potential
security threats introduced by hardware Trojans. Approximate
devices might require extra hardware components to control
the level of approximation, which provides opportunities for
hardware Trojan insertion.

Moreover, the approximate circuits also introduce
possibilities for hardware Trojan insertion compared to exact
circuits. At the design stage of IC, the transition probability of
a circuit is a key feature for HT insertion by an adversary.
Normally, a HT is inserted into a circuit with low transition
probability since it is easy to hide the HT circuits. The transition
probability distributions for both an exact 8-bit adder and an
approximate 8-bit adder are presented in Fig. 6(a) and Fig. 6(b),
respectively. The transition probability distribution of the exact
adder is distributed close to the high transition probability area,
which is near to the highest probability value 0.25. There is no
transition probability smaller than 0.20. However, for the
approximate adder, the transition probability presents a
random distribution in the range [0.05, 0.25]. With a spread of
low transition probability, this means that HTs have a higher
possibility of being added into approximate adders than the
exact adders and hence, approximate circuits are more
vulnerable to such hardware Trojan attacks. This is an initial
result for a specific approximate adder and used as an example.
It is interesting to investigate the security of other approximate
circuits, for example, other approximate adders, multipliers
and dividers, which will be further discussed in the future work
section.

3) Voltage Scaling and Reverse Engineering: [9]
discussed that approximate circuits may leak information at
some operating points using voltage scaling techniques. [58]
utilized voltage over-scaling based approximate computing
method to result in different clock period which may lead to
the delay difference of a signal propagation in a circuit. Due to
the process variation, different chips will output different
delays for the critical path. This is similar to the principle of a
PUF in hardware security. Hence, the erroneous outputs can
utilize as an identity or possibly leak privacy information.
Voltage scaling techniques have also been utilized for
approximate storage which will be discussed in Section IV-B.

Reverse-engineering can also affect approximate circuits as
analyzed in [9] since it is difficult to apply approximate circuits
to implement cryptographic algorithms, which can then be
differentiated from other blocks implemented as approximate
circuits. Moreover, applying reverse-engineering techniques to
reveal and reconstruct an approximate circuit is easier than for
an original exact circuit.

(a)

(b)

Figure 6: The transition probability distributions for (a) 8-bit
exact adder and (b) 8-bit approximate adder.

B. Approximate Storage

Storage is another important aspect in approximate
computing. Memory access is extensive in many error-tolerant
and cognitive applications including machine learning,
computer vision, graphics, etc. The error resilience ability
enables these applications to produce acceptable results even
if inputs are noisy or erroneous. This has led to the rise of
designing approximate memories/storage to achieve large
savings in power consumption.

1) Approximate DRAM: Due to its low cost, longevity and
high density, DRAM is still the main option for memory in most
embedded systems. However, data stored in DRAM must be
periodically refreshed and leaks charge, which results in a
significant power waste. Approximate computing provides
many possibilities for substantial energy savings. [59] first

 (a) (b) (c) (d) (e)

Figure 5: Potential malicious modifications on the truncation parameter (t) of approximate logarithmic multiplier (approximate
logarithmic multiplier (ALM)): (a) original result with 8-bit input, (b) t = 6, (c) t = 4, (d) t = 3 and (e) t = 2.

0.15 0.1 0.05 0.25 0.2 0.3 0

5

10

15

20

Transition Probability

TransitionProbability
0.25 0.2 0.15 0.1 0.05 0.3 0

5

10

15

20

 7

presented an approach which splits an application into critical
and non-critical parts and allocates this data separate parts of
memory. Different refresh rates are utilized for both parts to
save energy for the non-critical data. [60] proposed a hardware
based approximating method to refresh the most important
bits

Figure 7: The relationship between DRAM refresh rate and
error rate leads to different operating conditions.

(MSBs) of operands at a higher refresh rate and alternatively
the least important bits (LSBs) of operands at a lower rate.
Software-based approaches have also been proposed. For
example, [61] proposed a method based on software
modification and DRAM controller changes to improve energy
quality and can be applied to commercial off-the-shelf (COTS)
devices. DRAM has also been developed for hardware security,
for example, DRAM PUF for identification and authentication
[62] and for true random number generation [63].

Fig. 7 presents the relationship between DRAM refresh rate
and error rate which leads to different operating conditions.
The lower the refresh rate for DRAM, the higher the bit error
rate. Normal refresh rates result in the lowest error rate but
higher power consumption. When the refresh rate drops
below an acceptable range, error correcting codes are no
longer feasible, and the DRAM will not function correctly.
Approximate DRAMs usually operate at the border of the
acceptable operating area. If the refresh counter is
manipulated by an adversary, the precise DRAM could be
refreshed at an incorrect rate. Then, the data stored in the
precise DRAM would be approximated and generate
unacceptable errors.

[11] demonstrated another example of tampering the
memory counter of DRAM to initiate DRAM with an incorrect
refresh frequency. To save energy consumption, a memory
composed of precise and approximate DRAM cells can be
refreshed in different refresh rates. The refresh commands are
generated under a control logic unit inside the DRAM module.
A counter in the control unit is utilized to calculate the address
of the next refresh event. An adversary may only need to
manipulate the configuration signal to damage the stored data
in the precise DRAM. As shown in Fig. 8, when the
configuration signal is deliberately modified to go high one
clock in advance, the counter for the number of MSBs

calculation starts earlier to increase. Therefore, it will
deactivate the DRAM refresh enable signal one clock earlier
than normal. The precise DRAM is refreshed in an abnormal
condition, which may result in key data lost or unexpected
errors.

DRAM PUF based on the decay characteristics of DRAM cells
was proposed to provide a lightweight security approach to
devices for key generation or authentication. [64] presented

Figure 8: Timing diagram of DRAM with incorrect refresh
frequency due to tampered memory counter [11].

how to characterize a DRAM PUF by exploring the decay
characteristics of DRAM cells in approximate DRAM since it
could not achieve 100% reliability of stored data due to unique
errors that can be used as an identification/fingerprint.
However, attackers can use the memory fingerprint to identify
other approximate outputs from the same system since similar
patterns of errors in results coming from the same chip. Hence,
future hardware based approximate designs should be aware
of design anonymity and avoid to expose privacy sensitive data.

2) Approximate SRAM: Supply voltage scaling, which can
reduce the power consumption of each memory access, is a
preferable technique for SRAM array for image processing and
multimedia applications although it leads to a higher bit error
rate. [65] proposed a dynamically reconfigurable SRAM array
which implements a lower voltage for cells storing the LSBs and
a nominal voltage for cells storing the MSBs. The error rates
can be modified in run-time by reconfiguring the number of
bits in the lower voltage mode. [66] also proposed a voltage
scalable architecture to save power dissipation by storing
different “quality” data in various “quantity” of SRAM bit-cells.
The principle is to save the most sensitive data in video
applications in higher order 8T bit-cells while the lower order
bits are stored in 6T bit-cells. The supply voltage in the 8T
SRAM memory remains normal to ensure the output video is
of sufficient quality. The supply voltage scaling technique can
be utilized for the less important lower order bits, stored in 6T
bit-cells, since errors/failures are acceptable in some
applications, for example, video processing. The research in
[67] improved the voltage scaling idea by proposing an
efficient sizing algorithm to reduce the computation time
needed to select the SRAM bit-cell sizes. Such techniques still
have drawbacks. Since the bit error rate (BER) in the MSBs is
fixed at design time, it is impossible to derive a dynamic
energyquality trade-off at run time, which has been achieved
by [68] and [27].

 8

However, approximate SRAMs may also be vulnerable to
security threats. [11] discussed a potential attack for the above
mentioned approximate SRAM by introducing more errors
than that can be tolerant. It will overburden the ECC scheme in
the memory. As an example, Fig. 9 presents attacks on
approximate SRAM based on a maliciously manipulation of
voltage scaling techniques. A typical supply voltage scaling
technique for SRAM [65] is shown in Fig. 9(a), where a lower
voltage is applied to the LSBs and a nominal voltage is executed
for the MSBs. However, an adversary can manipulate and
introduce errors to the MSBs through the supply voltage
scaling technique, as in Fig. 9(b).

Acceptable errors

Acceptable errors

Figure 9: An example of attacks on approximate SRAM: (a)
normal voltage scaling technique for SRAM to generate
acceptable errors on the LSB and no errors on the MSB, (b)
maliciously apply voltage scaling technique to the MSB to
introduce unacceptable errors.

3) Approximate Phase-Change Memory (PCM): The
inevitable “scaling limits”, a limit to how small a flash or DRAM
process can be shrunk, determines the number of electrons
that can be stored on a memory cell and forces memory
manufacturers to adopt alternative technologies, such as PCM.
PCM is a type of non-volatile memory (NVM) and can be
considered as a replacement for disk, flash and potentially
DRAM, to solve some of their disadvantages, i.e. DRAM’s
scaling woes and vastly outpace flash solid-state drivers (SSDs).
Although PCM also has some drawbacks, such as low speed,
power hungry and finite lifetime, etc., approximate computing
techniques can address these. [69] proposed an approximate
storage technique based on PCM to make efficient data
storage. Although [69] achieved an improved performance of
speed over precise PCM, it opens up new attack vectors for
approximate PCM. [11] discussed potential security
vulnerabilities along the writing flow of approximate PCM as
shown in Fig. 10. The threshold Tapprox defines the margin
between accurate and approximate PCM memory blocks. If the

threshold Tapprox is altered to an incorrect value, the critical
data stored in the accurate PCM memory will be affected.
During the writing operation, the writing voltage v is gradually

increased in each iteration. N(ur
,σ

r2) represents the noise
function, where ur and σr are the mean and standard deviation
of the error effect. The writing operation may be failed when
the voltage step is maliciously compromised by
underestimating or overestimating the noise function. Since
the number of writing iterations depends on the voltage
difference. If the sensing circuit is compromised, for example,
adding a voltage offset, the data in the PCM will

Figure 10: Flowchart of approximate PCM writing and
potential security vulnerabilities [11].

be modified. Finally, if the voltage comparator is disabled, the
attacker can directly overwrite critical data stored in the
accurate PCM memory.

V. APPROXIMATE COMPUTING FOR SECURITY

In the previous section, we discussed previous research on
potential security threats for approximate computing. Actually,
a dimension of approximate computing, can bring security to
address some essential vulnerabilities, as discussed in this
section. A comprehensive classification of security solutions
for approximate computing is shown in Fig. 11. The effective
approaches are categorized into two main groups,
cryptography and hardware security, and these will be
discussed in details in this section.

A. Approximate Computing for Cryptography

1) Post Quantum Cryptography (PQC): Discrete Gaussian
sampling is a critical constituent of many LBC based schemes
[70]. The sampler often becomes the bottleneck of schemes

0 1 1 0 0 1 0 0 0 1 0 1 1 1 1 0 1 0 0 0 0
Lower Voltage

LSB MSB

Nominal Voltage

No error Voltage Scaling

Lower Voltage
0 1 0 0 0 1 1 0 0 1 0 1 1 1 1 0 1 0 0 0 0

Lower Voltage

LSB MSB

Errors Voltage Scaling

 9

requiring high performance and its implementation has been
successfully attacked by SCA [71], [72].

Rejection sampling, shown in Fig. 12, is a common method
employed to execute discrete Gaussian sampling in lattice
based cryptography [73]. An integer x ∈ {−τσ,··· ,τσ}, where τ
is the ‘tail-cut’ factor, is chosen from a uniform distribution
depending on the security parameters. The larger the tail-cut,
the higher the precision for each discrete value of the
distribution and consequently the higher the security achieved;
however, the implementation cost is also higher. Hence, there
is a trade-off between hardware resource consumption and
security level. For ring learning with errors

Figure 12: The tail-cut of Gaussian sampling.

(RLWE), the probability of decryption error is mainly
determined by the tail-cut and the standard deviation (STD) of
the Gaussian distribution. [74] presented the performance,
resource consumption and quality of six conditions of the
implemented comparator-based Gaussian sampler for
different tail cuts and statistical distances.

Apart from the Gaussian sampling, the modular polynomial
multiplication in a RLWE algorithm is the main bottleneck in
the realization of a practical resource-constrained design for
embedded Internet of things (IoT) devices. Exploiting the

inherent approximate nature of RLWE problem, [75], [75]
presented an approach utilizing approximate computing for
RLWE based applications as shown in Fig. 13. Fig. 13(a)
presents an accurate multiplication for the hardware
architecture of RLWE decryption. An optimized dynamic range
multipliers (DRUM) approximate multiplier, as shown in Fig.
13(b), has been proposed by [75] to improve the speed, reduce
the area usage and power consumption for RLWE decryption
hardware only.

Figure 13: Hardware architecture of RLWE decryption, where
(a) includes an exact mulitplication [76] and (b) demonstrates

Figure 11: Classification of approximate computing for hardware security and cryptography.

Cryptography

Homomorphic
Encription

[68 - 70]

Hardware Security

VOS Based
Authentication

[84]

Approximate
Adder
[90]

Approximate
Multiplier

[6]

Information Hiding

Hardware Trojans
Detection

[8 , 9]

IC Camouflaging
[89]

PQC [8]

LWE [64]
LBC [67]

Approx Hash
[72]

Bitcoin Mining
[16]

Hash
Logic Obfuscation

[9]
SCA
[8]

PUF
[83]

Logic
Obfuscation

[87 , 88]

AES
[8 , 9 , 52 , 53 , 56]

Attacks

modulo

c 2

c 1

r 2

Exact Multiplication

c 2
c 1
r 2

Approximate
Multiplier

c 1 = 000 1 0111
 0 100 1101 r 2 =

 0000 000 1 0101
 1 010

c 1 ́
 r 2 ́

 = 10111 1 =
 10101 1

c 1 r 2 X
c 1 ́

 r 2 ́
 X =

 0000 0000 0001 1111
 1001 0100 0000 0000

=
 0000 0000 0001 1111

 0111 1110 0001 0010
Approximated Approximated

 10

an approximated multiplication using DRUM approximate
multiplier.

Later on [77] proposed a design of an area/power efficient
approximate modular multiplier (so called AxMM) for
complete RLWE hardware, by exploiting the statistics of
Gaussian noise in addition to the technique of [78];
transforming the unsigned Gaussian data to signed format. Fig.
14 presents the design of AxMM, comprising of approximate
multiplier (AxMult) followed by an approximated modular
reduction circuitry (AxMR). The leading one detector (LOD) of
AxMult performs a single bit truncation on the Gaussian data
(B) there by reducing its width from 6-bit to 4-bit for modulus
q = 7,681, whereas MSB signed bit (b[5]) is not utilized during
the modular multiplication rather than applied at the end to
get the required result for a negative number. Compared to
the smallest exact RLWE multiplier design [78], the AxMM is
able to reduce the area by over 35% and power consumption
by over 23% with slight reduction in STD of Gaussian
distribution as well as the security level.

Figure 14: Approximate modular multiplier (AxMM) [77]

2) Homomorphic Encryption: [79] proposed a
homomorphic encryption scheme using approximate
arithmetic based on the RLWE. It utilized encryption noise as a
form of error involving approximate computations. Modular
reduction is an important operation in homomorphic
decryption. [79] achieved linear complexity in the growth of
the cipher-text modulus compared to other work with
exponential complexity growth. Subsequent work by the
authors [80] presented an approximate bootstrapping
operation for homomorphic decryption. Also, [81] utilized the
approximate computing techniques proposed in [75] to
improve the efficiency of homomorphic decryption. It also
proposed a theoretical model to examine the error behavior of
secure inference and presented parameters that can achieve
smaller ciphertext size.

3) ApproxHash: As a basic building block (see Fig. 15(a)),
hash functions have been significantly developed and utilized
in many security primitives [82]. Approximate
implementations of Secure Hash Algorithm-1 (SHA-1) as
shown in Fig. 15(b), have been proposed [83] to optimize the

delay, power and area consumption for cryptographic
applications. Approximate modular-32 adders, specifically
approximate mirror adders (AMAs), have been utilized to
replace accurate modular-32 adders at 80 out of N stages of
conventional SHA-1 to improve the delay, power and area
metrics at the cost of degradation in its classical security
strength. Hence, one can select appropriate ApproxSHA-1 with
N stages of approximation according to the security strength
as required by the application. Such ApproxHash can be
utilized in error tolerant applications and pseudo random
number generator (PRNG) hardware.

 (a) (b)

Figure 15: Approximate adders applied to Hash functions,
where (a) and (b) are basic building blocks of a conventional
SHA-1 algorithm using accurate adders and an approximate
SHA-1 algorithm using approximate adders, respectively.

4) Bitcoin Mining: Bitcoin is a crypto-currency, mainly
created to simplify transaction processes without needing a
third-party, increase the speed of cross-border transactions,
and reduce government restrictions. Bitcoin mining is a
process of creating and adding transactions to the Bitcoin
ledger, called Blockchain. Bitcoin mining, based on complex
computation process, is inherently error tolerant. With this
property, approximate computing can be applied to Bitcoin
mining as proposed by [84]. Approximate circuits can be built
to reduce delay and area consumption but trading off
reliability. Two forms of approximation, functional
approximation and operational approximation, have been
proposed in [84]. For functional approximation, approximate
circuits have been utilized to replace original circuits to reduce
area and delay. Operational approximation, carried out by
running the circuits at different timings, such as executing
circuits at a higher frequency, accepts Better-than-Worst-Case
operation. However, Bitcoin mining utilizes a hashcash based
proof-of-work, which can apply approximate circuits for the
hardware implementation. For other distributed ledgers, it is
unknown if the approximation approach [84] is applicable.

B. Approximate Computing for Hardware Security

Cryptographic algorithms and protocols depend on
hardware implementation to achieve real-time performance
and more inherent security than software implementation.
However, the recent Meltdown and Spectre vulnerabilities on

AxMult

LOD

AxMR

A B

B[5]

4 B[4:0]

 11

processors demonstrated examples of hardware based attacks.
[85] shows that hardware security threats have spread to every
corner of the semiconductor supply chain. In this subsection,
we introduce countermeasures and potential research
directions for hardware security using approximate computing.

1) Information Hiding for Approximate Computing: The
ubiquitous of IoT will revolutionize our lives but also opens up
new attack vectors for criminal hackers. Providing security to
IoT devices is a major challenge as small devices tend to be
limited in terms of resources and power. Conventional security
approaches, based on computationally complex cryptographic
algorithms, are typically too resource intensive for
implementation on these devices. To reduce the power
consumption for IoT devices and simultaneously provide a
practical security solution, Gao et al. proposed an intrinsic
security strategy [10], based on basic arithmetic operations
executed by approximate function units, enabling embedded
information for authentication and other security related
applications. The principle is presented in Fig. 16, where the
floating-point based approximate arithmetic computing has 1
sign bit, 8 exponent bits and 23 fraction bits. The left
component is the MSB, and the right p bits in the fraction, and
the LSB, have little impact on the value. Hence, they can be
directly used as security bits to hide information without
affecting the other 32 − p bits. The error introduced to the
precision value is 0.0074, which means the last p bits introduce
less than 2p−24 error compared to the precision format.

 31 (bit index) 0
3.14159
(Decimal)

sign exponent fraction (1 bit) (8 bits)
 (23 bits)

(a)
 p-1 0

3.13574
(Decimal)

3.14159
 sign exponent fraction (Decimal)

Security
(1 bit) (8 bits) (23 bits)

(p bits)

(b)

Figure 16: The application of approximate computing to
extract security: (a) IEEE 754 single-precision floating-point
format for 32-bit data, (b) approximate format with security
extraction. The last p LSB bits can be used as security bits to
embed information.

With this in mind, we will show two examples of hiding
information into approximate computing, one is using an
approximate adder and the other one is using and approximate
multiplier.

[86] presented an information hiding strategy using an
approximate adder based on an accuracy configurable adder
[87]. A short message M can be deliberately hidden in the

operation of an approximate adder to detect incorrect results
which can be used as a proof that the adder carries hidden
information.

Fig. 17 shows the process and an example of applying an
approximate multiplier for information hiding [10]. Two real
numbers A and B can be written as A = A0 ⊕ KA and B = B0 ⊕KB

using the approximate format, where A0 and B0 are the
numbers A and B in the approximate format with the last p bits
are replaced by 0s; KA and KB are the last p bits of A and B. ⊕
is an XOR operation.

As an example, assume the numbers A and B are 3.14159
and 12.31, respectively. A × B = 3.14159 × 12.31 =
38.6729729 is obtained for the precise computation, A0 × B0 =
3.1413574 × 12.30957 = 38.6687588 is calculated for the
approximate computation with p = 10. The final result with
security information embedded (Kr) is computed

Figure 17: An example of the application of an approximate
multiplier for information embedding.

as A0×B0⊕KA⊕KB⊕Kr = 38.67124, with only a 0.00448
percentage accuracy loss over the accurate result. Hence,
compared to direct approximate computing, this approach
achieves approximate computing and information hiding at
the same time, which can significantly reduce power and
hardware resource consumption.

0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 1 1 1 1 1 1 0 1 0 0 0 0

0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 1 1 1 1 1 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 31

 12

2) VOS based Authentication: Due to the ubiquitous nature
of IoT devices, lightweight authentication of an entity is one of
the most fundamental problems in providing IoT security. A
novel voltage over-scaling (VOS) based lightweight
authentication approach is presented in [54] to address this
challenge. VOS technique commonly uses approximate
computing method to reduce power consumption and can
extract information through exacerbating the effects of
process variation. Digital circuits and systems normally operate
under a nominal voltage to guarantee correct outputs.
Properly reducing the operating voltage under the prescribed
margin can considerably save power consumption. However,
process variation is effected by scaling voltage, which can
generate timing errors and thus sacrifice the output quality.
Hence, a two-factor authentication scheme that uses
passwords and hardware properties was proposed to achieve
lightweight authentication for IoT applications [54]. [54]
introduced an example of the effect of process variations in
voltage overscaling based computation as shown in Fig. 18. An
image processing technique, superimposition, is applied to
images (a) and (b) to generate a new image (c)without voltage
overscaling technique. The process is carried out using an
accurate adder. When two voltage over-scaled ripple-carry
adders with process variations are applied, images (d) and (e)
with the error patterns (f) and (g), respectively, are received.
The difference between two error patterns is shown in image
(h). Hence, it can be used for digital fingerprint generation and
then applied to authentication. However, it may also have the
same deanonymization issues as mentioned in Section IV-B1.

An adversary could deanonymize the approximate circuit
based on the physical variations by analyzing the error patterns
of a the two error patterns (f) and (g). voltage over-scaled
circuit.
C. Approximate Computing for Machine Learning Based
Security

1) Side Channel Analysis (SCA) of Cryptographic
Algorithms: In recent years, machine learning techniques have
been used to improve SCA attacks. A relatively new approach
to SCA profiling attacks involves the application of machine
learning techniques to improve their efficiency and success
rate. It has been shown that these attacks can be even more

powerful than the more traditional template attacks in
practice, as less assumptions are required on the distribution
of the underlying trace data [88], [89]. Much of the research to
date has centered on the use of SVMs [90], [91] and random
forests [88]. Research by Lerman et al. [88] showed how such
approaches can be used to uncover the key of a (masked)
advanced encryption standard (AES) implementation, that
include protection against attacks, such as power analysis.

Figure 19: An example of the application of machine learning
to SCA. Approximate computing can be used to accelerate the
machine learning process and improve the attack efficiency.

An illustration of this idea is shown in Fig. 19. Gilmore et al.
in [92] built on this research by investigating the novel
application of a neural network (NN)-based attack (that can be
accelerated by approximate computing) against a masked AES
design. This two stage attack first uses a NN model to recover
the mask, with a second NN model built to recover the masked
secret data. Combining the knowledge recovered from both

attacks allows subsequent key recovery with only a single trace.
Parallel work has shown how to recover the secret key with
only a single model with no knowledge of the mask at a cost of
additional traces in the attack stage [89].

Figure 18: An example of the effect of process variations in voltage over-scaling based computation. Two images (a) trees and
(b) snowflakes are superimposed to generate (c) snowfall. When the computation is under voltage over-scaling technique and
two adders are identical except the process variations of the hardware, (d) and (e) images are different with the error patterns
(f) and (g), respectively, which are the deviations of each adder from the correct image (c). (h) presents the difference between

AES

Product

Machine
L earning

Attacker

Approximate
C omputing

accelerate

SCA
power analysis

 13

Figure 20: An example of the application of PAC to model an
Arbiter PUF design [93].

2) PUF: The probably approximately correct (PAC)
algorithm has been utilized to model k−XORed Arbiter PUFs
(APUFs) suitable for k < 4 [93] as shown in Fig. 20. In order to
prevent modeling attacks, SPUF designs have been enhanced
by increasing their complexity. Since approximate computing
can be used to significantly improve the performance of
machine learning attacks, applying approximate computing
based modeling attacks to break SPUF designs will improve
efficiency and success rates.

3) Logic Obfuscation: Most traditional circuit
obfuscation techniques have been proven to be vulnerable to
a boolean satisfiability (SAT) based attack [94]. The principle of
a SAT attack is presented in [95], as shown in Fig. 21(a). SAT
resistant countermeasures have been proposed by
exponentially increasing the minimum number of queries
needed for addressing the problem. However, an exact
deobfuscation

Correct Key space Correct Key space Correc Key space Correct Key space key

 t key

Figure 21: The application of approximate computing to SAT
attacks on logic obfuscation: (a) illustration of the iterative SAT
attack process [95], (b) an approximate deobfuscation
algorithm based on SAT attacks and random testing [97].

accuracy is required for the countermeasure based on implicit
assumptions. To address this, [96] and [97] proposed an
approximate attack, AppSAT, as shown in Fig. 21(b) to
deobfuscate circuits by terminating the attack at an early stage.

High corruptibility, or ‘compound’ schemes, have been
proposed to prevent SAT attacks. [98] proposed an
approximate SAT-based attack framework to enhance the
efficiency of the attack using approximate techniques to
convert a compound SAT attack to a general SAT attack.

4) Hardware Trojan Detection: Deep Learning (DL) is a data
driven approach, where the goal is to ensure the learning
algorithm is agnostic to the problem at hand, only the data
changes [99]. This type of approach is often based on NN type
architectures with multiple hidden layers. With advances in
training algorithms and computational power, it is now
possible to train vast amounts of data leading to today’s rapid
advancements and adoption. As mentioned in Section IV-A2, a
HT is a type of malicious modification to circuits by an attacker.
Recently, Hasegawa et al. [100] proposed a Trojan
classification method for gate-level netlists using SVMs. By
analyzing the netlists from the Trust-HUB benchmark suite
[101], they identify several features strongly related to HTs.
Trained by these features their SVM approach results in high
true positive rates, but relatively poor true negative rates
when applied to the benchmark suite. They also proposed the
first use of DL in HT detection for gate-level netlists. Fig. 22
shows

Figure 22: The application of approximate computing to
accelerate the detection of HTs.

an approach using approximate computing to accelerate DL
algorithms for HT detection. According to the effectiveness of
the approximate circuit and algorithm development, the
efficiency of the HT detection will be significantly improved.

VI. FUTURE RESEARCH DIRECTIONS

The area of security in approximate computing and
approximate computing for security is not mature. There are a
number of open questions needed to be addressed for
practical applications, which lead to the future research
directions.

A. Security in Approximate Computing

1) The Impact of Error: As shown in Fig. 2, one of the biggest
differences between accurate computing and approximate
computing is the appearance of errors. An accurate computing
design generates exact results without any errors. In contrast,
an approximate computing design, acceptable to errors, may
have many possible outputs. An interesting phenomenon is
adversaries can also introduce errors to both accurate and
approximate designs. Based on this, some challenges or open
questions need to be discussed.

Challenge Response
10011 … 110 10110 … 101
00110 … 101 00101 … 010
10110 … 001 10101 … 000

…
01101 … 101 10001 … 111

PUF

Device PUF Samples

Arbiter PUF

Probably approximately correct
learning (PAC learning)

Challenge

Response

Oracle
EX Learning

algorithm

δ
ε n M

constraints h

WK 1 WK 1 key
WK 1

WK 1 , 2 , ... λ

key
WK 2

WK 3
WK 2

WK 1
Correct

key Key space
WK 1

Correct
key Key space

WK 1
Correct

key Key space

X
WK 1 , 2 , ... λ

Correct
key Key space

WK 2
WK 3

WK 2

IP V endor

Design Time
IPs

EDA
T ool

IC D esign
T eam

RTL Deep L earning
D etection

Netlists

F eedback

HT Detection
Approximate
C omputing

A ccelerate

 14

• For the accurate computing design, the malicious
actions/errors can be easily detected. However, it is more
difficult for the approximate computing design to
differentiate normal errors generated by the
approximate design and malicious errors deliberately
manipulated by adversaries. Moreover, the impact of the
security of the approximate computing is still unknown.

• A threshold value can be set for the errors within the
reasonable range of approximate designs. Any error
beyond the threshold can be considered as potential
malicious attacks. However, the selection or setting of the
threshold is also challenging.

• A normal test and approximate test have different yield
and security challenges. Future test techniques for
approximate computing need to consider how to
effectively evaluate security vulnerabilities of an
approximate system/design.

• Previously, we mentioned that approximate computing
designs can be also classified as deterministic and
nondeterministic approximate designs. The error
patterns and approximate schemes of both the
deterministic and nondeterministic approximate designs
are different, which may open up various opportunities
for new security attacks. Relatively, the testing
techniques for both the deterministic and non-
deterministic approximate designs should also be
different.

• The error characteristics of approximate design and
malicious circuits are also important, which has different
impact on the results. Need to model, analyze and control
the error.

• In Section IV-A2, the potential threats introduced by
hardware Trojans has been discussed. An initial result
presented that the approximate adder circuit is probably
more vulnerable than the exact adder since the
approximate adder has a lower transition probability
distribution compared to the exact adder. It is interesting
to investigate whether the low transition probability is
related to the errors of approximate circuits. For example,
whether the more approximate the lower transition
probability? It is also worth to investigate that the impact
of the types of approximates (adder, multiplier or divider)
to the possibility of hardware Trojan insertion.

2) Countermeasures for Attacks: The final objective is to
securely apply approximate computing techniques to the
practical scenarios. The feasibility and effectiveness of
conventional cryptographic and security approaches need a
concrete evaluation when utilized to approximate computing
system/designs. New countermeasures will be probably
required if the conventional methods are less effective. How
to design and evaluate new countermeasures for the attacks
on approximate computing system/design is a new question.
Since the most outstanding properties of approximate
computing techniques are less energy consumption and faster
speed, the countermeasures for such techniques should be
also low-cost and more general.

3) Cross-Layer Approximate Computing: Is it necessary
to perform cross-layer security analysis of approximate
computing? Cross-layer is required due to the personalising
and customization. Over the years, previous research on
approximate computing has spanned from devices to systems.
However, most of the current research has mainly focused on
a single layer. For example, the research of an approximate
computer arithmetic circuits is only applied to simple fault-
tolerant applications with a small amount of arithmetic
operations, while current approximate algorithms mostly run
on precise hardware. In the case where an approximate
algorithm is executed on approximate hardware, the current
research has not fully considered how to make the
approximate hardware and the approximate algorithm
mutually compensate for and tolerate errors to realize synergy
and achieve the best ‘3D’ (precision, performance and power
consumption) trade-off. Some initial work has been presented
in [31]. However, security threats associated with such multi-
level approximate designs have been neglected. It is essential
to investigate and evaluate the security vulnerabilities in these
designs and consider countermeasures for securing multi-level
co-designs. For example, approximate computing is promising
for dealing with DNN. An approximate multiplier is a good
candidate in the hardware implementation for the
construction of flexible NNs. The application of approximate
multiplication for the hardware implementation of an
approximate NN is illustrated in Fig. 23.

B. Approximate Computing for Security

1) The Impact of Approximate Computing for Security: It
is necessary to know how the security of a system/design will
be affected by introducing approximate computing to an
existed system. In this situation, the existed system may
already have a protection scheme. The introduction or
replacement of approximate computing components may
reduce the security level while improve the energy efficiency.
It may also bring in unknown vectors for attackers. As
previously mentioned, there is a tradeoff between the security
and performance for approximate computing based designs. It
is worth to think

Figure 23: The application of an approximate multiplier for the
hardware implementation of an approximate NN.

weight
neuron Σ

Precise hardware model

weight
neuron Σ

Approximate hardware model

Approximate
 Multiplier

Precise
 Multiplier

 15

about the balance of both security and performance before
developing an approximate design.

2) Benefits By Applying Approximate Computing: In this
paper, we have discussed that approximate computing
techniques have been utilized in cryptography or security,
including the following aspects:

• Efficiency Improvement for cryptography: the PQC in
Section V-A1, the Homomorphic encryption in Section V-
A2, the approxHash in Section V-A3 and the bitcoin
mining in Section V-A4.

• Acceleration for attacking techniques: the SCA attack
acceleration in Section V-C1, the PAC attack on PUF in
Section V-C2, the SAT attack acceleration on logic
obfuscation in Section V-C3.

• Security enhancement: providing a low-cost information
hiding scheme in Section V-B1, a lightweight
authentication method in Section V-B2.

These raise up another concern, the impact of approximate
computing for the above strategies. For example, how much
efficiency the cryptography can be improved, how machine
learning based SCA is affected and how much information can
be hided when different degrees of approximate computing
are applied. Except these, other promising research areas can
be also further investigated. In the following content, we will
introduce three new topics using approximate computing
techniques for hardware security.

a) Approximate Circuit Based PUF: In Section IV-B1, an
approximate DRAM-based PUF [64] was presented for
identification/authentication. The DRAM memory-based PUF,
is only one of a range of types of PUF designs. Other types
include circuit based Arbiter PUFs [49] and ring oscillator (RO)
PUFs [102]. Moreover, in Section V-C2, an approximate
algorithm, PAC, was utilised to attack PUF designs [93].
However, there has been no research to date on approximate
circuitbased PUF design, which is another promising approach.

b) Logic Obfuscation: In circuits logic obfuscation, an
attacker can decipher the key by sensitizing the key values to
the output or isolating the key related gates since the logic
obfuscation circuit, can be removed from the original circuit
[103]. To counter this, Fig. 24 shows a potential application of
approximate arithmetic circuits in logic obfuscation. If the
underlying design to be obfuscated is an approximate
arithmetic circuit, logic obfuscation can be applied to the MSB
or LSB of the circuit to ensure it only be used correctly by
applying the key required for the logic obfuscation circuit.
Otherwise, the computation results will be too erroneous to
be used.

Figure 24: A potential application of an approximate arithmetic
circuit for logic obfuscation.

3) Other Security Applications Adopt Approximate
Computing: We use biometric security as an example to show
the potential security applications can adopt approximate
computing. Due to the high probability of hacking threats in
traditional security strategies based on user-names and
passwords, biometric approaches are often considered for
security applications, such as finger printing, iris scanners and
face recognition. They have been widely adopted in several
scenarios: smartphones, banking, borders, and so on. There
are two main reasons for the widespread application of these
biometric approaches. One is that they have a large data pool
and the other is that the data has high uniqueness. A certain
portion of errors is tolerable for an iris encoding. For example,
the possibility that two different individuals have 25% of the
same hamming distance is only 1 in 13 billion. However, the
data processing speed is a challenge in iris recognition systems
which includes many computational components, for example,
focus assessment, image segmentation, normalization and
data encoding [104]. To accelerate the response time of iris
scanning from image collection to iris encoding, [104] recently
proposed a new method to speed up the iris recognition
process using approximate computing at both the software
and hardware level. Compared to a pure software
implementation, the approximate computing based software
and hardware codesign achieved a speedup of 378× while
maintaining an acceptable accuracy.

4) Emerging Approximate Techniques: A significant
growth on approximate computing technologies will
revolutionize modern computing systems and platforms. It
may bring in new security vulnerabilities or require security
approaches for protection. For example, emerging nonvolatile
memory technologies, such as resistive random access
memory (RRAM) and magnetic random-access memory
(MRAM), which combine the advantages of conventional
memory technologies, have become very attractive for future
memory hierarchies. [105] shows that RRAM-based analog
approximate computing systems are very energy efficient;
however, their accuracy is difficult to control and quantify.
Research outputs [106], [107], [108] have presented new
achievements which can be applied to memory technologies.
An approximate multilevel cell (MLC) spin transfer torque-
random access memory (STT-RAM) [109] has been proposed
to eliminate the ECC requirement and significantly improve
memory utilization with negligible image quality degradation.
A scaled STT-RAM [110] has also been proposed for
approximate computing to reduce power consumption and
area usage. A comprehensive evaluation of using STT-RAM to
replace DRAM technology is investigated in [111]. It shows that
STT-RAM achieved comparable performance compared to
DRAM and is a very promising memory technology. An
approximate MLC STTRAM [112] has also been shown to
achieve high energy efficiency without degrading the image
quality requirement of applications. This research
demonstrates that approximate computing has been applied
to emerging memory technologies. However, the security of

MSB LSB

Approximate
A rithmetic C ircuit

Logic Obfuscation

Key

Input

Output

 16

these approximate technologies is unknown and needs to be
investigated.

VII. CONCLUSION

Due to a high demand for low power but high performance
computing systems, approximate computing, which
outperforms traditional computing architectures, is being
rapidly developed and applied to practical systems. It is
beneficial for many applications, such as AI, machine learning,
image processing, etc., where accurate results are not essential
and intrinsic errors are tolerable for the calculation. However,
security related challenges and opportunities for approximate
computing have been neglected to some extent. In this paper,
approximate computing circuit designs, multi-layer codesign,
state-of-the-art security threats in approximate computing
and approaches using approximate computing for both
security and cryptography, have been comprehensively
reviewed. A classification of the state-of-the-art in this
research area, including threat models, existing and potential
approaches, has been presented. We hope the classification
and review can give researchers a clear understanding of this
research area. Currently, security in/for approximate
computing has not been widely studied. In particular, the
utilisation of approximate computing to enhance
security/cryptographic primitives has a promising future.

ACKNOWLEDGMENT

This work is supported by grants from the National Natural
Science Foundation of China (61871216), the Fundamental
Research Funds for the Central Universities China (NE2019102),
the Six Talent Peaks Project in Jiangsu Province (2018XYDXX-
009) and the Engineering and Physical Sciences Research
Council (EPSRC) (EP/N508664/-CSIT2).

REFERENCES

[1] J. Hruska, “Nvidia’s CEO Declares Moore’s Law Dead,” 2017.
[2] J. Han and M. Orshansky, “Approximate computing: An emerging

paradigm for energy-efficient design,” in Proc. 18th IEEE European Test
Symposium (ETS), May 2013, pp. 1–6.

[3] Q. Xu, T. Mytkowicz, and N. Kim, “Approximate computing: A survey,”
IEEE Design & Test, vol. 33, no. 1, pp. 8–22, Feb 2016.

[4] H. Jiang, C. Liu, L. Liu, F. Lombardi, and J. Han, “A review, classification,
and comparative evaluation of approximate arithmetic circuits,” ACM
Journal on Emerging Technologies in Computing Systems, vol. 13, no. 4,
pp. 60:1–60:34, 2017.

[5] N. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,
S. Bhatia, N. Boden, and A. Borchers, “In-datacenter performance
analysis of a tensor processing unit,” in Proc. 44th Annual International
Symposium on Computer Architecture (ISCA), 2017, pp. 1–12.

[6] “Unlocking the promise of approximate computing for on-chip ai
acceleration,” Last accessed 1 July 2020.

 [Online]. Available: https://www.ibm.com/blogs/research/2018/06/
approximate-computing-ai-acceleration/

[7] B. Fleischer, S. Shukla, M. Ziegler, J. Silberman, J. Oh, V. Srinivasan,
J. Choi, S. Mueller, A. Agrawal, T. Babinsky, N. Cao, C. Chen, P. Chuang,
T. Fox, G. Gristede, M. Guillorn, H. Haynie, M. Klaiber, D. Lee, S. Lo, G.
Maier, M. Scheuermann, S. Venkataramani, C. Vezyrtzis, N. Wang, F.
Yee, C. Zhou, P. Lu, B. Curran, L. Chang, and K. Gopalakrishnan, “A
scalable multi- teraops deep learning processor core for ai trainina and
inference,” in 2018 IEEE Symposium on VLSI Circuits, 2018, pp. 35–36.

[8] S. Mittal, “A survey of techniques for approximate computing,” ACM
Computing Survey, vol. 48, no. 4, pp. 62:1–62:33, 2016.

[9] F. Regazzoni, C. Alippi, and I. Polian, “Security: The dark side of
approximate computing?” in Proc. IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), 2018, pp. 1–6.

[10] M. Gao, Q. Wang, M. T. Arafin, Y. Lyu, and G. Qu, “Approximate
computing for low power and security in the internet of things,”
Computer, vol. 50, no. 6, pp. 27–34, 2017.

[11] P. Yellu, N. Boskov, M. A. Kinsy, and Q. Yu, “Security threats in
approximate computing systems,” in Proc. Great Lakes Symposium on
VLSI (GLSVLSI), 2019, pp. 387–392.

[12] W. Liu, C. Gu, G. Qu, and M. O’Neill, Approximate Computing and Its
Application to Hardware Security. Springer, 2018, pp. 43–67.

[13] M. Ammar Ben Khadra, “An introduction to approximate computing,”
arXiv, pp. arXiv–1711, 2017.

[14] W. Baek and T. M. Chilimbi, “Green: a framework for supporting
energy-conscious programming using controlled approximation,” in
ACM Sigplan Notices, vol. 45, no. 6, 2010, pp. 198–209.

[15] M. A. Anam, P. N. Whatmough, and Y. Andreopoulos, “Precisionenergy-
throughput scaling of generic matrix multiplication and discrete
convolution kernels via linear projections,” in Proc. 11th IEEE
Symposium on Embedded Systems for Real-time Multimedia, 2013, pp.
21–30.

[16] V. Chippa, S. Chakradhar, K. Roy, and A. Raghunathan, “Analysis and
characterization of inherent application resilience for approximate
computing,” in Proc. 50th Annual Design Automation Conference (DAC),
2013, pp. 113–118.

[17] V. K. Chippa, D. Mohapatra, K. Roy, S. T. Chakradhar, and A.
Raghunathan, “Scalable effort hardware design,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 22, no. 9, pp. 2004–
2016, Sep. 2014.

[18] J. Ansel, Y. L. Wong, C. Chan, M. Olszewski, A. Edelman, and S.
Amarasinghe, “Language and compiler support for auto-tuning
variableaccuracy algorithms,” in Proc. 9th Annual IEEE/ACM
International Symposium on Code Generation and Optimization, 2011,
pp. 85–96.

[19] I. Goiri, R. Bianchini, S. Nagarakatte, and T. Nguyen, “Approxhadoop:
Bringing approximations to Mapreduce frameworks,” in Proc. ACM
SIGARCH Computer Architecture News, vol. 43, 2015, pp. 383–397.

[20] D. S. Khudia, B. Zamirai, M. Samadi, and S. Mahlke, “Rumba: An online
quality management system for approximate computing,” in Proc.
ACM/IEEE 42nd Annual International Symposium on Computer
Architecture (ISCA), June 2015, pp. 554–566.

[21] S. Venkataramani, V. K. Chippa, S. T. Chakradhar, K. Roy, and A.
Raghunathan, “Quality programmable vector processors for
approximate computing,” in Proc. 46th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), Dec 2013, pp. 1–12.

[22] A. Yazdanbakhsh, G. Pekhimenko, B. Thwaites, H. Esmaeilzadeh, O.
Mutlu, and T. C. Mowry, “RFVP: Rollback-free value prediction with
safe-to-approximate loads,” ACM Transactions on Architecture and
Code Optimization, vol. 12, no. 4, pp. 62:1–62:26, 2016.

[23] M. Samadi, J. Lee, D. A. Jamshidi, A. Hormati, and S. Mahlke, “SAGE:
Self-tuning approximation for graphics engines,” in Proc. 46th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), Dec
2013, pp. 13–24.

[24] Y. Yetim, M. Martonosi, and S. Malik, “Extracting useful computation
from error-prone processors for streaming applications,” in Proc. De-

sign, Automation Test in Europe Conference Exhibition (DATE), March
2013, pp. 202–207.

[25] H. Cho, L. Leem, and S. Mitra, “ERSA: Error resilient system architecture
for probabilistic applications,” IEEE Transactions on ComputerAided
Design of Integrated Circuits and Systems, vol. 31, no. 4, pp. 546–558,
April 2012.

[26] K. Cho, Y. Lee, Y. H. Oh, G. Hwang, and J. W. Lee, “eDRAMbased tiered-
reliability memory with applications to low-power frame buffers,” in
Proc. IEEE/ACM International Symposium on Low Power Electronics and
Design (ISLPED), Aug 2014, pp. 333–338.

[27] F. Frustaci, D. Blaauw, D. Sylvester, and M. Alioto, “Better-thanvoltage
scaling energy reduction in approximate SRAMs via bit dropping and bit
reuse,” Proc. 25th International Workshop on Power and Timing
Modeling, Optimization and Simulation (PATMOS), pp. 132– 139, 2015.

[28] Y. Fang, H. Li, and X. Li, “SoftPCM: Enhancing energy efficiency and
lifetime of phase change memory in video applications via approximate

 17

write,” in Proc. IEEE 21st Asian Test Symposium (ATS), Nov 2012, pp.
131–136.

[29] J. Bornholt, T. Mytkowicz, and K. S. McKinley, “Uncertain <T>: A first-
order type for uncertain data,” SIGARCH Comput. Archit. News, vol. 42,
no. 1, pp. 51–66, 2014.

[30] S. Misailovic, M. Carbin, S. Achour, Z. Qi, and M. C. Rinard, “Chisel:
Reliability-and accuracy-aware optimization of approximate
computational kernels,” in ACM SIGPLAN Notices, vol. 49, no. 10, 2014,
pp. 309–328.

[31] Z. Liu, K. Jia, W. Liu, W. Qi, F. Qiao, and H. Yang, “INA: Incremental
network approximation method for limited precision deep neural
networks,” in Proc. IEEE/ACM International Conference on Computer
Aided Design (ICCAD), 2019, pp. 1–6.

[32] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy, “Low-power
digital signal processing using approximate adders,” vol. 32, no. 1, pp.
124–137, 2013.

[33] L. Chen, F. Lombardi, P. Montuschi, J. Han, and W. Liu, “Design of
approximate high-radix dividers by inexact binary signed-digit addition,”
in Proc. Great Lakes Symposium on VLSI (GLSVLSI), 2017, pp. 293–298.

[34] W. Liu, J. Xu, D. Wang, and F. Lombardi, “Design of approximate
logarithmic multipliers,” in Proc. Great Lakes Symposium on VLSI
(GLSVLSI), 2017, pp. 47–52.

[35] W. Liu, J. Xu, D. Wang, C. Wang, P. Montuschi, and F. Lombardi, “Design
and evaluation of approximate logarithmic multipliers for low power
error-tolerant applications,” IEEE Transactions on Circuits and Systems
I: Regular Papers, vol. 65, no. 9, pp. 2856–2868, Sep. 2018.

[36] W. Liu, T. Cao, P. Yin, Y. Zhu, C. Wang, E. E. Swartzlander Jr., and F.
Lombardi, “Design and analysis of approximate redundant binary
multipliers,” IEEE Trans. Computers, vol. 68, no. 6, pp. 804–819, 2019.

[37] L. Chen, J. Han, W. Liu, and F. Lombardi, “Design of approximate
unsigned integer non-restoring divider for inexact computing,” in Proc.
ACM 25th Edition on Great Lakes Symposium on VLSI (GLSVLSI), 2015,
pp. 51–56.

[38] W. Liu, Q. Liao, F. Qiao, W. Xia, C. Wang, and F. Lombardi, “Approximate
designs for fast fourier transform (FFT) with application to speech
recognition,” IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 66, no. 12, pp. 4727–4739, 2019.

[39] L. Chen, J. Han, W. Liu, and F. Lombardi, “Algorithm and design of a fully
parallel approximate coordinate rotation digital computer (CORDIC),”
IEEE Transactions on Multi-Scale Computing Systems, vol. 3, pp. 139–
151, 2017.

[40] R. Hegde and N. R. Shanbhag, “A voltage overscaled low-power digital
filter IC,” IEEE Journal of Solid-State Circuits, vol. 39, no. 2, pp. 388– 391,
Feb 2004.

[41] R. T. Uppu, R. K. Uppu, A. D. Singh, and A. Chatterjee, “A high
throughput multiplier design exploiting input based statistical
distribution in completion delays,” in 2013 26th International
Conference on VLSI Design and 2013 12th International Conference on
Embedded Systems, 2013, pp. 109–114.

[42] T. Moreau, J. San Miguel, M. Wyse, J. Bornholt, A. Alaghi, L. Ceze, N.
Enright Jerger, and A. Sampson, “A taxonomy of general purpose
approximate computing techniques,” IEEE Embedded Systems Letters,
vol. 10, no. 1, pp. 2–5, 2018.

[43] R. Torrance and D. James, “The state-of-the-art in ic reverse
engineering,” in Cryptographic Hardware and Embedded Systems -
CHES 2009, C. Clavier and K. Gaj, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009, pp. 363–381.

[44] A. Kulkarni, Y. Pino, and T. Mohsenin, “SVM-based real-time hardware
trojan detection for many-core platform,” in Proc. 17th International
Symposium on Quality Electronic Design (ISQED), March 2016, pp. 362–
367.

[45] X. Xie, Y. Sun, H. Chen, and Y. Ding, “Hardware trojans classification
based on controllability and observability in gate-level netlist,” IEICE
Electronics Express, vol. 14, no. 18, pp. 20170682–20170682, 2017.

[46] C. Gu and M. O’Neill, “Ultra-compact and robust FPGA-based PUF
identification generator,” in Proc. International Symposium on Circuits
and Systems (ISCAS), 2015, pp. 934–937.

[47] C. Gu, N. Hanley, and M. O’Neill, “Improved reliability of FPGAbased
PUF identification generator design,” ACM Transactions on
Reconfigurable Technology and Systems, vol. 10, no. 3, pp. 20:1–20:23,
2017.

[48] C. Gu, Y. Cui, N. Hanley, and M. O’Neill, “Novel lightweight FFAPUF
design for FPGA,” in Proc. 29th Int. Conf. on System-on-Chip (SOCC’16).
Seattle, WA, USA: IEEE, Sep. 2016, pp. 75–80.

[49] C. Gu, W. Liu, Y. Cui, N. Hanley, M. O’Neill, and F. Lombardi, “A flip-flop
based arbiter physical unclonable function (APUF) design with high
entropy and uniqueness for FPGA implementation,” IEEE Transactions
on Emerging Topics in Computing, pp. 1–12, 2019.

[50] J. Guajardo, S. S. Kumar, G.-J. Schrijen, and P. Tuyls, FPGA Intrinsic PUFs
and Their Use for IP Protection, P. Paillier and I. Verbauwhede, Eds.,
Vienna, Austria, Sep. 2007.

[51] U. Ruhrmair, F. Sehnke, J. S¨ olter, G. Dror, S. Devadas, and J. Schmid-¨
huber, “Modeling attacks on physical unclonable functions,” in Proc.
17th ACM Conference on Computer and Communications Security(CCS),
2010, pp. 237–249.

[52] G. T. Becker, “The gap between promise and reality: On the insecurity
of XOR arbiter PUFs,” in Proc. International Workshop on Cryptographic
Hardware and Embedded Systems (CHES), 2015, pp. 535–555. [53] “On
the pitfalls of using arbiter-PUFs as building blocks.”

[54] M. Arafin, M. Gao, and G. Qu, “VOLtA: Voltage over-scaling based
lightweight authentication for IoT applications,” in Proc. 22nd Asia and
South Pacific Design Automation Conference (ASP-DAC), Jan 2017, pp.
336–341.

[55] “Post-quantum cryptography,” Last accessed 16
 January 2018.
[Online]. Available: https://pqcrypto.org/

[56] D. Micciancio and O. Regev, Lattice-based Cryptography. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 147–191.

[57] P. V. Parmar, S. B. Padhar, S. N. Patel, N. I. Bhatt, and R. H. Jhaveri,
“Survey of various homomorphic encryption algorithms and schemes,”
International Journal of Computer Applications, vol. 91, no. 8, 2014.

[58] S. Keshavarz and D. Holcomb, “Privacy leakages in approximate adders,”
arXiv preprint arXiv:1802.08919, 2018.

[59] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn, “Flikker: Saving
DRAM refresh-power through critical data partitioning,” SIGPLAN Not.,
vol. 46, no. 3, pp. 213–224, 2011.

[60] J. Lucas, M. Alvarez-Mesa, M. Andersch, and B. Juurlink, “Sparkk:
Quality-scalable approximate storage in DRAM,” in The Memory Forum,
2014, pp. 1–9.

[61] A. Raha, S. Sutar, H. Jayakumar, and V. Raghunathan, “Quality
configurable approximate DRAM,” IEEE Transactions on Computers, vol.
66, no. 7, pp. 1172–1187, July 2017.

[62] F. Tehranipoor, N. Karimian, W. Yan, and J. A. Chandy, “DRAM-based
intrinsic physically unclonable functions for system-level security and
authentication,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 25, no. 3, pp. 1085–1097, March 2017.

[63] F. Tehranipoor, W. Yan, and J. A. Chandy, “Robust hardware true
random number generators using DRAM remanence effects,” in Proc.
IEEE International Symposium on Hardware Oriented Security and Trust
(HOST), May 2016, pp. 79–84.

[64] A. Rahmati, M. Hicks, D. E. Holcomb, and K. Fu, “Probable cause: The
deanonymizing effects of approximate DRAM,” in ACM/IEEE 42nd
Annual International Symposium on Computer Architecture (ISCA),
2015, pp. 604–615.

[65] M. Cho, J. Schlessman, W. Wolf, and S. Mukhopadhyay,
“Reconfigurable SRAM architecture with spatial voltage scaling for low
power mobile multimedia applications,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 19, no. 1, pp. 161–165, Jan
2011.

[66] I. J. Chang, D. Mohapatra, and K. Roy, “A priority-based 6t/8t hybrid
SRAM architecture for aggressive voltage scaling in video applications,”
IEEE Transactions on Circuits and Systems for Video Technology, vol. 21,
no. 2, pp. 101–112, Feb 2011.

[67] J. Kwon, I. J. Chang, I. Lee, H. Park, and J. Park, “Heterogeneous SRAM
cell sizing for low-power H.264 applications,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 59, no. 10, pp.
2275–2284, Oct 2012.

[68] F. Frustaci, M. Khayatzadeh, D. Blaauw, D. Sylvester, and M. Alioto,
“13.8 a 32kb SRAM for error-free and error-tolerant applications with
dynamic energy-quality management in 28nm CMOS,” in Proc. IEEE
International Solid-State Circuits Conference Digest of Technical Papers
(ISSCC), Feb 2014, pp. 244–245.

 18

[69] A. Sampson, J. Nelson, K. Strauss, and L. Ceze, “Approximate storage in
solid-state memories,” in Proc. 46th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2013, pp. 25–36.

[70] C. Peikert, “An efficient and parallel gaussian sampler for lattices,” in
Proc. Advances in Cryptology (CRYPTO), T. Rabin, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 80–97.

[71] L. Groot Bruinderink, A. Hulsing, T. Lange, and Y. Yarom, “Flush,¨ gauss,
and reload – a cache attack on the BLISS lattice-based signature
scheme,” in Proc. Cryptographic Hardware and Embedded Systems
(CHES), B. Gierlichs and A. Y. Poschmann, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2016, pp. 323–345.

[72] P. Pessl, L. G. Bruinderink, and Y. Yarom, “To BLISS-B or not to be:
Attacking strongswan’s implementation of post-quantum signatures,”
in Proc. ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2017, pp. 1843–1855.

[73] J. Von Neumann, “Various techniques used in connection with random
digits,” NBS Applied Mathematics Series, vol. 12, 1961.

[74] T. Poppelmann and T. G¨ uneysu, “Towards practical lattice-based¨
public-key encryption on reconfigurable hardware,” in Proc. Selected
Areas in Cryptography (SAC), T. Lange, K. Lauter, and P. Lisonek,ˇ Eds.
Springer Berlin Heidelberg, 2014, pp. 68–85.

[75] S. Bian, M. Hiromoto, and T. Sato, “DWE: Decrypting learning with
errors with errors,” in Proc. 55th Annual Design Automation Conference
(DAC), 2018, pp. 3:1–3:6.

[76] S. Fan, W. Liu, J. Howe, A. Khalid, and M. O’Neill, “Lightweight hardware
implementation of R-LWE lattice-based cryptography,” in Proc. IEEE
Asia Pacific Conference on Circuits and Systems (APCCAS), 2018, pp.
403–406.

[77] Y. Zhang, C. Wang, D. E. S. Kundi, A. Khalid, M. O’Neill, and W. Liu, “An
efficient and parallel r-lwe cryptoprocessor,” IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 67, no. 5, pp. 886–890, 2020.

[78] W. Liu, S. Fan, A. Khalid, C. Rafferty, and M. O’Neill, “Optimized
schoolbook polynomial multiplication for compact lattice-based
cryptography on FPGA,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 27, no. 10, pp. 2459–2463, Oct 2019.

[79] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption for
arithmetic of approximate numbers,” in Proc. International Conference
on the Theory and Application of Cryptology and Information Security,
2017, pp. 409–437.

[80] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song, “Bootstrapping for
approximate homomorphic encryption,” in Proc. Advances in
Cryptology (EUROCRYPT), J. B. Nielsen and V. Rijmen, Eds. Springer
International Publishing, 2018, pp. 360–384.

[81] S. Bian, M. Hiromoto, and T. Sato, “Darl: Dynamic parameter
adjustment for lwe-based secure inference,” in 2019 Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
2019, pp. 1739–1744.

[82] J. Katz and Y. Lindell, Introduction to Modern Cryptography. Chapman
and Hall/CRC, 2014.

[83] S. Dutt, B. Paul, A. Chauhan, S. Nandi, and G. Trivedi, “ApproxHash:
delay, power and area optimized approximate hash functions for
cryptography applications,” in Proc. 10th International Conference on
Security of Information and Networks, 2017, pp. 291–294.

[84] M. Vilim, H. Duwe, and R. Kumar, “Approximate bitcoin mining,” in
Proceedings of the 53rd Annual Design Automation Conference (DAC),
2016, pp. 97:1–97:6.

[85] M. Rostami, F. Koushanfar, and R. Karri, “A primer on hardware security:
Models, methods, and metrics,” Proceedings of the IEEE, vol. 102, no.
8, pp. 1283–1295, Aug 2014.

[86] Y. Wang, Q. Xu, G. Qu, and J. Dong, “Information hiding behind
approximate computation,” in Proc. Great Lakes Symposium on VLSI
(GLSVLSI), 2019, pp. 405–410.

[87] A. B. Kahng and S. Kang, “Accuracy-configurable adder for approximate
arithmetic designs,” in Proc. 49th Annual Design Automation
Conference (DAC), 2012, pp. 820–825.

[88] L. Lerman, G. Bontempi, and O. Markowitch, “A machine learning
approach against a masked AES,” Journal of Cryptographic Engineering,
vol. 5, no. 2, pp. 123–139, 2015.

[89] H. Maghrebi, T. Portigliatti, and E. Prouff, “Breaking cryptographic
implementations using deep learning techniques,” in Proc.
International Conference on Security, Privacy, and Applied
Cryptography Engineering, 2016, pp. 3–26.

[90] A. Heuser and M. Zohner, “Intelligent machine homicide,” in Proc.
International Workshop on Constructive Side-Channel Analysis and
Secure Design, 2012, pp. 249–264.

[91] G. Hospodar, B. Gierlichs, E. De Mulder, I. Verbauwhede, and J.
Vandewalle, “Machine learning in side-channel analysis: a first study,”
Journal of Cryptographic Engineering, vol. 1, no. 4, p. 293, 2011.

[92] R. Gilmore, N. Hanley, and M. O’Neill, “Neural network based attack on
a masked implementation of AES,” in Proc. IEEE International
Symposium on Hardware Oriented Security and Trust (HOST), 2015, pp.
106–111.

[93] F. Ganji, S. Tajik, and J.-P. Seifert, “PAC learning of arbiter PUFs,” in
Journal of Cryptographic Engineering, vol. 6, no. 3, 2016, pp. 249– 258.

[94] P. Subramanyan, S. Ray, and S. Malik, “Evaluating the security of logic
encryption algorithms,” in Proc. IEEE International Symposium on
Hardware Oriented Security and Trust (HOST), May 2015, pp. 137– 143.

[95] Y. Xie and A. Srivastava, “Anti-SAT: Mitigating SAT attack on logic
locking,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 38, no. 2, pp. 199–207, Feb 2019.

[96] K. Shamsi, M. Li, T. Meade, Z. Zhao, D. Z. Pan, and Y. Jin, “AppSAT:
approximately deobfuscating integrated circuits.”

[97] K. Shamsi, T. Meade, M. Li, D. Z. Pan, and Y. Jin, “On the approximation
resiliency of logic locking and IC camouflaging schemes,” IEEE
Transactions on Information Forensics and Security, vol. 14, no. 2, pp.
347–359, Feb 2019.

[98] K. Shamsi, D. Z. Pan, and Y. Jin, “On the impossibility of approximation-
resilient circuit locking,” in Proc. IEEE International Symposium on
Hardware Oriented Security and Trust (HOST), 2019, pp. 161–170.

[99] V. Sze, Y. Chen, T. Yang, and J. Emer, “Efficient processing of deep
neural networks: A tutorial and survey,” Proceedings of the IEEE, vol.
105, no. 12, pp. 2295–2329, Dec 2017.

[100] K. Hasegawa, M. Oya, M. Yanagisawa, and N. Togawa, “Hardware
trojans classification for gate-level netlists based on machine learning,”
in Proc. IEEE 22nd International Symposium on On-Line Testing and
Robust System Design (IOLTS), 2016, pp. 203–206.

[101] TrustHub, “Trusthub.org,” Last accessed 12 January 2018. [Online].
Available: http://trust-hub.org/

[102] W. Liu, L. Zhang, Z. Zhang, C. Gu, C. Wang, M. O’Neill, and F. Lombardi,
“XOR-based low-cost reconfigurable PUFs for IoT security,” ACM
Transactions on Embedded Computing Systems, vol. 18, no. 3, pp. 25:1–
25:21, 2019.

[103] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri, “Security analysis of
logic obfuscation,” in Proc. Design Automation Conference (DAC), June
2012, pp. 83–89.

[104] S. Hashemi, H. Tann, F. Buttafuoco, and S. Reda, “Approximate
computing for biometric security systems: A case study on iris scanning,”
in Proc. Design, Automation Test in Europe Conference Exhibition
(DATE), March 2018, pp. 319–324.

[105] B. Li, P. Gu, Y. Wang, and H. Yang, “Exploring the precision limitation
for rram-based analog approximate computing,” IEEE Design & Test,
vol. 33, no. 1, pp. 51–58, 2015.

[106] M. Wang, W. Cai, K. Cao, J. Zhou, J. Wrona, S. Peng, H. Yang, J. Wei, W.
Kang, Y. Zhang et al., “Current-induced magnetization switching in
atom-thick tungsten engineered perpendicular magnetic tunnel
junctions with large tunnel magnetoresistance,” Nature
communications, vol. 9, no. 1, pp. 1–7, 2018.

[107] M. Wang, W. Cai, D. Zhu, Z. Wang, J. Kan, Z. Zhao, K. Cao, Z. Wang, Y.
Zhang, T. Zhang et al., “Field-free switching of a perpendicular magnetic
tunnel junction through the interplay of spin–orbit and spintransfer
torques,” Nature electronics, vol. 1, no. 11, pp. 582–588, 2018.

[108] X. Lin, W. Yang, K. L. Wang, and W. Zhao, “Two-dimensional spintronics
for low-power electronics,” Nature Electronics, vol. 2, no. 7, pp. 274–
283, 2019.

[109] Z. Liu, T. Liu, J. Guo, N. Wu, and W. Wen, “An ECC-free MLC STTRAM
based approximate memory design for multimedia applications,” in
Proc. IEEE Computer Society Annual Symposium on VLSI (ISVLSI), July
2018, pp. 142–147.

[110] B. Zeinali, D. Karsinos, and F. Moradi, “Progressive scaled STTRAM for
approximate computing in multimedia applications,” IEEE Transactions
on Circuits and Systems II: Express Briefs, vol. 65, no. 7, pp. 938–942,
July 2018.

[111] E. Kult¨ ursay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu, “Eval-¨
uating STT-RAM as an energy-efficient main memory alternative,”

 19

in Proc. IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), April 2013, pp. 256–267.

[112] H. Zhao, L. Xue, P. Chi, and J. Zhao, “Approximate image storage with
multi-level cell STT-MRAM main memory,” in Proc. IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), Nov 2017,
pp. 268–275.

Weiqiang Liu (M’12-SM’15) received the B.Sc. degree
in Information Engineering from Nanjing University
of Aeronautics and Astronautics (NUAA), Nanjing,
China and the Ph.D. degree in Electronic
Engineering from the Queen’s University Belfast
(QUB), Belfast, UK, in 2006 and 2012, respectively. In
Dec. 2013, he joined the College of Electronic and
Information Engineering, NUAA, where he is
currently a Professor and the Vice Dean of the college.
He has published one research book by Artech

House and over 90 leading journal and conference
papers. His paper was selected as the Feature Paper of IEEE TC in the 2017
December issue. He has two Best Paper Candidates in IEEE ISCAS 2011 and
ACM GLSVLSI 2015. He serves as the Associate Editors for IEEE Transactions
on Circuits and System I: Regular Papers (2020.1-2021.12),
IEEE Transactions on Emerging Topics in Computing (2019.5-2021.4) and
IEEE Transactions on Computers (2015.5-2019.4), an Steering Committee
Member of IEEE Transactions on Multi-Scale Computing Systems
(2018.12019.12). He is the program co-chair of IEEE ARITH 2020, and also
technical program committee members for ARITH, DATE, ASAP, ISCAS, ASP-
DAC, ISVLSI, GLSVLSI, SiPS, NANOARCH, AICAS and ICONIP.
He is a member of CASCOM and VSA Technical Committee of IEEE
Circuits and Systems Society. His research interests include approximate
computing, hardware security and VLSI design for digital signal processing and
cryptography.

Chongyan Gu (M’16–S’14) received the Ph.D. degree
from Queen’s University Belfast, Belfast, U.K., in 2016.
She received the M.Sc. degree with distinction in data
communications from The University of Sheffield,
Sheffield, U.K., in 2006. She is currently an Assistant
Professor in the Center for Secure Information
Technologies (CSIT), Queen’s
University Belfast, U.K.. Before joining Queen’s
University Belfast, she was an electronic engineer in
vehicle security and communication system design of

GAC Mitsubishi Corporation, China. Her current
research interests include hardware security and trust, physical unclonable
functions (PUFs), approximate computing for hardware security, true random
number generator (TRNGs), hardware Trojan detection, logic obfuscation
circuit and machine learning attacks.

Maire O’Neill´ (M’03-SM’11) is currently Director of
the UK Research Institute in Secure Hardware and
Embedded Systems (RISE). She is Chair of
Information Security and is Research Director of Data
Security Systems at the Centre for Secure
Information Technologies (CSIT), Queen’s University
Belfast. She also leads the EU H2020 SAFEcrypto
(Secure architectures for Future Emerging
Cryptography) project (www.safecrypto.eu). She
previously held an EPSRC Leadership Fellowship

(2008-2014) and was a former holder of a Royal Academy of Engineering
research fellowship (2003-2008). She has received numerous awards for her
research work which include a 2014 Royal Academy of Engineering Silver
Medal and British Female Inventor of the Year 2007. She has authored two
research books and has over 130 peer-reviewed conference and journal
publications. She is an Associate Editor for IEEE TC and IEEE TETC and is an IEEE
Circuits and Systems for Communications Technical committee member. She

is a Fellow of Royal Academy of Engineering, a member of the Royal Irish
Academy and a Fellow of the Irish Academy of Engineering. Her research
interests include hardware cryptographic architectures, lightweight
cryptography, side channel analysis, physical unclonable functions,
postquantum cryptography and quantum-dot cellular automata circuit design.

Gang Qu received his B.S. (with honor) and M.S. in
Mathematics from the Univesity of Science and
Technology of China and M.S. (with honor) and
Ph.D. in Computer Science from the University of
California, Los Angeles. He then joined the
Department of Electrical and Computer Engineering in
the University of Maryland, College Park where he is
currently a professor and the director for Maryland
Embedded Systems and Hardware Security Lab
(MeshSec) and Wireless Sensor Laboratory. He is

known for his work on dynamic voltage scaling for
low power, VLSI design intellectual property (IP) protection and hardware
security, as well as the sensor exposure and coverage problems in wireless
sensor network. His recent research activities are on trusted integrated circuit
design, design IP protection, nano-scale hardware security primitives, and
their applications in the Internet of Things.

Paolo Montuschi (M’90-SM’07-F’14) is a Full Professor
in the Department of Control and Computer
Engineering and a Member of the Board of Governors
at Politecnico di Torino, Italy. His research interests
include computer arithmetic and architectures,
computer graphics, electronic publications. He is an
IEEE Fellow, and an IEEE Computer Society (CS) Golden
Core member. He is currently serving as the 2017-20
IEEE Computer Society Awards Chair, as a Member-at-
Large of the Publication

Services and Products Board (PSPB) (2018-20), and
as the Chair of its Strategic Planning Committee (2019-20). He is serving as the
2020-21 Chair of the IEEE TAB/ARC (TAB/Awards and Recognitions
Committee), as a Member of the IEEE Awards Board, as a Member (2020) of
the IEEE PRAC (Periodicals Review and Advisory Committee), and as a Vice
Chair of the 2020 Computer Society Fellows Committee, Previously, he served,
among all, as the Editor-in-Chief of the IEEE Transactions on Computers, and
as . the 2019 Acting (interim) Editor-in-Chief of the IEEE
Transactions on Emerging Topics in Computing. He is a life member of the
International Academy of Sciences of Turin and of Eta Kappa Nu (the Honor
Society of IEEE). In March 2017 he co-founded the fifirst HKN Student Chapter
in Italy and in Europe, Chapter. Contact him at paolo.montuschi@polito.it and
visit http://staff.polito.it/paolo.montuschi.

Fabrizio Lombardi received the BSc (Hons.)
degree in electronic engineering degree from the
University of Essex, United Kingdom, in 1977, the
master’s degree in microwaves and modern optics in
1978 and the diploma degree in microwave
engineering in 1978 from the Microwave Research
Unit at the University College London, and the PhD
degree from the University of London in 1982. In 1977,
he joined the Microwave Research Unit at the
University College London. He is currently the holder

of the International Test Conference Endowed Chair Professorship at North-
eastern University, Boston. He is the founding Editor-in-Chief (EiC) of IEEE
Transactions on Emerging Topics in Computing and serves as the EiC for IEEE
Transactions on Nanotechnology (2015-2019) and IEEE Transactions on
Computers (2007-2010). He is an elected two-term member of the Board of
Governors of the IEEE Computer Society (2012-2017); he is also a member of
the Executive Board of the
IEEE Nanotechnology Council and the Future Directions Committee of the
IEEE. He is currently the Vice President of IEEE Computer Society and IEEE
Nanotechnology Council. His research interests include bioinspired and
nanomanufacturing/computing, VLSI design, testing, and fault/defect
tolerance of digital systems. He has extensively published in these areas and
coauthored/edited seven books. He is a fellow of the IEEE.

