
IET Computers & Digital Techniques

Review Article

Ten years of hardware Trojans: a survey from
the attacker's perspective

ISSN 1751-8601
Received on 16th February 2020
Revised 26th June 2020
Accepted on 3rd July 2020
E-First on 30th September 2020
doi: 10.1049/iet-cdt.2020.0041
www.ietdl.org

Mingfu Xue1 , Chongyan Gu2, Weiqiang Liu3, Shichao Yu2, Máire O'Neill2
1College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
2Center for Secure Information Technologies, Queen's University Belfast, Belfast, UK
3College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China

 E-mail: mingfu.xue@nuaa.edu.cn

Abstract: Hardware Trojan detection techniques have been studied extensively. However, to develop reliable and effective
defenses, it is important to figure out how hardware Trojans are implemented in practical scenarios. The authors attempt to
make a review of the hardware Trojan design and implementations in the last decade and also provide an outlook. Unlike all
previous surveys that discuss Trojans from the defender's perspective, for the first time, the authors study the Trojans from the
attacker's perspective, focusing on the attacker's methods, capabilities, and challenges when the attacker designs and
implements a hardware Trojan. First, the authors present adversarial models in terms of the adversary's methods, adversary's
capabilities, and adversary's challenges in seven practical hardware Trojan implementation scenarios: in-house design team
attacks, third-party intellectual property vendor attacks, computer-aided design tools attacks, fabrication stage attacks, testing
stage attacks, distribution stage attacks, and field-programmable gate array Trojan attacks. Second, the authors analyse the
hardware Trojan implementation methods under each adversarial model in terms of seven aspects/metrics: hardware Trojan
attack scenarios, the attacker's motivation, feasibility, detectability (anti-detection capability), protection and prevention
suggestions for the designer, overhead analysis, and case studies of Trojan implementations. Finally, future directions on
hardware Trojan attacks and defenses are also discussed.

1௑Introduction
In the last decade, the malicious modifications of integrated
circuits (ICs), also referred to as hardware Trojans (HTs), have
become emerging security concerns in the IC industry. ICs that
contain HTs can cause malfunction, leakage of confidential
information, or lead to other disastrous consequences. Therefore,
HT has been a matter of concern for the industry, academia,
government, and military [1–4].

Since the first research on HT published in 2007 by Agrawal et
al. [5], HTs have been developed for more than ten years. A lot of
research has been conducted on detecting HTs. However, there has
been very little research on the implementation of HTs in practice.
To develop reliable HT detection and defense techniques, it is
necessary to understand the feasibility of inserting HTs in practical
implementations [6]. More specifically, how stealthy HTs can be
inserted into a target circuit, how feasible is HT for a specific
application model, and what are the challenges to implementing
such HTs [7]. This remains a field that has received relatively little
attention in the research community where most HTs referred to in
the literature are small- or medium-sized circuits added at register
transfer level (RTL) during the IC design flow [7].

In this paper, we attempt to make a review of the HT
implementations in the last decade and also make an outlook. In
particular, unlike all previous surveys that discuss Trojans from the
defender's perspective, for the first time, we will discuss the
Trojans from the attacker's perspective, focusing on the attacker's
methods, feasibility, anti-detection capability, and challenges when
designing and implementing a HT. As Chinese strategist Sun Tzu
said, ‘If you know yourself and the enemy, you will never lose a
battle’, (Sun Tzu, The Art of War, ancient Chinese military
philosophy book). Discussing Trojans from an attacker's
perspective can give readers a clear understanding of an attacker's
considerations when implementing a HT, including advantages and
deficiencies of the attacker, trade-offs, and the methods that the
attacker can take. This can hopefully help designers better

understand the Trojan insertion, and provide guidelines for the
defenders to design better detection and defense techniques.

Particularly, in this survey, we want to explore the following
questions:

Q1: HT techniques have been developed for more than ten years.
What attack methods do the attackers at various stages have?
Q2: What are the attackers’ capabilities at various abstraction
levels to launch the attacks?
Q3: With the continuous development of Trojan detection
techniques, what are the challenges and difficulties faced by the
attackers?
Q4: How attackers could overcome these state-of-the-art Trojan
detection techniques and what kind of new detection technique is
required?

In addition, this paper will present several new insights and
assumptions for the first time. For example, in the literature, it is
usually assumed that the HT problem was discussed from the
perspective of the copyright owner or the designer, i.e. the
copyright owner is assumed to be trustworthy and the HT was
inserted in the untrustworthy design and fabrication processes.
However, when returning to the essential definition of HTs, HT is a
Trojan/backdoor in the form of hardware, which is not limited to
the copyright owner's perspective. Moreover, the number of users
is much larger than the number of the copyright owners, and the
users are usually in weaker positions than the copyright owners.
Therefore, it is also necessary to consider the Trojans from the
user's perspective. For the users, the hardware Trojan/backdoor
implanted by the copyright owners or designers in the device can
also be regarded as an HT, such as some super privileged structures
which can be remotely controlled by the copyright owner, the
hardware that transmits user's data back to the copyright owner, or
the hardware that can record the user's keystrokes, and so on.

There have already been some reported accidents of potential
HT attacks to gain control of devices, steal secret information, or

IET Comput. Digit. Tech., 2020, Vol. 14 Iss. 6, pp. 231-246
© The Institution of Engineering and Technology 2020

231



even destroy a system. In September 2007, Israel launched a
successful airstrike on a nuclear reactor in Syria, while Syria's
advanced air defense system did not respond throughout the
operation [8]. In 2008, Adee [8] speculated that Syria's air defense
system had been deactivated by a built-in kill switch, which could
be accessed and activated remotely. Since the practical HTs used in
industrial fields and military are often highly confidential,
researchers cannot accurately determine whether they are HTs and
their implementation details. However, it still shows the concerns
of various communities about the destructive power of HTs. In
2016, Yang et al. [9] proposed a small malicious HT, named A2,
where they implemented a privilege escalation attack in the
OR1200 processor by running a set of seemingly harmless
commands. Such lightweight analog malicious backdoors are
extremely difficult to detect. In January 2018, the Free Software
Foundation revealed that Intel computers have a built-in
subsystem, called the Intel Management Engine (ME), which can
take full control over the computer, and even has access to the
main memory [10, 11]. The ME structure can be a serious threat to
the users’ privacy and security. However, users do not have the
ability to audit, examine, or disable it [10, 11]. From the user's
point of view, this could also be considered as an HT.

To date, several review and survey papers on HT detection
techniques or HT taxonomy have been published. Bhunia et al. [1]
analysed the threats of HT attacks, Trojan models and
classifications, and protection approaches. They mainly focused on
various defense techniques against HTs, including HT detection
techniques, design-for-security (DFS) approaches, and runtime
monitoring techniques. Tehranipoor and Koushanfar [2] presented
a classification of HTs and a survey of Trojan detection techniques.
In particular, they presented existing detection mechanisms and
DFS methodologies. Chakraborty et al. [3] presented a Trojan
taxonomy and a review of state-of-the-art HT detection techniques.
Rostami et al. [12] systematised various hardware security-related
attacks, including HTs, reverse engineering (RE), IC overbuilding
and intellectual property (IP) piracy, side-channel analysis (SCA)
etc. Jacob et al. [13] reviewed HT vulnerabilities in the IC's life
cycle and HT detection techniques. Karri et al. [14] proposed a
Trojan taxonomy in terms of the activation mechanism, effects,
abstraction level, insertion phase, and location. The above surveys
all focus on HT detection or HT taxonomy, and are published
before 2014, while a large number of HT works that have emerged
in the past six years are not included.

Different from all existing surveys, this paper presents a survey
of HT design and implementation based on practical attack
scenarios from an attacker's perspective. The differences between
this survey and these existing review/survey papers are
summarised as follows:

(i) The HT design and implementation methods are systematically
studied and analysed, focusing on the attacker's insertion methods,
capabilities, evading detection techniques, and challenges when the
attacker designs and implements an HT. To the best of the authors’
knowledge, this is the first survey of HT design and
implementation methods from an attacker's perspective, instead of
HT detection techniques from the defender's perspective.
(ii) We present adversarial models that show adversary's methods,
adversary's capabilities and adversary's challenges to insert HT
into a chip in seven practical HT implementation scenarios: in-
house design team attacks, third-party IP (3PIP) vendor attacks,
computer-aided design (CAD) tools attacks, fabrication stage
attacks, testing stage attacks, distribution stage attacks, and field-
programmable gate array (FPGA) Trojan attacks. Note that the
contribution of this paper is not to provide a new HT taxonomy.
Trojan taxonomies have been widely mentioned in existing review
literature. The goal of this paper is to analyse the attacker's
considerations during Trojan insertion in various practical
scenarios, including the technical options, advantages and
disadvantages, trade-offs, anti-detection capabilities, and so on.
(iii) HT design and implementation methods under each adversarial
model are reviewed in terms of seven aspects/metrics: HT attack
scenario, motivation, feasibility, detectability (anti-detection
capability), protection and prevention suggestions, overhead, and

case studies. The feasibility and detectability are two main
concerns from the attackers’ perspective. The protection and
prevention suggestions and overhead are two metrics from the
defenders’ perspective. Note that the existing HT literature,
including survey works, mostly focus on HT detection and
defenses. Therefore, in this paper, we do not discuss the HT
detection and defense techniques in detail, but only give brief
suggestions for Trojan detection. Instead, we will discuss the
feasibility and anti-detection capability in detail when inserting
Trojans from the attacker's perspective.
(iv) Future potential directions on HT designs and defenses are also
discussed, including HT benchmarks and evaluation methods,
machine learning-based Trojan detection methods and HTs
targeting machine learning models, attacks and defenses from chips
to complex systems, universal Trojan and automatic Trojan
insertion versus automatic Trojan (IC vulnerability) analysis tools,
multi-stage HT attacks and defenses, split manufacturing, low
overhead runtime HT monitoring techniques, logic obfuscation for
HT prevention, and FPGA Trojan attacks and defenses.
(v) This paper presents several new insights and assumptions for
the first time. On the one hand, researchers should not only
consider the HTs implanted during the untrustworthy design and
fabrication stages from the copyright owner's perspective, but
should also consider the Trojans inserted by the copyright owner
from the user's perspective. On the other hand, existing works
usually only consider Trojans to be inserted in the design stage,
CAD tools, and fabrication stage. In this paper, for the first time,
we also systematically discuss the HT attacks in the testing stage
and distribution stage. Moreover, the emerging FPGA Trojan
attacks are also systematically discussed.

The rest of this paper is organised as follows. The attack models
are described in Section 2. In-house design team attacks are
analysed in Section 3. 3PIP vendor attacks are presented in Section
4. CAD tools attacks are described in Section 5. Fabrication stage
attacks are presented in Section 6. Testing stage attacks are
described in Section 7. Distribution stage attacks are analysed in
Section 8. FPGA Trojans are presented in Section 9. Future
directions are discussed in Section 10. Finally, conclusions are
provided in Section 11.

2௑Attack models: adversary's methods,
capabilities, and challenges
In this section, we will present the attack models in terms of the
adversary's methods, adversary's capabilities, and adversary's
challenges in seven practical HT implementation scenarios.

A malicious attacker in any stage of the IC supply chain can
insert HTs. The most common concern is that HTs can be inserted
during fabrication by untrusted foundries. A malicious designer in
the IC design team could also manipulate the design and have the
flexibility to implement various HTs. Similarly, 3PIP core is
another possible source of HTs [15]. Other entities, e.g. CAD tool
vendors, IC vendors, and users, although have less chance to insert
an HT, but are still feasible to implement HT attacks. HT design
and implementation methods are diverse, e.g. an attacker can
design an HT based on the desired attack function, triggering
mechanism, insertion stage etc.

As the HT design and implementation methods significantly
depend on practical application scenarios and the attackers’
intentions, in this paper, we present adversarial models in terms of
adversary's methods, adversary's capabilities, and adversary's
challenges in different HT implementation scenarios, as shown in
Fig. 1. Related works usually consider the testing phase to be
trusted, while in this paper, we consider that the testing phase may
also be untrustworthy. Strictly speaking, in the testing phase,
untrusted testing organisations are not able to insert Trojans, but
can only collude with the malicious factory or designers to hide the
inserted HTs, i.e. making the HTs evade detection. Similarly, it is
generally considered that the distributor cannot insert an HT
because the distributor is usually unaware of the design. However,
a distribution stage attacker can RE a chip to pirate the chip. The
attacker can also directly replace the circuit with a Trojan-inserted

232 IET Comput. Digit. Tech., 2020, Vol. 14 Iss. 6, pp. 231-246
© The Institution of Engineering and Technology 2020

 1751861x, 2020, 6, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/iet-cdt.2020.0041 by Q

ueen'S U
niversity B

elfast, W
iley O

nline L
ibrary on [26/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



circuit during transportation. Therefore, in this paper, we also
discuss the attackers from the testing stage and distribution stage.
Specifically, we divide the practical HT implementation scenarios
into seven different adversarial models: (i) in-house design team
attacks; (ii) 3PIP vendor attacks; (iii) CAD tools attacks; (iv)
fabrication stage attacks; (v) testing stage attacks; (vi) distribution
stage attacks; and (vii) FPGA Trojan attacks. Moreover, we analyse
the HT implementation methods under each adversarial model in
terms of the following seven aspects/metrics:

(i) HT attack scenario: a description of the HT attack scenario,
including the HT types, trigger mechanisms, payloads etc.
(ii) Motivation: the motivation of an attacker, including the
malicious functions that an attacker wants to achieve.
(iii) Feasibility: the practicality of the attacks, including the
resources available for an attacker, the HT design methods that an
attacker can adopt. Similar to cryptography and cryptanalysis, the
attacker is assumed to have significant resources, but they are
restricted by the rule that the benefit from the Trojan attack should
exceed the resources expended [16]. The HTs should also be
practical and effective under practical scenarios and be easy to
control so that an attacker can employ them to perform attacks
easily.
(iv) Detectability: anti-detection capability of the Trojan, i.e. how
to evade the state-of-the-art defenses from the attacker's
perspective. In other words, the detection mechanisms available for
the described HT and how likely the HT will be detected.
(v) Protection and prevention suggestions: guidelines for designers
about protection and prevention, including challenges and
opportunities from the designer's perspective, suggestions that
would help designers to protect the circuits better against Trojan
insertions, and how the attack models will affect the future secure
hardware design. As mentioned in Section 1, since most of the
existing works have discussed HT detection techniques, in this
paper, we do not discuss the HT detection techniques in detail, but
only give brief suggestions for the Trojan detection (referred to as
protection and prevention suggestions). Instead, we will discuss in
detail the anti-detection capability of an HT and the attacker's
considerations of evading detection from the attacker's perspective
(referred to as detectability).

(vi) Overhead: cost for Trojan detection from the defender's
perspective, in terms of power, area, and performance.
(vii) Case studies: examples of HT design and implementations.

In the following sections, HT design and implementation methods
are reviewed and analysed under the above seven practical HT
implementation scenarios, respectively, in terms of the above seven
aspects. Particularly, Fig. 2 presents the HT attack scenario,
motivation, available resources, feasibility, detectability (anti-
detection capability), case studies from the attacker's perspective,
and the protection and prevention suggestions, overhead from the
defender's perspective under different attack models, which will be
discussed in the following sections. 

3௑In-house design team attacks
HT attack scenario: This attack model is the one that most
commonly referred to in the literature. Rogue designers in an
outsourced or in-house design team can easily implement stealthy
malicious modifications in the RTL design since the attackers can
get the source files and codes, as shown in Fig. 2. Trojans inserted
by the malicious designer can implement any possible payloads
with various trigger methods.
Motivation: The attacker in the design stage who insert an HT into
the IC may want to steal confidential information from the
deployed ICs, or cause malfunction of the ICs.
Feasibility: The attackers can manipulate the circuit with high
flexibility to implement any malicious functions. The trigger is
expected to be undetectable by functional tests. A feasible
approach is to use a specifically designed input sequence, e.g. an
abnormal condition, or a rare event. However, a trigger that relies
on physical access may be restricted in practical applications.
Therefore, some internal signals, e.g. a counter, a specified
temperature, or voltage, can be used as an activation mechanism
for the Trojan, such as the RS232-T200 HT [49]. Another type of
trigger, which is more aggressive, configures the Trojan as always-
on. In this case, the payload of the Trojan is required to be hidden,
e.g. sending secret information undetected by functional tests, such
as the Advanced Encryption Standard (AES)-T200 HT [49].
However, the always-on Trojans may introduce high-power
consumption, which could be easily discovered by SCA methods

Fig. 1௒ HT attack models in terms of the adversary's methods, adversary's capabilities, and adversary's challenges
 

IET Comput. Digit. Tech., 2020, Vol. 14 Iss. 6, pp. 231-246
© The Institution of Engineering and Technology 2020

233

 1751861x, 2020, 6, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/iet-cdt.2020.0041 by Q

ueen'S U
niversity B

elfast, W
iley O

nline L
ibrary on [26/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



[21]. The reasons are as follows. In general, HT is triggered by rare
events to evade the detection of defense techniques. As a result, the

HT is latent during most of the time. It does not affect the logic
values of the circuit nodes, and rarely generates transition

Fig. 2௒ HT attack scenario, motivation, available resources, feasibility, detectability (anti-detection capability), case studies under different attack models
from the attacker's perspective, and protection and prevention suggestions, overhead from the defender's perspective

 

234 IET Comput. Digit. Tech., 2020, Vol. 14 Iss. 6, pp. 231-246
© The Institution of Engineering and Technology 2020

 1751861x, 2020, 6, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/iet-cdt.2020.0041 by Q

ueen'S U
niversity B

elfast, W
iley O

nline L
ibrary on [26/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



activities, so the power consumption introduced by the Trojan is
very low. However, for always-on Trojan, on the one hand, the
payload usually does not directly affect the digital value of the
circuit node, so as not to be easily detected by logic tests. On the
other hand, it has no triggering conditions and is always on, so its
circuit transition activities will be relatively high. Thus, it will be
easily detected by the SCA method based on dynamic current or
power consumption. Note that, as a special case, parametric
Trojans can also be considered as always-on, which does not
necessarily lead to high-power consumption. In conclusion, the
design stage attack has high feasibility, good practicality, and is
easy to implement.
Detectability: First, we discuss the available detection methods
from the designer's point of view. The insertion of HTs in the RTL
can be revealed by formal code checks, which requires a
comprehensive security policy to counter all possible threats. Using
SCA, the impacts of Trojans on circuits’ delay, leakage power,
transient current, thermal profiles, electromagnetic emanation
(EM) etc., can be characterised for HT detection [50–57]. In
addition to these traditional side-channel signals (power, delay, EM
etc.), emerging side-channel signals also include impedance [58],
backscattering [59], channel noise in wireless channels [19] etc.
The traditional functional test fails to detect HTs, therefore, a few
HT detection works have also been proposed to generate test
patterns that target rarely activated nodes or events in a circuit [60–
63]. However, the huge number of gates and states in modern ICs
restrict the accuracy and scalability of these methods.
Second, we discuss how to evade detection from an attacker's
perspective. A malicious designer would normally have expertise
in IC design. Thus, they could insert optimised HT designs that
balance the area and power overhead. Since RTL modification
could affect all taped-out ICs, a golden model may not exist for use
in timing and power analysis-based detection methods. Moreover,
process variation can also help hide HTs without hardware
overhead. The functional analysis may be useful for HT detection
at the RTL level. However, a stealthy HT can still evade detection
using rare trigger conditions [20]. Overall, HTs can be carefully
inserted with design optimisations by exploiting rarely activated/
observed conditions and introducing ultra-low power/delay
overhead to evade both post-silicon detection [60] and DFS
techniques [64, 65].
Last, the emergence of new types of Trojan detection techniques
will also pose challenges for Trojan design methods. Normally,
HTs are stealthy with rare trigger events. As a result, HTs are
usually not sensitised with test patterns during functional tests [66].
Therefore, researchers can focus on such rare events and hidden
corners for Trojan detection. Hicks et al. [66] proposed such a
method, known as unused circuit identification (UCI), which
searches for unused components of an IC during design-time
testing and marks them as potentially malicious. The UCI
algorithm can detect many of the existing HTs reported in the
literature, including most of the benchmarks in Trust-hub [49],
which poses a new challenge for HT implementation.
Protection and prevention suggestions: The security challenges
faced by the designers are obvious. Attackers at this stage have
very high flexibility to implement any malicious function [17].
Furthermore, the earlier the Trojans are inserted, e.g. in the higher-
level specifications or the RTL code, the harder for Trojan
detection at later stages since it is impossible to obtain a golden
RTL model [18].
From the designer's perspective, considering the motivations
(goals) and capabilities of the design-stage attackers, the following
countermeasures can be used against RTL Trojans: formal code
checks (pre-silicon detection), SCA (post-silicon detection), and
DFS techniques. Nahiyan et al. [67] proposed a technique to
analyse and quantify the vulnerabilities in a finite state machine
(FSM). The state transition table of a FSM, including do not-care
transitions and states, is exacted from a gate-level netlist, and then
used for vulnerability analysis. Xiao et al. [68] proposed a built-in
self-authentication (BISA) method to prevent HT insertion during
physical design, which uses functional cells to fill all the unused
spaces in the circuit layout. As the unused spaces in a circuit are
the most likely insertion area for Trojans, any component changes

in the BISA structure could be detected. The BISA structure is
vulnerable to several attacks, therefore, Shi et al. [69] proposed an
obfuscated BISA structure to enhance its security. Other DFS
methods include the ring oscillator (RO)-based technique [64, 65],
split manufacturing [70, 71], and so on. As a supplementary
method, runtime HT detection approaches, e.g. chaos theory based
runtime power consumption monitoring [72], runtime data
anomaly detection based on change point [22], have also been
proposed.
Overhead: Formal code checks and SCA do not introduce overhead
to the circuit. However, the DFS techniques usually add a new
structure to the design thus will bring hardware overhead to the
circuit. The power and area of the circuit will increase, and the
performance of the circuit may be degraded due to the operations
of the DFS structure.

Case studies: A summary of HT designs at the RTL level
proposed in the literature is shown in Table 1. 

(i) Cyber Security Awareness Week (CSAW). Since 2008, the annual
embedded system challenge (ESC) competition, which is held as a
part of CSAW, is well-known for its HT competition. The
competition targets HT design and insertion techniques, Trojan
detection approaches, and design hardening mechanisms. Many
researchers have reported their Trojan designs implemented for the
CSAW ESC competition [16, 21, 25, 26, 73].
Several Trojan design and implementations have been presented by
Baumgarten et al. [16] at CSAW ESC, including the following:
information leakage through RS232 end sequence; RS232 multiple
transmission rates; denial-of-service (DoS); thermal leakage;
information leakage through amplitude modulation transmission;
50 MHz transmission; light-emitting device transmission. Jin et al.
[21] presented eight RTL HTs to compromise the security of an
Alpha encryption module. Santos and Fei [25] presented a
backdoor Trojan, a bomb counter Trojan, and a power sink Trojan
to weaken an 8051 processor performing RC-5 encryption. Reece
et al. [26] presented DoS and data leakage Trojans to attack the
Intel 8051 micro-controller unit, which would probably run a data-
sensitive encryption algorithm. Karri et al. [27] presented several
case studies of HTs from ESC, including the following categories:
key/information leakage through video graphics array (VGA)
display, the RS232 protocol, or temperature; synthesis tool-based
Trojan; DoS Trojan.
In summary, these Trojans’ payloads can be classified into three
types as follows:

• leak sensitive data/internal signals;
• change the function of the design, or cause DoS;
• destroy the chip.

Also, the triggers of these Trojans can be divided into three types:

• input pattern triggered if the attacker can physically access the
device;

• triggered internally by an internal event or sequence;
• always-on.

(ii) Crypto-cores. HTs can be carefully designed to compromise the
security of widely used crypto-cores, which may be of particular
interest to an attacker. In [23], a malicious circuit was developed to
connect the encryption module and decryption module in an AES
core. The Trojan is triggered when a predetermined condition is
satisfied and then half-encoded data is sent from the encryption
module to the decryption module by a specific Trojan path [23].
Therefore, plain text is directly sent to the output. Moreover, when
a predefined keyword is inputted to the AES core, which is
transferred to a controller through the Trojan path, the secret key is
outputted directly [23].
In [32], key leakage HTs are demonstrated in a wireless
cryptographic IC containing an AES module and an ultra-wideband
(UWB) transmitter (TX) module. The impact of malicious
components is carefully hidden below the side-channel margins.

IET Comput. Digit. Tech., 2020, Vol. 14 Iss. 6, pp. 231-246
© The Institution of Engineering and Technology 2020

235

 1751861x, 2020, 6, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/iet-cdt.2020.0041 by Q

ueen'S U
niversity B

elfast, W
iley O

nline L
ibrary on [26/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



The key is leaked through parameter modulation, e.g. frequency or
amplitude of the wireless transmission [32]. The adversary is able

to retrieve the 128-bit key leaked by a 128-bit ciphertext block
through a transmission power waveform sent by the UWB TX.

Table 1 Overview of hardware Trojan designs targeted at the RTL level
Works Benchmark Trigger Payload Overhead Detectability
Baumgarten et al. [16] Alpha device

(ESC2008)
always-on; internal information leakage;

DoS
power: 0.192%–1.026% functional: unlikely; SCA:

likely
Zhang and Xu [17] OpenRisc external; internal N/A N/A functional: unlikely; SCA:

likely; UCI: unlikely
Fern et al. [18] bus protocols, ARM

processor
always-on leakage; unprivileged

access
area: AXI4: 0.5%–2.1%
Flip-flops (FF), 0.4%–
3%(LUT); SoC: 0.9%

(FF), 1.2% (LUT)

functional: unlikely; SCA:
unlikely; Formal

verification: likely

Subramani et al. [19] 802.11a/g
transceiver

always-on information leakage 0.5 dB–0.75 dB extra
power

functional: unlikely; SCA:
likely; formal verification:

likely
Tsoutsos et al. [20] DES, eXtended Tiny

Encryption Algorithm
(XTEA), Pseudo
Random Number

Generator (PRNG)

external change functionality N/A functional: unlikely; SCA:
likely; static analysis:

unlikely

Jin et al. [21] Alpha encryption external; internal leakage; compromise
functions; destroy the

chip

area: −9.4% to 3.3%
(FF); 0.024%–6.8%

(LUT)

functional: unlikely; SCA:
likely

Kumaki et al. [23] AES predefined rule/input
keyword

leakage area: 0.37%; power:
0.13%

functional: unlikely; SCA:
likely

King et al. [24] Leon3 processor a sequence of bytes;
predetermined

bootstrap

privilege escalation;
login backdoor;

stealing passwords

area: 0.075% functional: unlikely; SCA:
likely

Santos and Fei [25] 8051 external; internal;
always-on

leakage; disables/
enables functions

area: 0.2% functional: unlikely; SCA:
likely

Reece et al. [26] 8051 external; internal DoS; leakage area: 0.15%–0.4%;
leakage power:

0.146%–0.399%;
dynamic power:

−0.433% to 0.93%

functional: unlikely; SCA:
likely

Karri et al. [27] crypto-core etc.
(ESC works)

external; internal;
always-on

leak secret key/info.
through the RS232
protocol, through
temperature using

SCA, or through VGA
display; DoS

N/A functional: unlikely; SCA:
likely; UCI: likely

Dash et al. [28] modern computers a certain temperature N/A area: high; power: high functional: unlikely; path
delay-based: unlikely;
power-based: likely

Gallais et al. [29] RSA, AES specific instructions;
particular input

leak info./secret key N/A functional: unlikely; SCA:
likely

Reece and Robinson
[30]

AES external; internal;
always-on

leakage; drains the
battery

area: 90 nm, 0.16%, 45 
nm, 0.78%; leakage

power: 90 nm, 0.53%,
45 nm, 0.46%; dynamic
power: 90 nm, 2.59%,

45 nm, 0.49%

functional: unlikely; SCA:
likely

Sturton et al. [31] Leon3 processor external change functionality N/A functional: unlikely; formal
analysis: likely; UCI:

unlikely
Liu et al. [32] wireless

cryptographic IC
always-on leakage area: 0.005% and

0.025%; power: 0.4%
and 0.1%

functional: unlikely; SCA:
likely

Lin et al. [33] crypto-processor always-on convey secret
information off-chip

N/A functional: unlikely; SCA:
likely

Fyrbiak et al. [34] AES always-on;
conditionally

cancel self-tests; key
leakage

N/A functional: unlikely; SCA:
likely; formal verification:

likely
Kaji et al. [36] universal

asynchronous
receiver transmitter

(UART)

always-on facilitate data injection
attack

N/A functional: unlikely; SCA:
likely

 

236 IET Comput. Digit. Tech., 2020, Vol. 14 Iss. 6, pp. 231-246
© The Institution of Engineering and Technology 2020

 1751861x, 2020, 6, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/iet-cdt.2020.0041 by Q

ueen'S U
niversity B

elfast, W
iley O

nline L
ibrary on [26/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



In [29], HTs have been proposed to introduce or amplify side-
channel leakage of cryptographic software. Particularly, they
implement several alterations to cause information leakage through
faulty computations or the variations in the power consumption and
latency of some instructions [29]. Software-based Trojan activation
mechanisms are proposed and the side-channel leakage of Rivest–
Shamir–Adleman (RSA) and AES implementation were
illustrated [29]. Lin et al. [33] proposed an HT, which conveys
secret information off-chip by employing power side-channels. By
using a spread-spectrum technique, the information is leaked below
the noise level of the AES circuit to evade detection. Each key bit
is modulated by a simple XOR operation with a pseudo-random
number sequence [33]. Fyrbiak et al. [34] proposed a framework to
reverse engineer the gate-level netlists and insert HTs to weaken
cryptographic circuits.
(iii) Exploiting unspecified specifications, or creating covert
channels. Attackers can also carefully design HTs to hide in
unspecified specifications or behaviours. Fern et al. [18]
highlighted that current system-on-chip (SoC) bus implementations
are vulnerable to HTs which can hide in the partially specified
specifications or behaviours. They present a Trojan which
introduces a covert channel by modifying bus signals of
unspecified behaviours. The Trojan communication channel is
demonstrated on a SoC design that runs a multi-user Linux
operating system to allow an attacker to get root user's data without
permissions [18]. It is shown that there are some redundant bus
signals which will be ignored by the verification test, thus can be
exploited for HT implementation [18]. Subramani et al. [19]
demonstrated an HT in a wireless network by exploiting the
forward error correction block to create a covert channel. Similarly,
Kaji et al. [36] proposed a data injection attack by exploiting HT to
create specific electromagnetic waves as a covert channel.
(iv) Remote activation. Since an attacker may have limited physical
access to deployed devices, triggering HTs remotely is an ideal
choice. Dash et al. [28] proposed a method to remotely activate
HTs through a stealthy temperature channel. An analog HT trigger
is implemented on modern computers, which can be remotely
activated when the infected circuit reaches a predefined
temperature [28]. The temperature of the target computer can be
raised remotely by sending a large number of network requests to
the computer.
(v) Evading UCI detection. To evade UCI detection, Sturton et al.
[31] constructed malicious circuits that have hidden behaviours.
Particularly, this class of malicious circuits satisfies the following
property: for all signal pairs (s, t), there is at least one input that
could make s ≠ t and would not trigger the hidden HT [31]. This
property ensures that the UCI technique will not mark the circuitry
between s and t as a potential HT. Exhaustive enumerations of all
circuits satisfying that class are performed, and the search results
are used to construct an attack on a processor, i.e. the Leon3
processor. This HT allows user-level programmes entering into
supervisor mode to take control of the system by using a secret
knock [31].

Zhang and Xu [17] proposed an HT design methodology from
three aspects to bypass existing defenses, especially the UCI
technique. First, to evade functional tests, carefully selected rare
trigger conditions are used to make the HTs remain dormant during
testing. Second, to evade UCI detection, they combine the trigger
input selection and the code writing style to mask HTs as useful
circuits. Third, they introduce a metric, namely un-controllability,
to represent the difficulty level of setting the value of a signal [17].

4௑3PIP vendor attacks
HT attack scenario: In this adversarial model, the 3PIP used by a
design house or a SoC developer may contain HTs, as shown in
Fig. 2. This is a general threat since SoCs are usually integrated
with many 3PIPs with the purpose of reducing the cost and
accelerating the time-to-market [1–3, 12]. HTs could be inserted at
each type of the IP, e.g. soft for RTL-level, firm for netlist-level,
hard for Graphic Database System II (GDSII) cores [15]. The SoC
developer, who integrates design blocks and modules, often treats

the 3PIP as black boxes. These unknown IP cores are usually
unmodified and integrated into the final design, which can lead to
an effective attack to compromise the SoC.
Motivation: Inserting a Trojan in 3PIPs is an effective and stealthy
way for an attacker to compromise the security of SoCs. The
attacker from a 3PIP vendor may want to insert an HT in the IP,
which serves as a backdoor to steal secret information from the
integrated SoC or cause functional failures of the SoC. The attacker
can also insert an HT to facilitate a future attack. For example,
implant a hardware backdoor to support the software or system
attacks.
Feasibility: Untrusted 3PIP vendors can easily introduce stealthy
malicious modifications to design through insertion, deletion, or
modification of original circuits in a stealthy manner. This type of
attacker can get the IP design files and source codes. Therefore, an
attacker can flexibly implement malicious functions by modifying
the IP design at RTL or other specification levels.
However, the 3PIP attackers also face some obstacles. First, it is
difficult for the 3PIP attacker to physically access the fabricated
ICs to trigger the HT. Therefore, the HTs are normally triggered
internally. The HTs can also be designed to be always-on. Second,
as the attackers insert HT in the 3PIP without knowing the overall
design of the IC, it is not easy to carry out an attack successfully. In
conclusion, the 3PIP Trojan has high feasibility, good practicality,
and is easy to implement. The only limitation is the method of
triggering.
Detectability: We now discuss the available detection techniques
from the defender's perspective, and the anti-detection capability
from the attacker's perspective. Pre-silicon detection methods, e.g.
formal verification and code analysis, are usually utilised to detect
HTs in 3PIP cores [74]. Previous research studies [62, 75, 76] have
proposed hardware description language (HDL) code analysis or
structural analysis techniques for soft IP cores. A SoC integrator
can analyse the IP source codes and find potentially suspicious
components by analysing the reachability and controllability [77].
However, the complexity of such an analysis method is extremely
high, which increases with the circuit size exponentially [78]. In
formal verification methods, IPs are verified by proof-checking
tools to avoid including unintended functionalities [79–82].
Design-for-trust techniques have also been proposed. For example,
Liu et al. [83] detected malicious HTs by applying security
constraints to the task scheduling step of the SoC design process.
Rajendran et al. [74] involved design constraints by using high-
level synthesis to detect Trojans and then isolated the Trojan-
infected 3PIPs. It is shown that using a variety of vendors can
prevent collusion of multiple IPs from one vendor.
Fortunately for the attacker, verifying the trust of IP cores obtained
from untrusted third-party entities is challenging due to several
issues. For the case of 3PIPs, the methods depending on a golden
chip/model are not suitable anymore. Moreover, the complete
implementation of a 3PIP is invisible. It is difficult to provide
sufficient coverage by general functional simulations due to
incomplete functional specifications. It is also difficult to predefine
comprehensive security rules to cover all the possible risks. There
can always exist HTs, which can satisfy proof-checking constraints
thus evading detection. Lastly, the HDL and Coq [35] (an
interactive theorem prover/proof-assistant) representations of a
circuit may not be completely equivalent. Even if the Coq
representations of the circuit are verified to be trustworthy, it
cannot guarantee that the corresponding HDL code is trustworthy
[74]. A smart attacker can ensure that the functional specification
of the design is unchanged or the modifications are undetectable.
Protection and prevention suggestions: Pre-silicon detection
methods, e.g. formal verification methods, can be used to detect
HTs that are inserted in 3PIP cores, while post-silicon detection
methods usually cannot detect 3PIP Trojans. The DFS techniques,
such as using a variety of vendors, can also be used to prevent 3PIP
Trojans.
Overhead: The formal verification methods will not introduce
overhead to the circuit, while the DFS techniques usually bring
some overhead to the design.

IET Comput. Digit. Tech., 2020, Vol. 14 Iss. 6, pp. 231-246
© The Institution of Engineering and Technology 2020

237

 1751861x, 2020, 6, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/iet-cdt.2020.0041 by Q

ueen'S U
niversity B

elfast, W
iley O

nline L
ibrary on [26/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Case studies: Tsoutsos et al. [20] presented HTs which do not
violate the functional specifications. Multiple levels of malicious
nested FSMs are introduced to the design. The threat scenario is
that the SoC integrator, which receives the malicious IP only
applies static analysis methods on the HDL code of the IP, without
actually simulating or implementing the design (dynamic analysis)
[20]. Such modifications are hard to detect without exhaustive
testing of all system states.

While HTs are generally considered to be malicious, they may
also go in the opposite direction, e.g. be exploited in a constructive
way. In [84], a hardware IP protection technique that embeds an
HT as a FSM was proposed. By using a sequential Trojan that acts
like a time-bomb, illegal SoCs containing pirated evaluation copies
of the IP could stop performing the specified functionality.
Specifically, on the occurrence of a rare sequence, the Trojan stops
the normal usage of the IP [84]. Therefore, expiry date on the
usage of the IP can be set based on the Trojan.

So far, most research works consider side-channels as undesired
signals such that people need to protect devices from sophisticated
SCA attacks. However, Gallais et al. [29] used side-channel
leakage introduced by an HT as a watermark for IP protection,
which can be detected by SCA. A unique signal is embedded into
the side-channel signal of a circuit which acts as a watermark. This
enables circuit designers to detect unauthorised use of their
circuits. They illustrate this by designing an integer-based
multiplier [29]. When a specific pair of operands arrive, the
pipeline will be stalled for several clock cycles. Since this pair of
inputs is hard to guess, it allows the designer to verify his own IP
by analysing the power profile [29].

5௑CAD tools attacks
HT attack scenario: Untrusted commercial CAD tools supplied by
different vendors can also introduce malicious circuits to a design,
which reflects the synthesis and verification stage attacks, as
shown in Fig. 2. CAD tools attackers can directly insert Trojan
circuits into the design or degrade critical logic, e.g. the random
number generator (RNG) used in a cryptographic circuit.
Motivation: The attacker from the CAD tools providers may want
to insert HTs in the design files, which leaves an undetectable
backdoor or a time bomb in these designs. The attacker can also
control these systems after deployment or steal secret information
from those systems.
Feasibility: Although this attack model is less possible compared
with design attacks and fabrication attacks, it is still feasible. A
CAD tools attack is more powerful and stealthy than design attacks
and fabrication attacks. A SoC designer has to design chips by

relying on CAD vendors. By compromising the CAD tools or the
running scripts, the attacker can introduce a malicious modification
to IPs from the HDL codes to the generated netlist [16]. In
conclusion, the CAD tool attacks are feasible, having good
practicality and stealthiness, but are not easy to implement.
Detectability: Since this attack happens during the synthesis stage
on generally trusted tool suits, it is not suspicious and extremely
hard to detect [16]. On the other hand, Trojans inserted by CAD
tools are difficult to detect or remove since they are coupled with
other design units [85]. Furthermore, a SoC designer often uses a
suite of CAD tools supplied from the same vendor, which means
the verification tool could potentially hide the malicious alterations
introduced by the synthesis tool from the same vendor [1, 16].
Protection and prevention suggestions: A trust evaluation of CAD
creators and security policies, which are currently lacking, need to
be established to defeat the malicious tampering by CAD tools
[16]. It is suggested to use reliable CAD tools or use self-
developed CAD tools. Pre-silicon and post-silicon Trojan detection
techniques are also needed to be applied.
Overhead: The cost of developing CAD tools independently is
high. However, there will be security threats when using third-
party CAD tools.
Case studies: Pilato et al. [86] demonstrated the CAD threats by
compromising a high-level synthesis tool to insert three HTs. The
payloads of these Trojans are adding latency, compromising the
security of crypto-cores, and draining energy, respectively.
Similarly, Pilato et al. [85] use high-level synthesis to inject a
benign HT, which serves as an IP watermark to prevent piracy and
counterfeiting. Basu et al. [87] investigated the CAD attacks from
all the CAD tools (from synthesis, design, verification to test), and
show that all these CAD tools can launch potential attacks. They
demonstrate the CAD-attacks on an ARM Cortex processor.

6௑Fabrication stage attacks
HT attack scenario: This attack model represents the threat of
untrusted foundries. Nowadays, most modern ICs are manufactured
worldwide in untrusted foundries due to budget considerations. The
foundry receives the complete design (physical layout geometry
file) and its specifications. However, the IC designer has little or no
control over the foundries. A fabrication attacker could directly
insert an HT into the chip or changing the manufacturing process to
cause reliability issues in the SoCs.
Motivation: A fabrication stage attacker may want to cause
reliability issues in the SoCs, steal information from the ICs, or
even directly destroy the system.

Table 2 Summary of HT design and implementation works at the layout level
Paper Benchmark Trigger Payload Overhead Detectability
Becker et al. [7] RNG, AES always-on change functionality;

degrade performance;
leakage

area: 0 functional: unlikely; optical
inspection: unlikely

Ghandali et al. [6] 32-bit multiplier,
ECDH key

agreement protocols

violating the delays of
rare combinational

logic paths

Trojan multiplier
computes faulty outputs

N/A functional: unlikely; visual
inspection: difficult; SCA:

difficult
Wang et al. [73] ESC2010 rare events change function area: 0.6%; power:

0.4%
functional: unlikely; SCA:

unlikely
Bhasin et al. [37] cryptographic IP external; internal facilitate DFA; Leakage area: 0.5% (LUT) optical imaging: likely
Yang et al. [9] OR1200 internal privilege escalation;

change functionality
area: 0.08%;
delay: 0.33%

functional: unlikely; SCA:
unlikely

Kumar et al. [38] PRINCE slightly reduced
supply voltage

facilitate attacks area: 0 functional: unlikely; SCA:
likely; optical inspection:

unlikely
Shiyanovskii et al. [39] static random

access memory
always-on reduce the reliability by

the acceleration of the
wearing out mechanisms

N/A functional: unlikely; delay
monitoring: difficult; RO:

difficult; wafer and package
level reliability monitoring:

likely
Lin et al. [40] Crypto core always-on convey secret information area: 14 LUTs functional: unlikely; SCA: likely
 

238 IET Comput. Digit. Tech., 2020, Vol. 14 Iss. 6, pp. 231-246
© The Institution of Engineering and Technology 2020

 1751861x, 2020, 6, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/iet-cdt.2020.0041 by Q

ueen'S U
niversity B

elfast, W
iley O

nline L
ibrary on [26/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Feasibility: The foundries have complete access to the layout of the
design, which provides them with opportunities to flexibly add or
remove components of ICs by modifying the layout. Since the
foundry has no access to the RTL code, the modifications can only
be achieved in the layout by changing the netlist, or modify the
manufacturing process by changing design masks to not affect the
functions of the design [7], as shown in Fig. 2.
Generally, it is not easy for an attacker to insert HTs during
fabrication. First, the attacker has to figure out the exact
functionality of the circuit (in the form of the GDSII file). The
attacker also needs to find the necessary space to add extra gates
and connections. Second, the attacker needs to keep the layout
(place and route) almost identical, to avoid being detected by
optical inspection. In conclusion, the fabrication stage attacks are
feasible, having good practicality and stealthiness, but are not easy
to implement.
Detectability: A Trojan inserted during fabrication is difficult to
discover by functional tests and verification performed on the
HDL. When the layout of the circuit remains unchanged during
Trojan insertion, it is almost impossible to detect these Trojans by
using optical inspection. An attacker can insert HTs based on the
modification of the electrical characteristics while the metal, active
area and poly-silicon layer remain unchanged [7].
Fabricating a golden chip in a trusted factory for HT detection is
difficult in practice. Thus, the detection technique can only
compare the golden simulated model and the fabricated chip under
test. However, Yang et al. [9] show that an analog HT can be much
smaller and more stealthy than a digital HT. The trigger is
implemented by diverting charge from unlikely signal transitions,
which makes the Trojan invisible to side-channel detection.
Protection and prevention suggestions: Optical inspection is
considered as a reliable way to detect layout-level HTs, while SCA
is also a general method to detect this kind of HT. Since the RE-
based optical inspection needs a lot of human efforts, it is also
helpful to use a machine learning-based image analysis method for
automatic analysis [88]. Besides, a golden simulated model, if
exists, will be helpful for post-silicon detection techniques [89],
e.g. SCA.
Overhead: Post-silicon detection does not introduce overhead to
the circuit, while the optical inspection will consume a lot of
human labour and time costs.
Case studies: As most of the HTs reported to date in the literature
are inserted at the RTL level, constructing practical HTs at the
layout level is still an open problem. The summary of HT design
and implementation works targeting at the layout level is shown in
Table 2, which will be discussed in the following paragraphs.

(i) Exploit analog circuits: It has been shown that an attacker
during fabrication can exploit analog circuits to create small and
stealthy HTs [9]. Yang et al. [9] leveraged analog circuits to
perform a hardware attack, named A2. A circuit is constructed
using capacitors to siphon charge from nearby wires in the spare
spaces of a design after place and route. A victim flip-flop is
changed to the desired value when the capacitors are fully charged.
This attack has been implemented in an OR1200 processor by
applying it to privilege escalation which can be controlled remotely
[9].
(ii) Parametric Trojans: Becker et al. [7] proposed layout-level
Trojans by slightly altering the manufacturing process conditions,
i.e. the dopant polarities of a transistor. The Trojan can accelerate
the wear-out mechanisms to affect the reliability of ICs. The
Trojans have been inserted into two designs, i.e. an Intel secure
RNG in an Ivy Bridge processor, and a side-channel attack
resistant substitution box (S-Box) implementation [7].
Ghandali et al. [6] presented a parametric Trojan, which is
designed through modifying the parameters of transistors, and does
not require extra logic. It is triggered under rare conditions that are
determined by the delays of some combinational logic paths. This
design has been applied in a multiplier circuit to create a Trojan
multiplier. If specific patterns are input, this Trojan multiplier will
compute faulty outputs [6]. This Trojan multiplier is further applied
to attack a key agreement protocol, the elliptic curve Diffie–

Hellman (ECDH). The bug attack works as follows [6]. First, the
first several bits of the key are guessed. Then, a point Q which can
lead to a failure of the scalar multiplication is searched. After that,
the attacker sends Q to the server to make a handshake, which
performs the ECDH protocol. If the handshake fails, it indicates
that the Trojan multiplier outputs the expected multiplication error.
Hence, the current guessed key is correct. More bits will be
cracked successively in this way to recover the key [6].
Kumar et al. [38] proposed parametric manufacturing process HTs
to facilitate fault-injection attacks. The Trojans are inserted by
altering the doping concentration and the dopant area of
predetermined transistors in a target circuit. The trigger condition
of the HTs is slightly reduced supply voltage with very low
probability [38]. The Trojans have been utilised to inject faults into
the lightweight cipher PRINCE. It is shown that they can
reconstruct the secret key after around five fault-injections by
differential cryptanalysis [38].
Shiyanovskii et al. [39] proposed an HT based on process
reliability. The Trojan reduces the reliability of ICs by altering the
conditions of the manufacturing process, to wear out
complementary metal oxide semiconductor transistors. Such minor
changes in the manufacturing process are hard to detect.
(iii) Unchanged place and route: Bhasin et al. [37] analysed how to
introduce an HT while the place and route remain unchanged. It is
shown that when the placement density is over 80%, it is difficult
to insert Trojans. They also inserted a Trojan to aid the differential
fault analysis (DFA) attack. The payload of the HT is an XOR gate
that alters one bit of the AES to be faulty in the eighth round. As a
result, the attacker can retrieve the whole key by activating the HT
for two encryption processes [37].
Wang et al. [73] considered new placement techniques and delay-
aware Trojan insertion. A hard macro is used to prevent delay
variations in FPGAs. For the application specific integrated circuit
(ASIC) scenario, where the Trojan is inserted at post-layout, the
placement and route of the original design are also preserved by
making it a hard macro [73]. It is shown that such Trojans only
have a small impact on path delay, which can evade on-chip
monitor-based DFS approaches.
(iv) Trojan side-channels (TSCs): Lin et al. [40] used side-channel
leakage for HT implementations, called TSCs. A hidden backdoor
can be inserted at the foundry for unauthorised leakage of secret
information. Power side-channels are demonstrated to leak
information that can be hidden in the noise. Two TSCs are
implemented, i.e. TSC based on spread-spectrum theory and TSC
using specific input values [40]. Moreover, the TSCs have physical
encryption property, so that it can keep the information secure even
if the introduced side-channel is successfully detected.

Table 3 presents a comparison between Trojan insertion at the
RTL level and layout level from the attacker's perspective. The
advantages of Trojan insertion at the RTL level are having full

Table 3 Comparison of Trojan insertion at the RTL level
and layout level from the attacker's perspective

RTL level Layout level
Pros 1) have full access to the

source code
1) can evade detection by

functional testing and verification
2) high flexibility to

implement any malicious
function

2) may be invisible to SCA

3) since an RTL modification
will affect all the fabricated

ICs, a golden model may not
exist for SCA

3) can leverage analog circuits
or parameter changes to

introduce small and stealthy
Trojans

Cons 1) can be revealed by
complete code reviews and

adequate security policy
checks

1) have to make modifications to
the layout mask or at process
level which is neither easy nor

flexible
2) may be exposed by SCA 2) must keep the original layout

mostly unchanged to avoid being
detected by optical inspection

 

IET Comput. Digit. Tech., 2020, Vol. 14 Iss. 6, pp. 231-246
© The Institution of Engineering and Technology 2020

239

 1751861x, 2020, 6, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/iet-cdt.2020.0041 by Q

ueen'S U
niversity B

elfast, W
iley O

nline L
ibrary on [26/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



access to the source code and high flexibility to implement any
malicious function. Moreover, as an RTL modification will affect
all fabricated ICs, a golden model may not exist for SCA-based
detection methods. The disadvantages of RTL Trojans are that they
can be exposed by complete code reviews, adequate security policy
checks, or SCA. On the other hand, the advantages of Trojan
insertion at the layout level are that it can evade detection by
functional testing and be invisible to side-channel defenses. It can
also leverage analog circuits or parameter changes to introduce
small and stealthy HTs. The disadvantages of Trojan insertion at
the layout level are that it is not easy for the attacker to make
modifications to the layout mask or change the manufacturing
process. They must also keep the original place and route mostly
unchanged, to avoid being detected by optical inspection.

7௑Testing stage attacks
HT attack scenario: In general, the manufacturing test is done by a
credible test party, e.g. reputable semiconductor company or
government agency, which could be considered as trusted. As a
special case, Xue et al. [41] formulated untrustworthy testing
parties into two attack models and illustrate that the test parties
may be untrustworthy. In [42], Yasin et al. extract secret
information from test data. These attacks indicate that the testing
phase may also be insecure. The testing party is important in the IC
supply chain. However, nowadays, there is usually only one test
party to test the fabricated ICs. If the only testing house is not
credible or colludes with attackers from other stages [90], the
testing results will no longer be trustworthy.
Motivation: An attacker during the test stage may want to modify
the HT detection results or modify the test data to hide the HTs.
Feasibility: Generally, the testing party collects test data of
fabricated ICs and then performs the HT detection procedure. In
this scenario, the testing agency can directly modify the Trojan
detection results. In a special case, the designer is involved in the
testing process. In this scenario, the test agency needs to modify
the test data to mislead the final Trojan detection result. An
adversarial test data generation algorithm was proposed in [41] for
the untrustworthy testing houses, which can use the minimum test
data modifications to cause the maximum detection errors of ICs.
In conclusion, the testing stage attacks are feasible, having good
practicality, but are not easy to implement, as shown in Fig. 2.
Detectability: Little research has been done on testing stage
defenses. Xue et al. [41] proposed an HT detection method based
on hybrid clustering ensemble to resist untrustworthy testing
houses. Three testing houses are used in the scheme, and each
testing house carries out the HT detection process. Then, the three
detection results are consolidated by using the hybrid clustering
ensemble method to obtain the final test result. The technique can
resist malicious modifications by untrustworthy testing houses, and
can achieve higher detection accuracy than each of the three testing
houses regardless of whether the testing house has maliciously
modified the test data or not [41].
Protection and prevention suggestions: Since the motivations of
the testing stage attackers are to modify the HT detection results or
modify the test data to hide HTs, two methods can be applied to
resist such attacks. One is the trust evaluation of testing parties, and
the other is the ensemble technique using multiple testing parties
[41].
On the other hand, there have already been a few secure testing
methods against IC piracy, which may provide a reference for
secure testing of HT detection. For example, Contreras et al. [91]
present a secure split-test (SST) technique to prevent
counterfeiting. The method allows the IP owner to meter the IPs by
holding a lock key. During the test phase, a key is required to
unlock the IP's functionality, so that the IP owner can verify the
testing results. Later, Rahman et al. [92] improve the above SST
technique against IP piracy by simplifying the communication
between the IP owner and the foundry, named CSST. In the CSST
method, the IP owner controls the testing by locking the IC and the
scan chains [92]. Only the IP owner can understand the testing
results under locking conditions, and can unlock the IC. Zhang et
al. [93] proposed a hybrid approach that combines a dynamically

obfuscated wrapper technique (referred to as DOST) and SST to
protect IP rights, which allows the IC designer to control the
fabrication and the testing processes. In the locked model,
structural tests are performed, while in the unlock model, the
functional tests can be performed [93].
Overhead: Since multiple testing houses are used, the cost will be
of particular concern. It is shown in [41] that the time overhead of
ensemble technique is small and acceptable, while the
computational overhead is large. However, the computational
overhead is distributed across multiple testing parties, which means
that the ensemble technique does not increase the computational
and storage overhead of each test party.
Case studies: To date, little research [41, 42] has been done on
testing stage HT attacks, as described above.

8௑Distribution stage attacks
As described in Section 2, since the distributor is usually unaware
of the IC design, it is generally considered that the distributor
cannot insert an HT. However, a distribution stage attacker can RE
a chip to pirate the chip, or directly replace the IC with a Trojan-
inserted version during transportation. Therefore, we also describe
the attackers from the distribution stage.

HT attack scenario: After IC fabrication and packaging, a
distribution attacker may appear in the IC supply chain. Such a
distribution attacker, which may be either an IC distributor or a
user, is restricted in inserting Trojans. Instead of being able to
modify logic gates, they have to destroy the package or the
components, or manipulate the transport process [16], as shown in
Fig. 2.
Motivation: A distribution stage attacker may want to RE a chip to
pirate the chip. The attacker may also want to directly replace the
circuit with a Trojan-inserted circuit during transportation.
Feasibility: An attacker has limited flexibility at this stage and it is
difficult to implement such hardware attacks. Such attackers cannot
obtain the HDL code and layout level geometry. The attacker also
does not have the input/output test patterns. However, they usually
have a set of specifications about the functions of the ICs. They
may obtain the netlist of the design by RE, which is a difficult but
feasible task. In conclusion, the distribution stage attacks have
limited flexibility, some practicality, and are difficult to implement.
Detectability: Some defense techniques have been proposed to
address this type of vulnerability, including anti-tampering
packaging and obfuscation against SCA [16]. HT attacks and
defense techniques at this stage remain open problems.
Protection and prevention suggestions: Since the motivation of a
distribution stage attacker is to RE or replace the circuit, logic
obfuscation and logic encryption can be used against RE attacks.
Some fragile hardware watermarking structures can also be used.
Once the integrity of the hardware is compromised, the watermark
will be broken.
Overhead: The DFS techniques will add hardware overhead to the
circuit.
Case studies: Swierczynski et al. [43] described a HT attack on a
USB flash drive. The USB flash drive is intercepted and attacked
during transportation. The FPGA bitstream is manipulated such
that the S-Box of the 256-bit AES design is changed to a linear
function, and thus can be easily broken [43]. If the attacked USB
flash drive is used by a victim, the user's data can be revealed from
the ciphertexts.

9௑FPGA Trojans
HT attack scenario: With the extensive use of FPGAs in critical
applications, the security of FPGA designs has become a major
concern. In the past, the research studies have focused on IP
protection in FPGA, i.e. protecting the IP mapped on an FPGA
from being stolen. However, little research has been conducted on
the security and protection of the FPGA device itself. Recently, a
few FPGA HT detection techniques have been proposed, while the
FPGA-oriented HT design and implementation works are relatively
less.

240 IET Comput. Digit. Tech., 2020, Vol. 14 Iss. 6, pp. 231-246
© The Institution of Engineering and Technology 2020

 1751861x, 2020, 6, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/iet-cdt.2020.0041 by Q

ueen'S U
niversity B

elfast, W
iley O

nline L
ibrary on [26/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Motivation: The attacker may want to cause malfunction of the
FPGA system, steal secret information, or lead to other
unauthorised operations.
Feasibility: Similar to the ASIC scenario, malicious modifications
of the FPGAs are possible at several stages of the design and
fabrication process. An attacker can create an FPGA Trojan by
directly modifying the HDL, modifying FPGA fabric, modifying
physical parameters, modifying the bitstreams, or by exploiting
FPGA CAD tools [94]. For example, a malicious circuit can be
inserted by an adversary to monitor the logic values of internal
nodes, logic modules, and the look-up tables (LUTs) [95]. Once the
Trojan is triggered, the FPGA can malfunction in different ways,
e.g. the LUT values can be changed, configuration cells can be
altered to perform incorrect routing, or incorrect values can be
written into block-random access memory [95]. In conclusion, the
FPGA Trojan attacks are feasible, having good practicality, but are
not easy to implement, as shown in Fig. 2.
Detectability: These Trojans can escape common FPGA testing
that cannot cover all possible triggering conditions. Existing FPGA
Trojan defense techniques fall into two categories, SCA and DFS
techniques. The power consumption based [47] and
electromagnetic emanation (EM) based [96] SCA methods are
proposed to detect FPGA HTs. Chen et al. [97] measured the EM
of the FPGA clock tree, and use principal component analysis for
signal processing. Then, backpropagation neural network is used to
automatically detect the FPGA HTs. Similar to fingerprint-based
HT detection methods in ASIC scenarios, FPGA detection methods
based on anomaly features have also been proposed. Pino et al.
[98] proposed a process variation-based anomaly detection method
for FPGAs, which can isolate suspicious Trojan areas with
inconsistent characteristics. In their later work [99], after isolating
these suspicious areas, the remaining trustworthy areas, named
FPGA Trust Zone, are selected to run the designs securely.
On the other hand, some DFS techniques are also proposed against
FPGA Trojans. Mal-Sarkar et al. [95] proposed a redundancy-
based approach using Trojan tolerance, which modifies the
application mapping process to provide defenses against HTs.
Swierczynski et al. [100] used the dynamic obfuscation of
cryptographic primitives to prevent the bitstream RE and
modification-based FPGA HTs. Bloom et al. [101] proposed a
FPGA HT defense technique, named MORPH, which uses onion-
encryption for encrypted execution and uses a specific hardware
abstraction layer to isolate the hardware and software. Zhang et al.
[102] used the moving target defense principle to prevent FPGA
CAD tools based on Trojan insertion, in which three kinds of
unpredictability are introduced into the FPGA designs.
Protection and prevention suggestions: Considering the diverse
motivations (goals) and strong capabilities of the FPGA Trojan
attackers, the defense against FPGA Trojans is still an open
problem. SCA method can be used with the help of a golden model

or built-in consistency verification structures. DFS methods, e.g.
redundancy based mapping approach, dynamic reconfiguration,
obfuscation, and structural isolation, are also promising protection
methods against FPGA Trojans.
Overhead: The DFS techniques will bring some hardware overhead
in terms of logic resources (area), power, and performance.
Case studies: The summary of FPGA-oriented HT design and
implementation works is shown in Table 4. The HT type is based
on the FPGA HT taxonomy proposed in [94]. Note that the FPGA
Trojans implemented by using direct HDL modification are not
included in this table, because those HTs are not specifically for the
FPGA, but just using the FPGA device as a code verification
platform.

Chakraborty et al. [44] inserted HTs into FPGA by directly
modifying the unencrypted bitstream file. They implement a
number of ROs as the HT in a 128-bit AES circuit, which can
cause the temperature to increase thus lead to accelerated aging.
Since this Trojan is inserted during the bitstream configuration, it
does not leave traces in the logic and place and route phases [44].
Swierczynski et al. [45] proposed an FPGA bitstream Trojan
implementation scheme, which detects the S-boxes in bitstreams,
and then modifies the bitstream of S-boxes to weaken the AES and
3-data encryption standard (3-DES) algorithms. As mentioned in
Section 8, Swierczynski et al. [43] proposed an interdiction-based
FPGA Trojan insertion, which modifies the bitstream to replace
AES S-boxes. They demonstrate their work on XTS-AES on
Kingston DataTraveler 5000 to recover the plaintext. Krieg et al.
[46] proposed an FPGA CAD tool Trojan, including malicious
insertion during synthesis, and malicious part activation during
bitstream generation. They evaluate the scheme using iCE40
design flow running an instruction decoder of a central processing
unit (CPU) to launch a privilege escalation attack. Marchand and
Francq [47] designed, placed, and routed 12 functional FPGA
Trojans by hand on 128-bit AES on the SASEBO-GII Board
(Xilinx Virtex-5), which can lead to DoS, changing specifications,
or information leakage. Krieg et al. [103] implemented a Trojan
trigger by exploiting the X-Optimism operations (on unknown ‘X’)
in an FPGA simulation model. They generated a trigger signal,
which is ‘0’ during simulation phase and ‘1’ in implemented
hardware. FPGA HTs can also be used with a benign purpose.
Zheng et al. [48] propose a functional Trojan to disable particular
general-purpose registers, which works as a security mechanism
for FPGA systems. They implement delay-logic arbiters as HTs
and evaluate on OpenRISC OR1200 on Xilinx Spartan-6. These
efforts demonstrate the flexibility of FPGA HTs.

10௑Future directions
In this section, we will discuss the potential future HT
implementation and detection techniques.

Table 4 Summary of FPGA-oriented HT design and implementation works
Works Benchmark HT type Insertion mechanism Trigger Payload
Chakraborty et al. [44] 128-bit AES on Xilinx

Virtex-II
bitstream

Trojan
bitstream modification to

implement many ROs as the HT
always-on temperature increases

thus accelerating aging
Swierczynski et al. [45] AES and 3-DES bitstream

Trojan
detect S-boxes in bitstreams, then
modify the bitstream of S-boxes

always-on weaken the
cryptographic algorithm

Swierczynski et al. [43] XTS-AES on Kingston
DataTraveler 5000

bitstream
Trojan

bitstream modification replacing
AES S-boxes during interdiction

always-on recovering plaintext

Krieg et al. [46] iCE40 design flow running
an instruction decoder of a

CPU

CAD tool
Trojan

malicious insertion during
synthesis, then activate malicious
part during bitstream generation

output of the
malicious LUT

privilege escalation

Marchand and Francq
[47]

128-bit AES on SASEBO-
GII Board (Xilinx Virtex-5)

functional
Trojan

design, place and route the 12
HTs by hand

time-based,
user, internal

state

DoS, changing
specifications,

information leakage
Zheng et al. [48] OpenRISC OR1200 on

Xilinx Spartan-6
functional

Trojan
implementing delay-logic arbiters

as HTs
digital value disable general purpose

registers
Krieg et al. [103] Xilinx 7 functional

Trojan
exploiting the X-Optimism

operations in an FPGA simulation
model

always-on the signal which is ‘0’
during simulation

becomes ‘1’ in hardware
 

IET Comput. Digit. Tech., 2020, Vol. 14 Iss. 6, pp. 231-246
© The Institution of Engineering and Technology 2020

241

 1751861x, 2020, 6, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/iet-cdt.2020.0041 by Q

ueen'S U
niversity B

elfast, W
iley O

nline L
ibrary on [26/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



10.1 HT benchmarks and evaluation methods

A common concern is whether a real HT has been found in the
industry. Owing to the sensitive nature of industry IP, it is unlikely
that such HTs will be reported publicly. As such, standard
benchmarks to evaluate HT implementations and defenses are
highly needed. The Trust-HUB benchmark [49] developed by
Tehranipoor et al. is well-known for its hardware security-related
benchmarks. Trust-hub [49] currently provides the largest database
of HT benchmarks and has been widely used in the literature. For
example, Reece and Robinson [30] evaluated 18 AES HTs supplied
from the Trust-hub database, in terms of power and area. It was
shown that when spending enough effort into optimising the HT,
the introduced overhead could be very small.

Furthermore, to create dynamic Trojan benchmarks, Cruz et al.
[104] proposed an automatic HT insertion framework, which can
insert HTs with validated trigger conditions and payloads in gate-
level designs. It allows configurations, e.g. the type of the Trojan,
Trojan trigger probability, and choices of payload [104]. Although
this powerful Trojan automation design and implantation tool has
emerged, Trojan design and detection is still a game process. Once
the defenders know how these automatic tools generate HTs,
Trojans inserted by these tools may also be easily detected.
However, defenses always lag behind attacks. On the other hand,
various new HT detection techniques have also been proposed.
When attackers are aware of these detection methods, more
powerful Trojan design methods will also appear.

To date, most of the Trojan implementation methods or Trojan
detection techniques are verified under specific experimental
conditions, specific stages and specific scenarios, and targeting
specific circuits or Trojans. This non-uniform paradigm raises a
question: which attacks (defenses) are more effective (universal)?
To this end, a uniform evaluation method with comprehensive
evaluation metrics is required to evaluate and analyse various HT
implementation methods and defense techniques. Such a uniform
evaluation method can ensure researchers and IC designers to: (i)
evaluate the effectiveness of different HT attack and defense
methods; (ii) assess ICs’ vulnerabilities; (iii) carry out complete
and quantitative comparative research studies on HT
implementations and detection methods.

10.2 Machine learning-based Trojan detection methods, and
HTs targeting machine learning models

Recent research in this field has explored machine learning
methods for HT detection [41, 88–90, 105–111]. Generally,
machine learning methods can be utilised for HT detection in the
following aspects: providing automatic layout identification in RE-
based methods [88, 105, 106], providing run-time HT detection
architectures, which are trained by HT attack behaviours [107,
108], providing automatic feature analysis [112], and providing
golden chips-free HT detection techniques based on classification
or clustering [41, 89, 90, 109–111]. In particular, the machine
learning method has its own specialties in feature extraction and
image recognition, which makes it possible to reveal unknown HTs

by monitoring suspicious behaviours and features. It can also
improve detection capabilities through self-learning. Elnaggar and
Chakrabarty [113] reviewed the works applying machine learning
methods for hardware security. Specifically, they summarised that
the machine learning methods can be used to classify or cluster the
IC's parameters, gate-level nets, or traffic data in multi-core
systems, for HT detection [113].

To defeat machine learning-based Trojan detection methods,
attackers may introduce adversarial HT designs, which can make
the detection methods produce incorrect decisions. In machine
learning systems, adversarial input perturbations carefully crafted
at the test stage can subvert the model's predictions on the
instances. Attackers can investigate the vulnerability of machine
learning models to such adversarial inputs (also known as
adversarial examples) to mislead the HT detection. Xue et al. [41]
proposed a data modification algorithm for untrusted testers to
slightly modify the collected test data, to mislead the HT detection
results. Such an example is illustrated in Fig. 3, in which the
original power trace x of an IC is detected as Trojan-infected by the
machine learning-based HT detection method [41]. After
introducing an imperceptible adversarial perturbation δ to the test
data, the power trace x + δ will be recognised as Trojan-free by the
machine learning model [41].

On the contrary, there are also few works to study HT attacks
targeting machine learning models and artificial intelligence chips.
Clements and Lao [114] proposed to insert HTs in the functional
block of the neural network implementations. As a result, the
desired misclassification can be achieved when a specific input
trigger arrives. Ye et al. [115] inserted an HT into the FPGA
convolutional neural network (CNN) accelerator to launch an
attack on a CNN-based image classification task. The HT can
control the classification result once triggered. Odetola et al. [116]
proposed an HT attack on deep learning models without modifying
the parameters or functions within the layer. They exploit the
statistical properties of each layer's output to trigger the HT, which
makes the HT extremely stealthy. Li et al. [117] proposed a more
flexible attack framework on a neural network that combines the
hardware and software. Particularly, in addition to the hardware HT
circuit, Trojan weights are embedded in neural networks. The
Trojan is only inserted in a part of the network and does not affect
the overall accuracy, thus can ensure stealthy [117]. In the above
attacks, the attacker needs to have the knowledge of the model. Hu
et al. [118] proposed memory Trojan on deep neural networks, in
which the Trojan logic is only inserted into the memory controller
without the knowledge of the model. Targeted attacks or untargeted
attacks can be achieved when the trigger image arrives.

10.3 Attacks and defenses from chips to complex systems

Most of the existing Trojan attacks and detection are aimed at the
chip level. A more practical scenario in the industry is how to
implant and detect HTs on a complex SoC or larger systems. Such
a system contains many components and connections. It also
contains hardware, firmware, and software. This makes HT attacks
more diverse, such as hardware-promoted software attacks, or
software-promoted hardware attacks, or covert-channel attacks,
and so on. It is important but challenging to detect HTs in such a
complex system.

10.4 Universal Trojan and automatic Trojan insertion versus
automatic Trojan (IC vulnerability) analysis tools

Most HTs reported to date are manually inserted into a specific
target circuit [119]. However, a more ideal situation is that arbitrary
Trojan circuits with arbitrary components could be inserted into
any circuits, as shown in Fig. 4. There are two requirements for
such practical attacks: (i) designing a universal Trojan independent
of the host circuit, which is applicable for any given circuit; (ii)
developing the automatic Trojan design and insertion tools. To
meet these requirements, the automatic trigger and payload
identification of a design at different levels are required.

Another type of universal Trojan is a general malicious
hardware that can support a wide range of general-purpose attacks.

Fig. 3௒ Illustration of adversarial HT designs against machine learning-
based Trojan detection method: the original power trace x is detected as
Trojan-infected. After introducing an imperceptible perturbation δ to x, the
power trace x + δ will be detected as Trojan-free

 

242 IET Comput. Digit. Tech., 2020, Vol. 14 Iss. 6, pp. 231-246
© The Institution of Engineering and Technology 2020

 1751861x, 2020, 6, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/iet-cdt.2020.0041 by Q

ueen'S U
niversity B

elfast, W
iley O

nline L
ibrary on [26/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



This is a more aggressive attempt. King et al. [24] presented two
such hardware designs in Illinois Malicious Processors and
exhibited three attacks using this hardware. Through the memory
access mechanism, a privilege escalation attack was implemented,
which gives the attacker root access without identification or
creating system logs. Under a shadow mode, a login backdoor is
implemented, giving an attacker authority to log in as a root user
with no password needed [24]. Another function that steals
passwords is also implemented.

In contrast, automatic Trojan analysis tools and automatic IC
vulnerability analysis tools [120] are required. Most of the existing
Trojan detection techniques are manually customised detection
methods/scripts applied for specific scenarios and specific stages.
The detection process requires manual participation, and the
universality is limited. It is necessary to develop mature universal
tools, including automatic Trojan detection tools and automatic
circuit vulnerability analysis tools, to promote DFS and Trojan
detection works.

10.5 Multi-stage HT attacks and defenses

The majority of previously reported HTs in the literature are
inserted at a single stage in the IC's life cycle. However, malicious
conspiracy between multiple entities at different stages in the IC
supply chain could make HT attacks more powerful. Ali et al.
[121] described such an attack on an AES implementation. They
show that such a multi-stage attack is significantly stronger than an
HT attack by a single entity, both in the life cycle of ASICs and
FPGAs. As a result, it would be very difficult for current defense
approaches targeting individual stages to detect such a distributed
attack [121]. Detecting such a multi-stage Trojan is still an open
problem. It is necessary to study universal Trojan detection
methods independent of the stages.

10.6 Split manufacturing

Split manufacturing is a promising hardware security solution in
the manufacturing stage where the untrusted foundries only know
part of the design information thus makes it difficult for them to
insert HTs. In recent works, different split manufacturing methods
are proposed, e.g. [71], or combined with other hardware security
techniques, e.g. layout camouflaging [70].

10.7 Low overhead runtime HT monitoring techniques

A large number of Trojan detection techniques have been
proposed, but it is still possible for Trojans to escape detection and
activate when the chip is used in the field. Runtime HT monitoring
technique (which is relatively less in existing works) is a necessary
supplement to Trojan detection and is also the last line of defense.
However, existing runtime HT detection techniques suffer from
high additional hardware overhead or high computational
complexity. A low overhead runtime HT monitoring technique is a
promising research direction, e.g. [22, 72].

10.8 Logic obfuscation for HT prevention

Logic obfuscation (logic encryption, logic locking) is a widely
studied hardware security technique, which is usually used to
prevent IC piracy and IC overbuilding. It can also be used as a DFS
method to prevent HT insertion. Chakraborty and Bhunia [122]
proposed a key-based obfuscation scheme to prevent HT attacks, in
which two functional modes are introduced, i.e. obfuscated and
normal modes. A large number of states have also been added to
the obfuscated mode for obfuscation. This method prevents the
attacker from finding the real rare states in the circuit [122].
Dupuis et al. [123] proposed a logic encryption approach to
prevent HT insertion by minimising the number of rare events in a
circuit. Similarly, Rathor et al. [124] proposed a logic encryption
method using key-gate topologies to remove rare-triggered nets to
thwart HT. Frey and Yu [125] proposed an approach using state
obfuscation for HT detection. Illegal states caused by wrong keys
are examined to detect HTs. They indicate that an attacker without
the correct key cannot successfully modify the design without

being noticed [125]. Yu et al. [126] reviewed the works on logic
obfuscation for HT prevention and detection. They indicate that
logic obfuscation can make it difficult for attackers to understand
or RE the design thus can hinder the implantation of Trojans or can
facilitate the HT detection after manufacturing. Similar to ASICs,
obfuscation can also be used to protect FPGA designs. Hoque et al.
[127] proposed an obfuscation-based approach against bitstream
modification attacks on FPGAs. Particularly, the critical functions
in an FPGA design are identified and masked (obfuscated).
Besides, they use a redundancy technique for obfuscation to thwart
tampering [127]. Potential future directions on logic encryption for
HT prevention include expanding logic obfuscation from the chip
level to the system level, and the key management in key-based
obfuscation schemes [126].

Although logic obfuscation is usually used as a DFS method to
prevent Trojans, the opposite application is also possible [128,
129]. Vijayakumar et al. [128] indicated that physical design
obfuscation can also be used to insert parametric Trojans. Such an
example is demonstrated by Becker et al. [7], where the dopant
polarities of transistors are changed to insert HT while making the
HT difficult to be detected.

10.9 FPGA Trojan attacks and defenses

Compared with ASIC HTs, the works on FPGA Trojans are
relatively less, both on attacks and defenses. The research of FPGA
Trojan is not systematic and comprehensive at present. With the
widespread use of FPGAs, the FPGA Trojan research is a valuable
research direction, e.g. [45, 46, 97, 102].

11௑Conclusion
HT is an emerging threat to hardware security and information
security. In the last decade, a large number of HT detection
techniques have been proposed. However, much less research
studies have been conducted in the design and implementation of
HTs. In this paper, we provide a review of the development of HT
implementations in the last decade and also make an outlook.
Unlike all previous surveys or most HT works that focus on Trojan
detection from the defender's perspective, for the first time, we
study the Trojans from an attacker's perspective, focusing on the
attacker's methods, capabilities, evading detection techniques, and
challenges. We conclude that the HT implantation or HT-related
attacks can be launched at any stages of the IC supply chain,
including the testing stage and the distribution stage that was rarely
discussed in previous works. There are significant differences in
the capabilities of attackers at each stage, which can be roughly
divided into three levels: level 1, i.e. in-house design team
attackers and 3PIP vendor attackers; level 2, i.e. CAD tools
attackers, fabrication stage attackers, and testing stage attackers;
level 3, i.e. distribution stage attackers. Similar to the ASIC
scenario, FPGA Trojan attacks are also feasible at all stages of the
FPGA supply chain. Some potential future directions on HT
implementation and defense have emerged, which are tit-for-tat
endless games. This paper would hopefully help defenders better
understand the Trojan insertion to design reliable defense
techniques, and better protect the circuits against HT attacks.

12௑Acknowledgments
This work was supported by the National Natural Science
Foundation of China (no. 61602241) and the Engineering and

Fig. 4௒ Universal HT and automatic Trojan insertion
 

IET Comput. Digit. Tech., 2020, Vol. 14 Iss. 6, pp. 231-246
© The Institution of Engineering and Technology 2020

243

 1751861x, 2020, 6, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/iet-cdt.2020.0041 by Q

ueen'S U
niversity B

elfast, W
iley O

nline L
ibrary on [26/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Physical Sciences Research Council (EPSRC) (EP/N508664/-
CSIT2).

13௑References
[1] Bhunia, S., Hsiao, M.S., Banga, M., et al.: ‘Hardware Trojan attacks: threat

analysis and countermeasures’, Proc. IEEE, 2014, 102, (8), pp. 1229–1247
[2] Tehranipoor, M., Koushanfar, F.: ‘A survey of hardware Trojan taxonomy and

detection’, IEEE Des. Test Comput., 2010, 27, (1), pp. 10–25
[3] Chakraborty, R.S., Narasimhan, S., Bhunia, S.: ‘Hardware Trojan: threats and

emerging solutions’. Proc. IEEE Int. High Level Design Validation and Test
Workshop, San Francisco, USA, November 2009, pp. 166–171

[4] Wu, T.F., Ganesan, K., Hu, Y.A., et al.: ‘TPAD: hardware Trojan prevention
and detection for trusted integrated circuits’, IEEE Trans. Comput-Aided Des.
Integr. Circuits Syst., 2016, 35, (4), pp. 521–534

[5] Agrawal, D., Baktir, S., Karakoyunlu, D., et al.: ‘Trojan detection using IC
fingerprinting’. Proc. IEEE Symp. on Security and Privacy, Oakland, USA,
May 2007, pp. 296–310

[6] Ghandali, S., Becker, G.T., Holcomb, D., et al.: ‘A design methodology for
stealthy parametric Trojans and its application to bug attacks’. Int. Conf. on
Cryptographic Hardware and Embedded Systems, Santa Barbara, USA,
August 2016, pp. 625–647

[7] Becker, G.T., Regazzoni, F., Paar, C., et al.: ‘Stealthy dopant-level hardware
Trojans’. Int. Workshop on Cryptographic Hardware and Embedded Systems,
Santa Barbara, USA, August 2013, pp. 197–214

[8] Adee, S.: ‘The hunt for the kill switch’, IEEE Spectr., 2008, 45, (5), pp. 34–39
[9] Yang, K., Hicks, M., Dong, Q., et al.: ‘A2: analog malicious hardware’. Proc.

IEEE Symp. on Security and Privacy, San Jose, USA, May 2016, pp. 18–37
[10] ‘The intel management engine: an attack on computer users’ freedom’.

Available at https://www.fsf.org/blogs/sysadmin/the-management-engine-an-
attack-on-computer-users-freedom, 2018

[11] ‘Intel x86s hide another CPU that can take over your machine (you can't audit
it)’, https://boingboing.net/2016/06/15/intel-x86-processors-ship-with.html,
2016

[12] Rostami, M., Koushanfar, F., Karri, R.: ‘A primer on hardware security:
models, methods, and metrics’, Proc. IEEE, 2014, 102, (8), pp. 1283–1295

[13] Jacob, N., Merli, D., Heyszl, J., et al.: ‘Hardware Trojans: current challenges
and approaches’, IET Comput. Digit. Tech., 2014, 8, (6), pp. 264–273

[14] Karri, R., Rajendran, J., Rosenfeld, K., et al.: ‘Trustworthy hardware:
identifying and classifying hardware Trojans’, IEEE Comput., 2010, 43, (10),
pp. 39–46

[15] Shakya, B., He, T., Salmani, H., et al.: ‘Benchmarking of hardware Trojans
and maliciously affected circuits’, J. Hardware Syst. Secur., 2017, 1, (1), pp.
85–102

[16] Baumgarten, A., Steffen, M., Clausman, M., et al.: ‘A case study in hardware
Trojan design and implementation’, Int. J. Inf. Secur., 2011, 10, (1), pp. 1–14

[17] Zhang, J., Xu, Q.: ‘On hardware Trojan design and implementation at
register-transfer level’. Proc. IEEE Int. Symp. on Hardware-Oriented Security
and Trust, Austin, USA, June 2013, pp. 107–112

[18] Fern, N., San, I., Koç, C.K., et al.: ‘Hiding hardware Trojan communication
channels in partially specified SoC bus functionality’, IEEE Trans. Comput-
Aided Des. Integr. Circuits Syst., 2017, 36, (9), pp. 1435–1444

[19] Subraman, K.S., Antonopoulos, A., Abotabl, A.A., et al.: ‘Demonstrating and
mitigating the risk of an FEC-based hardware Trojan in wireless networks’,
IEEE Trans. Inf. Forensic Secur., 2019, 14, (10), pp. 2720–2734

[20] Tsoutsos, N.G., Konstantinou, C., Maniatakos, M.: ‘Advanced techniques for
designing stealthy hardware Trojans’. Proc. ACM Annual Design Automation
Conf., San Francisco, USA, June 2014, pp. 1–4

[21] Jin, Y., Kupp, N., Makris, Y.: ‘Experiences in hardware Trojan design and
implementation’. Proc. IEEE Int. Workshop on Hardware-Oriented Security
and Trust, San Francisco, USA, July 2009, pp. 50–57

[22] Elnaggar, R., Chakrabarty, K., Tahoori, M.B.: ‘Hardware Trojan detection
using changepoint-based anomaly detection techniques’, IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., 2019, 27, (12), pp. 2706–2719

[23] Kumaki, T., Yoshikawa, M., Fujino, T.: ‘Cipher-destroying and secret-key-
emitting hardware Trojan against AES core’. Proc. IEEE Int. Midwest Symp.
on Circuits and Systems, Columbus, USA, August 2013, pp. 408–411

[24] King, S.T., Tucek, J., Cozzie, A., et al.: ‘Designing and implementing
malicious hardware’. Proc. USENIX Workshop on Large-Scale Exploits and
Emergent Threats, San Francisco, USA, April 2008, pp. 1–8

[25] Santos, J.C.M., Fei, Y.: ‘Designing and implementing a malicious 8051
processor’. Proc. IEEE Int. Symp. on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems, Austin, USA, October 2012, pp. 63–66

[26] Reece, T., Limbrick, D.B., Wang, X., et al.: ‘Stealth assessment of hardware
Trojans in a microcontroller’. Proc. IEEE Int. Conf. on Computer Design,
Montreal, Canada, September 2012, pp. 139–142

[27] Karri, R., Rajendran, J., Rosenfeld, K.: ‘Trojan taxonomy’, in Tehranipoor,
M., Wang, C. (Eds.): ‘Introduction to hardware security and trust’ (Springer,
USA, 2012), pp. 325–338

[28] Dash, P., Perkins, C., Gerdes, R.M.: ‘Remote activation of hardware Trojans
via a covert temperature channel’. Int. Conf. on Security and Privacy in
Communication Systems, Dallas, USA, October 2015, pp. 294–310

[29] Gallais, J.F., Großschädl, J., Hanley, N., et al.: ‘Hardware Trojans for
inducing or amplifying side-channel leakage of cryptographic software’. Int.
Conf. on Trusted Systems, Beijing, China, December 2011, pp. 253–270

[30] Reece, T., Robinson, W.H.: ‘Analysis of data-leak hardware Trojans in AES
cryptographic circuits’. Proc. IEEE Int. Conf. on Technologies for Homeland
Security, Boston, USA, November 2013, pp. 467–472

[31] Sturton, C., Hicks, M., Wagner, D., et al.: ‘Defeating UCI: building stealthy
and malicious hardware’. Proc. IEEE Symp. on Security and Privacy,
Berkeley, USA, May 2011, pp. 64–77

[32] Liu, Y., Jin, Y., Nosratinia, A., et al.: ‘Silicon demonstration of hardware
Trojan design and detection in wireless cryptographic ICs’, IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., 2017, 25, (4), pp. 1506–1519

[33] Lin, L., Burleson, W., Paar, C.: ‘MOLES: malicious off-chip leakage enabled
by side-channels’. Proc. Int. Conf. on Computer-Aided Design, San Jose,
USA, November 2009, pp. 117–122

[34] Fyrbiak, M., Wallat, S., Swierczynski, P., et al.: ‘HAL-The missing piece of
the puzzle for hardware reverse engineering, Trojan detection and insertion’,
IEEE Trans. Dependable Secur. Comput., 2018, 16, (3), pp. 498–510

[35] ‘The coq proof assistant’. Available at https://coq.inria.fr/, 2019
[36] Kaji, S., Kinugawa, M., Fujimoto, D., et al.: ‘Data injection attack against

electronic devices with locally weakened immunity using a hardware Trojan’,
IEEE Trans. Electromagn. Compat., 2018, 61, (4), pp. 1115–1121

[37] Bhasin, S., Danger, J.L., Guilley, S., et al.: ‘Hardware Trojan horses in
cryptographic IP cores’. Workshop on Fault Diagnosis and Tolerance in
Cryptography, Alamitos, USA, August 2013, pp. 15–29

[38] Kumar, R., Jovanovic, P., Burleson, W., et al.: ‘Parametric Trojans for fault-
injection attacks on cryptographic hardware’. Workshop on Fault Diagnosis
and Tolerance in Cryptography, Busan, South Korea, September 2014, pp.
18–28

[39] Shiyanovskii, Y., Wolff, F., Rajendran, A., et al.: ‘Process reliability based
Trojans through NBTI and HCI effects’. Proc. Conf. on Adaptive Hardware
and Systems, Anaheim, California, June 2010, pp. 215–222

[40] Lin, L., Kasper, M., Güneysu, T., et al.: ‘Trojan side-channels: lightweight
hardware Trojans through side-channel engineering’. Int. Workshop on
Cryptographic Hardware and Embedded Systems, Lausanne, Switzerland,
September 2009, pp. 382–395

[41] Xue, M., Bian, R., Liu, W., et al.: ‘Defeating untrustworthy testing parties: a
novel hybrid clustering ensemble based golden models-free hardware Trojan
detection method’, IEEE Access, 2019, 7, pp. 5124–5140

[42] Yasin, M., Sinanoglu, O., Rajendran, J.: ‘Testing the trustworthiness of IC
testing: an oracle-less attack on IC camouflaging’, IEEE Trans. Inf. Forensic
Secur., 2017, 12, (11), pp. 2668–2682

[43] Swierczynski, P., Fyrbiak, M., Koppe, P., et al.: ‘Interdiction in practice-
hardware Trojan against a high-security USB flash drive’, J. Cryptogr. Eng.,
2017, 7, (3), pp. 199–211

[44] Chakraborty, R.S., Saha, I., Palchaudhuri, A., et al.: ‘Hardware Trojan
insertion by direct modification of FPGA configuration bitstream’, IEEE Des.
Test, 2013, 30, (2), pp. 45–54

[45] Swierczynski, P., Fyrbiak, M., Koppe, P., et al.: ‘FPGA Trojans through
detecting and weakening of cryptographic primitives’, IEEE Trans. Comput.-
Aided Des. Integr. Circuits Syst., 2015, 34, (8), pp. 1236–1249

[46] Krieg, C., Wolf, C., Jantsch, A.: ‘Malicious LUT: a stealthy FPGA Trojan
injected and triggered by the design flow’. Proc. 35th Int. Conf. on Computer-
Aided Design, Austin, USA, November 2016, pp. 1–8

[47] Marchand, C., Francq, J.: ‘Low-level implementation and side-channel
detection of stealthy hardware Trojans on field programmable gate arrays’,
IET Comput. Digit. Tech., 2014, 8, (6), pp. 246–255

[48] Zheng, J.X., Chen, E., Potkonjak, M.: ‘A benign hardware Trojan on FPGA-
based embedded systems’. 22nd Int. Conf. on Field Programmable Logic and
Applications, Oslo, Norway, August 2012, pp. 464–470

[49] ‘Trust-hub’. Available at http://www.trust-hub.org/, 2019
[50] Wang, X., Salmani, H., Tehranipoor, M., et al.: ‘Hardware Trojan detection

and isolation using current integration and localized current analysis’. Proc.
IEEE Int. Symp. on Defect and Fault Tolerance of VLSI Systems, Boston,
USA, October 2008, pp. 87–95

[51] Li, J., Lach, J.: ‘At-speed delay characterization for IC authentication and
Trojan horse detection’. Proc. IEEE Int. Workshop on Hardware-Oriented
Security and Trust, Anaheim, USA, June 2008, pp. 8–14

[52] Hu, K., Nowroz, A.N., Reda, S., et al.: ‘High-sensitivity hardware Trojan
detection using multimodal characterization’. Proc. Conf. on Design,
Automation and Test in Europe, Grenoble, France, March 2013, pp. 1271–
1276

[53] Xiao, K., Zhang, X., Tehranipoor, M.: ‘A clock sweeping technique for
detecting hardware Trojans impacting circuits delay’, IEEE Des. Test, 2013,
30, (2), pp. 26–34

[54] Narasimhan, S., Du, D., Chakraborty, R.S., et al.: ‘Hardware Trojan detection
by multiple-parameter side-channel analysis’, IEEE Trans. Comput., 2013, 62,
(11), pp. 2183–2195

[55] Nowroz, A.N., Hu, K., Koushanfar, F., et al.: ‘Novel techniques for high-
sensitivity hardware Trojan detection using thermal and power maps’, IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst., 2014, 33, (12), pp. 1792–
1805

[56] Xue, M., Liu, W., Hu, A., et al.: ‘Detecting hardware Trojan through time
domain constrained estimator based unified subspace technique’, IEICE
Trans. Inf. Syst., 2014, 97-D, (3), pp. 606–609

[57] Xue, M., Hu, A., Li, G.: ‘Detecting hardware Trojan through heuristic
partition and activity driven test pattern generation’. Proc. Communications
Security Conf., Beijing, China, May 2014, pp. 1–6

[58] Fujimoto, D., Nin, S., Hayashi, Y.I., et al.: ‘A demonstration of a HT-
detection method based on impedance measurements of the wiring around
ICs’, IEEE Trans. Circuits Syst. II, Express Briefs, 2018, 65, (10), pp. 1320–
1324

[59] Nguyen, L.N., Cheng, C.L., Prvulovic, M., et al.: ‘Creating a backscattering
side channel to enable detection of dormant hardware Trojans’, IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., 2019, 27, (7), pp. 1561–1574

[60] Chakraborty, R.S., Wolff, F., Paul, S., et al.: ‘MERO: a statistical approach for
hardware Trojan detection’. Int. Workshop on Cryptographic Hardware and
Embedded Systems, Lausanne, Switzerland, September 2009, pp. 396–410

244 IET Comput. Digit. Tech., 2020, Vol. 14 Iss. 6, pp. 231-246
© The Institution of Engineering and Technology 2020

 1751861x, 2020, 6, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/iet-cdt.2020.0041 by Q

ueen'S U
niversity B

elfast, W
iley O

nline L
ibrary on [26/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://www.fsf.org/blogs/sysadmin/the-management-engine-an-attack-on-computer-users-freedom
https://www.fsf.org/blogs/sysadmin/the-management-engine-an-attack-on-computer-users-freedom
https://boingboing.net/2016/06/15/intel-x86-processors-ship-with.html
https://coq.inria.fr/
http://www.trust-hub.org/


[61] Huang, Y., Bhunia, S., Mishra, P.: ‘Scalable test generation for Trojan
detection using side channel analysis’, IEEE Trans. Inf. Forensic Secur., 2018,
13, (11), pp. 2746–2760

[62] Banga, M., Hsiao, M.S.: ‘Trusted RTL: Trojan detection methodology in pre-
silicon designs’. Proc. IEEE Int. Symp. on Hardware-Oriented Security and
Trust, Anaheim, USA, June 2010, pp. 56–59

[63] Waksman, A., Suozzo, M., Sethumadhavan, S.: ‘FANCI: identification of
stealthy malicious logic using Boolean functional analysis’. Proc. ACM
SIGSAC Conf. on Computer and Communications Security, Berlin, Germany,
November 2013, pp. 697–708

[64] Zhang, X., Tehranipoor, M.: ‘RON: an on-chip ring oscillator network for
hardware Trojan detection’. Proc. Conf. on Design, Automation and Test in
Europe, Grenoble, France, March 2011, pp. 1–6

[65] Rajendran, J., Jyothi, V., Sinanoglu, O., et al.: ‘Design and analysis of ring
oscillator based design-for-trust technique’. Proc. IEEE VLSI Test Symp.,
Dana Point, USA, May 2011, pp. 105–110

[66] Hicks, M., Finnicum, M., King, S.T., et al.: ‘Overcoming an untrusted
computing base: detecting and removing malicious hardware automatically’.
Proc. IEEE Symp. on Security and Privacy, Oakland, USA, May 2010, pp.
159–172

[67] Nahiyan, A., Xiao, K., Yang, K., et al.: ‘AVFSM: A framework for
identifying and mitigating vulnerabilities in FSMs’. Proc. 53rd Annual Design
Automation Conf. (DAC), Austin, USA, June 2016, pp. 1–6

[68] Xiao, K., Forte, D., Tehranipoor, M.: ‘A novel built-in self-authentication
technique to prevent inserting hardware Trojans’, IEEE Trans. Comput.-Aided
Des. Integr. Circuits Syst., 2014, 33, (12), pp. 1778–1791

[69] Shi, Q., Tehranipoor, M.M., Forte, D.: ‘Obfuscated built-in self-authentication
with secure and efficient wire-lifting’, IEEE Trans. Comput.-Aided Des.
Integr. Circuits Syst., 2018, 38, (11), pp. 1981–1994

[70] Patnaik, S., Ashraf, M., Sinanoglu, O., et al.: ‘A modern approach to IP
protection and Trojan prevention: split manufacturing for 3D ICs and
obfuscation of vertical interconnects’, IEEE Trans. Emerg. Top. Comput.,
2019, pp. 1–18, Early access

[71] Li, M., Yu, B., Lin, Y., et al.: ‘A practical split manufacturing framework for
Trojan prevention via simultaneous wire lifting and cell insertion’, IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst., 2018, 38, (9), pp. 1585–
1598

[72] Zhao, H., Kwiat, L., Kwiat, K.A., et al.: ‘Applying chaos theory for runtime
hardware Trojan monitoring and detection’, IEEE Trans. Dependable Secur.
Comput., 2020, 17, (4), pp. 716–729

[73] Wang, X., Narasimhan, S., Krishna, A., et al.: ‘Sequential hardware Trojan:
side-channel aware design and placement’. Proc. IEEE Int. Conf. on
Computer Design, Amherst, USA, October 2011, pp. 297–300

[74] Rajendran, J.J.V., Sinanoglu, O., Karri, R.: ‘Building trustworthy systems
using untrusted components: a high-level synthesis approach’, IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., 2016, 24, (9), pp. 2946–2959

[75] Zhang, X., Tehranipoor, M.: ‘Case study: detecting hardware Trojans in third-
party digital IP cores’. Proc. IEEE Int. Symp. on Hardware-Oriented Security
and Trust, San Diego, USA, June 2011, pp. 67–70

[76] Jou, J.Y., Liu, C.N.J.: ‘Coverage analysis techniques for HDL design
validation’. Proceedings of 6th Asia Pacific Chip Design Languages:
APCHDL'99, Fukuoka, Japan, October 1999, pp. 48–55

[77] Salmani, H., Tehranipoor, M.: ‘Analyzing circuit vulnerability to hardware
Trojan insertion at the behavioral level’. Proc. IEEE Int. Symp. on Defect and
Fault Tolerance in VLSI and Nanotechnology Systems, New York, USA,
October 2013, pp. 190–195

[78] Zhang, J., Yuan, F., Xu, Q.: ‘Detrust: defeating hardware trust verification
with stealthy implicitly-triggered hardware Trojans’. Proc. ACM SIGSAC
Conf. on Computer and Communications Security, Scottsdale, USA,
November 2014, pp. 153–166

[79] Love, E., Jin, Y., Makris, Y.: ‘Proof-carrying hardware intellectual property: a
pathway to trusted module acquisition’, IEEE Trans. Inf. Forensic Secur.,
2012, 7, (1), pp. 25–40

[80] Jin, Y., Makris, Y.: ‘A proof-carrying based framework for trusted
microprocessor IP’. Proc. Int. Conf. on Computer-Aided Design, San Jose,
USA, November 2013, pp. 824–829

[81] Veeranna, N., Schäfer, B.C.: ‘Hardware Trojan detection in behavioral
intellectual properties (IP's) using property checking techniques’, IEEE Trans.
Emerg. Top. Comput., 2017, 5, (4), pp. 576–585

[82] Rajendran, J., Dhandayuthapany, A.M., Vedula, V., et al.: ‘Formal security
verification of third party intellectual property cores for information leakage’.
Proc. Int. Conf. on VLSI Design, Kolkata, India, January 2016, pp. 547–552

[83] Liu, C., Rajendran, J., Yang, C., et al.: ‘Shielding heterogeneous MPSoCs
from untrustworthy 3PIPs through security-driven task scheduling’, IEEE
Trans. Emerg. Top. Comput., 2014, 2, (4), pp. 461–472

[84] Narasimhan, S., Chakraborty, R.S., Chakraborty, S.: ‘Hardware IP protection
during evaluation using embedded sequential Trojan’, IEEE Des. Test
Comput., 2012, 29, (3), pp. 70–79

[85] Pilato, C., Basu, K., Shayan, M., et al.: ‘High-level synthesis of benevolent
Trojans’. Proc. Conf. on Design, Automation and Test in Europe Conf. and
Exhibition, Florence, Italy, March 2019, pp. 1124–1129

[86] Pilato, C., Basu, K., Regazzoni, F., et al.: ‘Black-hat high-level synthesis:
myth or reality?’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2019, 27,
(4), pp. 913–926

[87] Basu, K., Saeed, S.M., Pilato, C., et al.: ‘CAD-base: an attack vector into the
electronics supply chain’, ACM Trans. Des. Autom. Electron. Syst., 2019, 24,
(4), pp. 38:1–38:30

[88] Bao, C., Forte, D., Srivastava, A.: ‘On reverse engineering-based hardware
Trojan detection’, IEEE Trans. Comput-Aided Des. Integr. Circuits Syst.,
2016, 35, (1), pp. 49–57

[89] Xue, M., Wang, J., Hu, A.: ‘An enhanced classification-based golden chips-
free hardware Trojan detection technique’. Proc. IEEE Asian Hardware-
Oriented Security and Trust, Yilan, Taiwan, December 2016, pp. 1–6

[90] Bian, R., Xue, M., Wang, J.: ‘Building trusted golden models-free hardware
Trojan detection framework against untrustworthy testing parties using a
novel clustering ensemble technique’. Proc. IEEE Int. Conf. on Trust,
Security and Privacy in Computing and Communications, New York, USA,
July 2018, pp. 1458–1463

[91] Contreras, G.K., Rahman, M.T., Tehranipoor, M.: ‘Secure split-test for
preventing IC piracy by untrusted foundry and assembly’. IEEE Int. Symp. on
Defect and Fault Tolerance in VLSI and Nanotechnology Systems, New York,
USA, October 2013, pp. 196–203

[92] Rahman, M.T., Forte, D., Shi, Q., et al.: ‘CSST: preventing distribution of
unlicensed and rejected ICs by untrusted foundry and assembly’. IEEE Int.
Symp. on Defect and Fault Tolerance in VLSI Nanotechnology Systems,
Amsterdam, The Netherlands, October 2014, pp. 46–51

[93] Zhang, D., Wang, X., Rahman, M.T., et al.: ‘An on-chip dynamically
obfuscated wrapper for protecting supply chain against IP and IC piracies’,
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2018, 26, (11), pp. 2456–
2469

[94] Jyothi, V., Rajendran, J.J.V.: ‘Hardware Trojan attacks in FPGA and
protection approaches’, in Bhunia, S., Tehranipoor, M. (Eds.): ‘The hardware
Trojan war: Attacks, myths, and defenses’ (Springer, Switzerland, 2018), pp.
345–368

[95] Mal-Sarkar, S., Krishna, A., Ghosh, A., et al.: ‘Hardware Trojan attacks in
FPGA devices: threat analysis and effective countermeasures’. Proc. Great
Lakes Symp. on VLSI, Houston, USA, May 2014, pp. 287–292

[96] Söll, O., Korak, T., Muehlberghuber, M., et al.: ‘EM-based detection of
hardware Trojans on FPGAs’. Proc. IEEE Int. Symp. on Hardware-Oriented
Security and Trust, Arlington, USA, May 2014, pp. 84–87

[97] Chen, Z., Guo, S., Wang, J., et al.: ‘Toward FPGA security in IoT: a new
detection technique for hardware Trojans’, IEEE Internet Things J., 2019, 6,
(4), pp. 7061–7068

[98] Pino, Y., Jyothi, V., French, M.: ‘Intra-die process variation aware anomaly
detection in FPGAs’. IEEE Int. Test Conf., Seattle, USA, October 2014, pp.
1–6

[99] Jyothi, V., Thoonoli, M., Stern, R., et al.: ‘FPGA trust zone: incorporating
trust and reliability into FPGA designs’. Proc. IEEE Int. Conf. on Computer
Design, Scottsdale, USA, October 2016, pp. 600–605

[100] Swierczynski, P., Fyrbiak, M., Paar, C., et al.: ‘Protecting against
cryptographic Trojans in FPGAs’. IEEE Annual Int. Symp. on Field-
Programmable Custom Computing Machines, Vancouver, Canada, May 2015,
pp. 151–154

[101] Bloom, G., Narahari, B., Simha, R., et al.: ‘FPGA SoC architecture and
runtime to prevent hardware Trojans from leaking secrets’. Proc. IEEE Int.
Symp. on Hardware-Oriented Security and Trust, Washington, USA, May
2015, pp. 48–51

[102] Zhang, Z., Njilla, L., Kamhoua, C.A., et al.: ‘Thwarting security threats from
malicious FPGA tools with novel FPGA-oriented moving target defense’,
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2018, 27, (3), pp. 665–678

[103] Krieg, C., Wolf, C., Jantsch, A., et al.: ‘Toggle MUX: how X-optimism can
lead to malicious hardware’. Proc. 54th Annual Design Automation Conf.
(DAC), Austin, USA, June 2017, pp. 1–6

[104] Cruz, J., Huang, Y., Mishra, P., et al.: ‘An automated configurable Trojan
insertion framework for dynamic trust benchmarks’. Proc. Conf. on Design,
Automation and Test in Europe Conf. and Exhibition, Dresden, Germany,
March 2018, pp. 1598–1603

[105] Nasr, A.A., Abdulmageed, M.Z.: ‘Automatic feature selection of hardware
layout: a step toward robust hardware Trojan detection’, J. Electron. Test.,
2016, 32, (3), pp. 357–367

[106] Bao, C., Forte, D., Srivastava, A.: ‘On application of one-class SVM to
reverse engineering-based hardware Trojan detection’. Int. Symp. on Quality
Electronic Design, Santa Clara, USA, March 2014, pp. 47–54

[107] Kulkarni, A., Pino, Y., Mohsenin, T.: ‘SVM-based real-time hardware Trojan
detection for many-core platform’. Int. Symp. on Quality Electronic Design,
Santa Clara, USA, March 2016, pp. 362–367

[108] Kulkarni, A., Pino, Y., Mohsenin, T.: ‘Adaptive real-time Trojan detection
framework through machine learning’. Proc. IEEE Int. Symp. on Hardware-
Oriented Security and Trust, McLean, VA, USA, May 2016, pp. 120–123

[109] Bian, R., Xue, M., Wang, J.: ‘A novel golden models-free hardware Trojan
detection technique using unsupervised clustering analysis’. Proc. Int. Conf.
on Cloud Computing and Security, Haikou, China, June 2018, pp. 634–646

[110] Xue, M., Bian, R., Wang, J., et al.: ‘A co-training based hardware Trojan
detection technique by exploiting unlabeled ICs and inaccurate simulation
models’. Proc. IEEE Int. Conf. on Trust, Security and Privacy in Computing
and Communications, New York, USA, August 2018, pp. 1452–1457

[111] Xue, M., Bian, R., Wang, J., et al.: ‘Building an accurate hardware Trojan
detection technique from inaccurate simulation models and unlabelled ICs’,
IET Comput. Digit. Tech., 2019, 13, (4), pp. 348–359

[112] Hasegawa, K., Oya, M., Yanagisawa, M., et al.: ‘Hardware Trojans
classification for gate-level netlists based on machine learning’. Proc. IEEE
Int. Symp. on On-Line Testing and Robust System Design, Sant Feliu de
Guixols, Spain, July 2016, pp. 203–206

[113] Elnaggar, R., Chakrabarty, K.: ‘Machine learning for hardware security:
opportunities and risks’, J. Electron. Test., 2018, 34, (2), pp. 183–201

[114] Clements, J., Lao, Y.: ‘Hardware Trojan design on neural networks’. IEEE Int.
Symp. Circuits Syst., Sapporo, Japan, May 2019, pp. 1–5

[115] Ye, J., Hu, Y., Li, X.: ‘Hardware Trojan in FPGA CNN accelerator’. IEEE
27th Asian Test Symp., Hefei, China, October 2018, pp. 68–73

[116] Odetola, T.A., Mohammed, H.R., Hasan, S.R.: ‘A stealthy hardware Trojan
exploiting the architectural vulnerability of deep learning architectures: input
interception attack (IIA)’, arXiv:1911.00783, 2019

IET Comput. Digit. Tech., 2020, Vol. 14 Iss. 6, pp. 231-246
© The Institution of Engineering and Technology 2020

245

 1751861x, 2020, 6, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/iet-cdt.2020.0041 by Q

ueen'S U
niversity B

elfast, W
iley O

nline L
ibrary on [26/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



[117] Li, W., Yu, J., Ning, X., et al.: ‘Hu-Fu: hardware and software collaborative
attack framework against neural networks’. IEEE Computer Society Annual
Symp. on Very Large Scale Integration, Hong Kong, China, July 2018, pp.
482–487

[118] Hu, X., Zhao, Y., Deng, L., et al.: ‘Practical attacks on deep neural networks
by memory Trojaning’, IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst., Early Access, 2020, pp. 1–14

[119] Becker, G.T., Kasper, M., Moradi, A., et al.: ‘Side-channel based watermarks
for integrated circuits’. Proc. IEEE Int. Symp. on Hardware-Oriented Security
and Trust, Anaheim, USA, June 2010, pp. 30–35

[120] Bhunia, S., Tehranipoor, M.: ‘The hardware Trojan war: attacks, myths, and
defenses’ (Springer, Switzerland, 2017)

[121] Ali, S.S., Chakraborty, R.S., Mukhopadhyay, D., et al.: ‘Multi-level attacks:
an emerging security concern for cryptographic hardware’. Proc. Conf. on
Design, Automation and Test in Europe, Grenoble, France, March 2011, pp.
1–4

[122] Chakraborty, R.S., Bhunia, S.: ‘Security against hardware Trojan attacks
using key-based design obfuscation’, J. Electron. Test., 2011, 27, (6), pp. 767–
785

[123] Dupuis, S., Ba, P., Natale, G.D., et al.: ‘A novel hardware logic encryption
technique for thwarting illegal overproduction and hardware Trojans’. Proc.
IEEE 20th Int. On-Line Testing Symp., Girona, Spain, July 2014, pp. 49–54

[124] Rathor, V.S., Garg, B., Sharma, G.K.: ‘A novel low complexity logic
encryption technique for design-for-trust’, IEEE Trans. Emerg. Top. Comput.,
2018, Early Access, pp. 1–12

[125] Frey, J., Yu, Q.: ‘Exploiting state obfuscation to detect hardware Trojans in
NoC network interfaces’. Proc. IEEE 58th Int. Midwest Symp. on Circuits
and Systems, Fort Collins, USA, August 2015, pp. 1–4

[126] Yu, Q., Dofe, J., Zhang, Z.: ‘Exploiting hardware obfuscation methods to
prevent and detect hardware Trojans’. Proc. IEEE 60th Int. Midwest Symp. on
Circuits and Systems, Boston, USA, August 2017, pp. 819–822

[127] Hoque, T., Yang, K., Karam, R., et al.: ‘Hidden in plaintext: an obfuscation-
based countermeasure against FPGA bitstream tampering attacks’, ACM
Trans. Des. Autom. Electr. Syst., 2020, 25, (1), pp. 1–32

[128] Vijayakumar, A., Patil, V.C., Holcomb, D.E., et al.: ‘Physical design
obfuscation of hardware: a comprehensive investigation of device and logic-
level techniques’, IEEE Trans. Inf. Forensics Secur., 2017, 12, (1), pp. 64–77

[129] Becker, G.T., Fyrbiak, M., Kison, C.: ‘Hardware obfuscation: techniques and
open challenges’, in Bossuet, L., Torres, L. (Eds.): ‘Foundations of hardware
IP protection’ (Springer, Cham, 2017), pp. 105–123

246 IET Comput. Digit. Tech., 2020, Vol. 14 Iss. 6, pp. 231-246
© The Institution of Engineering and Technology 2020

 1751861x, 2020, 6, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/iet-cdt.2020.0041 by Q

ueen'S U
niversity B

elfast, W
iley O

nline L
ibrary on [26/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense


