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Abstract—In this paper we tackle the open paradoxical chal-
lenge of FPGA-accelerated cloud computing: On one hand, clients
aim to secure their Intellectual Property (IP) by encrypting
their configuration bitstreams prior to uploading them to the
cloud. On the other hand, cloud service providers disallow the
use of encrypted bitstreams to mitigate rogue configurations
from damaging or disabling the FPGA. Instead, cloud providers
require a verifiable check on the hardware design that is intended
to run on a cloud FPGA at the netlist-level before generating the
bitstream and loading it onto the FPGA, therefore, contradicting
the IP protection requirement of clients. Currently, there exist
no practical solution that can adequately address this challenge.

We present the first practical solution that, under reasonable
trust assumptions, satisfies the IP protection requirement of
the client and provides a bitstream sanity check to the cloud
provider. Our proof-of-concept implementation uses existing tools
and commodity hardware. It is based on a trusted FPGA shell
that utilizes less than 1% of the FPGA resources on a Xilinx
VCU118 evaluation board, and an Intel SGX machine running
the design checks on the client bitstream.

I. INTRODUCTION

Field-Programmable Gate Arrays (FPGAs) are popular im-
plementation platforms for performance enhancement and
energy saving in cloud computing. In a recent market search
report, Grand View Research mentions that the increased
adoption of FPGA resources in the cloud is an important
driver for the growth of the FPGA market [1]. FPGAs are
already used in commercial cloud platforms as in Amazon
EC2 F1 [2], Microsoft Azure Catapult [3] and Alibaba Cloud
F3 [4]. Examples of applications that benefit from FPGA
acceleration in the cloud are artificial intelligence, financial
trading and network encryption. The deployment model of
cloud FPGAs is the following: when a client requests FPGA
computing resources in the cloud, the cloud service provider
(CSP) allocates an FPGA instance (from a pool of FPGA
instances) to the client for a specific amount of time.

Recent research presents attacks specific to the FPGA
hardware on commercially deployed cloud FPGAs. These
attacks allow clients to potentially damage FPGAs hosted in
the cloud and consequently disable the computing resources
of other clients. A malicious client performs such a denial-of-
service (DoS) attack by uploading a design circuit that drains
an excessive amount of current from the power supply of the
FPGA such that the whole platform stops functioning. This can
be done, e.g., with ring oscillators [5], [6] or by invoking short
circuits [7]. A real-world DoS attack on EC2 F1 instances is
demonstrated in [8].

Other categories of attacks – side and covert-channel attacks
– have been mostly shown in academic settings, assuming
that different clients share different portions of the same
FPGA. This allows a malicious client to exploit crosstalk
between the wires of an FPGA [9], [10], voltage fluctuations
on the shared power distribution network [11]–[13] or thermal
information [14]. For example, to perform a side-channel
attack, a malicious client uploads a sensor circuit onto the
allocated portion of the FPGA with the goal to retrieve secret
data processed by another client sharing the same FPGA
fabric simultaneously. While no CSP offers the concurrent use
of a single FPGA device among clients, multiple computing
resources, including FPGAs, typically share a power supply
rail, which represents an attack surface [15], [16]. A detailed
analysis of these attacks and their defenses is presented in [17].

Therefore, it is important for CSPs to detect the presence of
circuits that have sensor or power draining capabilities before
they are loaded on the FPGA. We refer to these circuits as
rogue circuits in the remainder of this paper. The only way to
prevent a rogue circuit from being configured onto an FPGA,
is to perform a check on the circuit the client intends to upload.
In existing commercial platforms, this check is done by the
CSP using the FPGA vendor tools that inspect the netlist,
e.g., running Xilinx design rule checks (DRCs). Initiatives in
academic research propose the use of virus scanners to check
FPGA bitstreams [18], [19].

However, any detection mechanism, be it through the exist-
ing commercial platforms or through academic virus scanner
tools, needs access to the configuration data representing
the circuit that the client intends to upload. Consequently,
the client is forced to reveal the Intellectual Property (IP)
of the hardware circuit to the CSP, which may violate IP
protection policy for companies. Clients would rather send
encrypted configuration bitstreams to the service provider.
However, the use of encrypted bitstreams does not comply
with the requirement of the CSP to check the incoming FPGA
configurations before they are loaded onto the FPGA.

Contributions. In this work, we propose TruFPGA, the
first scheme to satisfy the requirements of both, the clients
in protecting their IPs and the CSP in guaranteeing that a
check has been done on the presence of rogue circuits in
the configuration bitstream. In TruFPGA, a design check
on a client bitstream is executed in a Trusted Execution
Environment (TEE) and a proof of execution is provided to the
CSP. We further present two options where the TEE resides
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either on the client side or CSP side and show the trade-
offs between the two options. The CSP loads the encrypted
bitstream on the FPGA, where it is decrypted on-the-fly with
the help of a trusted FPGA shell that we designed. As such,
the CSP has no access to the decrypted bitstream, thus solving
the paradox of client’s IP protection while preventing rogue
FPGA configurations. In TruFPGA, we tackle the following
challenges:

(1) Secret session keys need to be securely established
between cloud FPGAs and clients. This is non-trivial in cloud
FPGAs because (a) multiple clients with different secret keys
should be supported over time, (b) clients are oblivious to the
identities of the FPGA instances assigned to them, i.e., CSP’s
proprietary information, and (c) the CSP, who controls and
configures the FPGA, should not have access to the secret
keys used in the FPGA.

(2) The client needs the assurance that (a) a read-out of
the FPGA’s configuration memory, including client’s IP, is
disallowed, and (b) an unauthorized configuration of client’s
application bitstream is denied. This is technically challenging,
because the CSP controls the FPGA.

(3) The overall solution must be efficient and incurs minimal
or no changes to (a) the FPGA architecture, and (b) the
cloud infrastructure, e.g., avoid direct communication channel
between clients and cloud FPGAs.

We tackle these challenges in TruFPGA that comprises a
trusted shell on the FPGA leveraging physically unclonable
functions (PUFs) for key generation and an overarching se-
curity protocol between the involved parties. Our proof-of-
concept implementation is demonstrated with existing tools
and commodity hardware. Further, TruFPGA is generic and
the necessary design checks can be performed through vendor
toolchains or academic virus scanner tools.

II. BACKGROUND

In this section we present a brief background on the security
components and concepts used in TruFPGA.

A. Trusted Execution Environment (TEE)

Ideally, a TEE guarantees that the code and the data running
inside the TEE are protected with respect to confidentiality and
integrity. Commercial TEEs include Intel SGX [20], AMD
SEV [21] and ARM TrustZone [22]. Being a subject of an
active research field, several TEE architectures have been
proposed, e.g., Sanctum [23], Sanctuary [24], Keystone [25]
and Cure [26]. A TEE is an execution environment with its
own hardware and software components. Typically, in a TEE, a
security-sensitive application, referred to as an enclave, runs in
isolation of all software on the system including the untrusted
operating system (OS) or the hypervisor. A host process, e.g.,
the OS, sets up the enclave. This means that the enclave’s
initial binaries may be manipulated. Therefore, the authenticity
and integrity of the enclave’s initial binaries are verified before
execution through remote or local attestation. Only then,
confidential data can be communicated to the enclave over
a secure channel.

B. Remote Attestation

It enables a party/entity to verify the authenticity and
integrity of a piece of code or memory on a remote device.
A trust anchor on the device computes a digest of the code
or memory content, e.g., using a cryptographic hash function
and a secret key shared with the verifier. The verifier compares
the received digest to a reference value to verify the remote
device’s status. In the case of a TEE, the platform’s secret key
is used for attestation.

C. Physically Unclonable Function (PUF)

Silicon PUFs leverage the uncontrollable manufacturing
process variation of integrated circuits as a source of entropy
to derive a device-specific cryptographic key or a unique
identifier. A PUF is stimulated by an input, challenge, to
produce a response, which depends on both the challenge
and the innate physical characteristics of the PUF circuit.
Therefore, PUF responses are envisioned to be unique and
unpredictable. Nevertheless, PUFs have been shown to be
prone to software-based modeling attacks [27]. Such attacks
require the collection of a large number of challenge-response
pairs (CRPs) of a PUF instance to build a mathematical
model that emulates the intended PUF behavior. One of the
solutions to mitigate such attacks is to obfuscate the output
of a PUF using, for example, a cryptographic hash function,
such that an attacker has no access to the actual CRPs of a
PUF. Note that PUF-based secret keys can be generated on-
the-fly, thus eliminating the need for secure non-volatile key
storage. PUF technology has been widely adopted for digital
fingerprinting and authentication of IoT devices. Moreover,
PUFs have already made their way into some FPGA families,
e.g., Intel Stratix-10, and Microsemi SmartFusion-2 for the
generation of device-specific secret keys.

III. SYSTEM AND TRUST MODEL

In a typical cloud-computing paradigm, different parties are
involved. Cloud service providers CSPs, such as Microsoft
or Amazon, provide different usage models and services and
deploy heterogeneous computing platforms. Such platforms
involve a conventional CPU-based host that interfaces with
co-processors and accelerators (GPUs, ASICs, FPGAs, etc.),
which are in turn supplied by different hardware vendors.
FPGAs and FPGA design tools are provided by FPGA ven-
dors. The CSP may deploy FPGAs of one or more vendors.
Computation capacity is rented by a client that communicates
the workload, i.e., code and data, to the CSP. Workloads of
multiple clients may share the same physical resources in the
cloud, according to the allocation and scheduling policies of
the CSP. The current FPGA deployment model of commercial
CSPs, which is also adopted in this work, allocates an entire
FPGA instance from an FPGA pool in the cloud to one client
for an agreed amount of time. The protection mechanism we
propose, enters into force when the CSP allocates a specific
FPGA to the client.
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A. Trust Model & Assumptions

Trust relations among the involved parties are as follows.
FPGA vendor: the CSP as well as the clients trust the

FPGAs and the design tools offered by the FPGA vendor.
Client-Client: co-clients sharing physical resources in the

cloud are mutually distrusting.
CSP-Client: the CSP does not trust clients in general. More

specifically, a malicious client may launch physical attacks
remotely through rogue FPGA configurations. In such attacks,
a malicious client implants virus circuits in the design intended
to run on the cloud FPGA to mount various remote physical
attacks, e.g., DoS attacks that could lead to shutting down
cloud services.

Client-CSP: clients do not trust the CSP with their sensitive
data. The CSP owns the infrastructure and is motivated by
reputation and financial gain, therefore, DoS and physical
attacks on the cloud infrastructure by the CSP are excluded.

Assumptions. We focus in this work on cloud FPGA
configurations that intend to shut down FPGAs or perform
side/covert-channel attacks using rogue primitive circuits. As
such, attacks that do not deploy rogue primitives are not
considered [28]. We assume that FPGA vendors are willing to
support IP protection on cloud FPGAs. This is consistent with
the assumptions in related work [29]–[31] and is acceptable by
FPGA vendors, e.g., this is evident in Intel Stratix-10 FPGAs
where Intel supports remote secure key provisioning [32].
Further, we assume the CSP, the clients, and the FPGA vendors
communicate with each other over secure channels, e.g., TLS,
to prevent man-in-the-middle attacks. We assume the CSP
offers the clients, upon request, to run their security-sensitive
applications in TEEs. Finally, we assume that standard cloud
security measures and protection of software against various
attacks are in place.

B. Objectives & Requirements Analysis

We summarize the objectives of this work and extract the
technical requirements that allow our design in § IV to achieve
the objectives under the trust relations among different parties.

Objectives. While the clients aim to protect their IP designs
in cloud FPGAs, CSPs are keen to protect their infrastructure,
including their FPGAs, against damage caused by rogue
configurations in line with recent findings [5], [6], [8], [14]–
[16].

Requirements. Based on the aforementioned objectives, we
derive the following requirements.

R1: TEEs on cloud FPGAs. To protect confidentiality and
integrity of the client’s workload on a CPU in the cloud, CSPs
increasingly offer the option to run the client’s workload in a
TEE (see § II), both in bare-metal instances [33], [34] and
in virtual machines [35]. Analogously, such protection should
be offered for workloads intended to run on cloud FPGAs.
For instance, a client, who intends to run a machine learning
(ML) model (trained on the client’s private data) on a cloud
FPGA, may want to protect the ML model against attacks that
aim to extract the client’s private data [36]. TEEs on cloud
FPGAs can be used to achieve such protection. We refer to

the components that establish the TEE on an FPGA as the
trusted shell. Ideally, the trusted shell should be i) realized
with the configurable fabric to allow for future patches, while
ii) incurring minimal or no changes to FPGA architectures.
This implies that protecting the integrity of the configurable
trusted shell against unauthorized changes is a requirement to
protect the TEE on the FPGA. Therefore, establishing TEEs
on cloud FPGAs requires FPGA vendor support. This is akin
to hardware vendor support to establish TEEs on CPUs, e.g.,
Intel SGX, and is justified, since hardware and FPGA vendors
are implicitly trusted by other parties.

R2: Verifiable proof of virus-free FPGA bitstreams. One
typical approach to provide the CSP with adequate assurance
against known FPGA attacks is to check the client’s FPGA
design using proprietary tools or virus scanners [18], [19] that
search for known virus signatures. For example, Amazon AWS
runs vendor DRCs on the client’s netlist to prevent combi-
natorial ring oscillatorsbefore generating the final bitstream.
However, we assume that the client’s bitsteam is encrypted,
and hence the CSP has no access to the client’s netlist or
bitstream in plain. Therefore, a convincing proof must be
provided to the CSP that the encrypted bitstream will pose
no threat to the infrastructure as well as co-tenants.

IV. TRUFPGA

To achieve the objectives in § III-B, we propose the
TruFPGA protocol, which leverages TEEs on both CPUs
and FPGAs. We further design a trusted shell that protects
client’s IP bitstream on cloud FPGAs and propose to run
the design check inside the TEE, whether on the client side
or the CSP side. Thus, an authentic report on the status of
client bitstream can be generated inside the TEE enclave and
provided to the CSP. Thus, fulfilling both requirements R1 &
R2 (§ III-B). TruFPGA protocol, depicted in Fig. 1, consists
of three phases: preparation (not shown in Fig. 1), offline (2
steps) and online (5 steps) phases.

Offline phase. In step 1 , the FPGA vendor provides the
client with the trusted shell, which will be installed on the
cloud FPGA in the online phase, as well as with the key
material that enables the protection of client bitstream. In
step 2 , client’s encrypted bitstream is sent to the CSP to
be checked for rogue circuits inside a TEE. By the end of
this phase, the CSP either approves the client bitstream and
proceeds with the online phase or aborts if the bitstream does
not pass the virus check.

We opt for the TEE at the CSP side for the following
reasons: i) CSPs are assumed to continuously maintain their
infrastructures and deploy suitable defenses against known
attacks, including attacks on TEEs (as discussed in § III-A),
and ii) powerful computation resources on the cloud enable
access to a TEE equipped with the required memory resources
for the virus scanner. Nevertheless, the TEE can also be on
the client side as we discuss next in § VII.

Online phase. In step 3 , the CSP configures the trusted
shell on the FPGA. As discussed in § III-B, the main objective
of the trusted shell is to establish a TEE on cloud FPGAs. In
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Fig. 1. TruFPGA: high-level overview. The straight arrows refer to the offline
phase and the dashed arrows refer to the online phase of the protocol.

step 4 , the client attests, i.e., verifies the integrity of, the
trusted shell on the FPGA to ensure that the trusted shell
has not been manipulated after configuration on the FPGA
and that configuration readback is deactivated for the CSP.
In step 5 , the client authenticates itself to the FPGA to
prevent unauthorized configuration of client bitstream (more
details in § V). While in step 6 , the CSP forwards the
encrypted bitstream received in step 2 to the intended FPGA
for partial reconfiguration. Finally, in step 7 , the client attests
the intended application is configured on the intended FPGA.
By the end of this phase, the client’s application is ready to
run on the cloud FPGA.

Next, we present our trusted shell in § IV-A and the detailed
computations and communication steps of TruFPGA protocol
in § IV-B.

A. Trusted Shell

1) Tasks: After its configuration on a cloud FPGA, the
trusted shell exchanges data and receives the encrypted bit-
stream (for partial reconfiguration) from the CSP through a
PCIe interface. The trusted shell’s security-related tasks are:

Preventing read-out. The trusted shell blocks configuration
memory read-out to protect the client’s application. Only the
trusted shell itself will have access to the FPGA configuration
through the internal configuration access port.

Attestation of the trusted shell. The entire configuration
memory of the FPGA, including the trusted shell, is read to
compute a proof of integrity PoIF using a nonce Ni (a random
number used once in a cryptographic protocol) sent by the
client and the secret key Ri. The attestation of the trusted
shell is inspired by the FPGA self-attestation in [37].

Client authentication. The client must prove to the trusted
shell that it knows the secret key Ri+1 used for the encryption
of the client bitstream. The client computes the proof of
authenticity PoAC over the FPGA configuration using a nonce
Ni+1 that is generated by the trusted shell and communicated
to the client, and the secret key Ri+1. To verify PoAC , the
trusted shell also computes the proof of authenticity PoAF

and compares it to the client’s PoAC . Only upon successful
authentication, secret key Ri+1 is provided to the next task.
Details on the computation of authenticity and integrity proofs
are presented in § IV-B.

Bitstream verification & decryption. Only when the client
authentication succeeds, i.e., when PoAC = PoAF , decryp-
tion and configuration of the client bitstream on the FPGA
is permitted. The FPGA verifies the application bitstream
integrity and decrypts it using the secret key Ri+1 to obtain
and configure the plain partial bitstream on the FPGA.

Some of these tasks require secret keys. We consider PUF-
based secret key generation, as this approach binds the cryp-
tographic keys to a specific FPGA instance and eliminates the
need for permanent secret key storage, i.e., keys are generated
on-the-fly, thus, minimizing the physical attack window. PUF-
based secret key generation has been thoroughly investigated
for FPGAs [38]–[41]. To prevent PUF modeling attacks [27],
we use a controlled PUF (CPUF). The FPGA vendor enrolls
the CPUF on each cloud FPGA before deployment and pos-
sesses a database of its CRPs for later use. PUF enrollment
can be also performed by another trusted 3rd party.

Note that the trusted shell can be designed to accept plain
partial bitstreams for clients that require no IP protection.
Detailed architecture of the trusted shell is presented in § VI.

2) Design Space: Ideally, the trusted shell should be im-
plemented in configurable logic. The advantage is two-fold;
no further changes to commodity FPGAs are required and
security or functional patches are feasible. This is vital, since
changes to the trusted shell might be required to patch security
bugs in cryptographic cores, e.g., the bitstream decryption
core, as the recent work of Ender et al. [42] demonstrated
an attack against the unpatchable decryption core on Xilinx
7-Series FPGAs. On the other hand, this implies protecting
the integrity of the trusted shell itself prior to configuration,
since a malicious party can manipulate the trusted shell to
leak the secret keys. Therefore, we explore the trade-offs and
propose two approaches for the trusted shell implementation,
both of which fulfill requirement R1 from § III-B and require
the support of the FPGA vendor:

Fully-configurable trusted shell. In this approach, the
entire trusted shell is implemented in configurable logic. To
protect its integrity prior to configuration on cloud FPGAs, we
rely on existing hardened authentication cores on commodity
FPGAs, e.g., RSA-based authentication on Xilinx UltraScale
FPGAs. The FPGA vendor enforces bitstream authentication
on the FPGA, programs the public key on the FPGA before
shipping it to the CSP and signs the trusted shell bitstream with
the corresponding private key. This prevents the FPGA from
loading an unauthorized trusted shell bitstream. We implement
this approach in commodity FPGAs in § VI.

Hardening some components of the trusted shell. As an
alternative approach, we propose to harden the components
that perform remote attestation and client authentication tasks.
These are the CPUF, the cryptographic core that computes the
authenticity and integrity proofs and the finite state machine
(FSM) that controls them. This further requires to harden the
bus carrying the configuration data from the configuration
engine to the cryptographic core to ensure that the proofs
are computed on the actual configuration data. Note that the
computation of the proofs can be also performed by a hardened
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processor/microcontroller instead of the cryptographic core
and the FSM, given that the firmware implementing these
instructions is protected by the FPGA vendor. The hardened
components cannot be modified or altered by malicious parties,
thus, they form a root of trust in the FPGA. By leveraging
remote attestation, the trust is extended to the other config-
urable components of the trusted shell, i.e., the verification
& decryption core and the configuration memory controller
that controls the configuration engine through the internal
interface. Note that in recent FPGA families, e.g., Intel Stratix-
10 and Microsemi SmartFusion-2, hardened PUF technology
is already deployed for the generation of device-specific secret
keys.

B. TruFPGA: Protocol

This section explains the detailed computations and ex-
changed messages in the TruFPGA protocol that is presented
at a higher level in Fig. 1 and detailed in Fig. 2. TruFPGA
requires no direct communication channel between the client
and the FPGA: the client uses the established secure channel
with the CSP, who has full control over the FPGA, to com-
municate with the FPGA. Thus, the CSP has access to all
messages sent to/from the FPGA.

1) Preparation Phase: Step 0 : PUF enrollment. Prior
to deployment in the cloud, the FPGA vendor enrolls the
CPUF on each FPGA instance and collects a large number
of CRPs. The CRPs are securely stored in a database at the
FPGA vendor side.

2) Offline Phase: Step 1 : Acquire necessary data. To
rent a cloud FPGA, the client sends a service request to the
CSP. The CSP then assigns an FPGA to the client according
to the CSP allocation and scheduling policies. The CSP sends
an obfuscated identifier of the allocated FPGA, FPGAID,
to the client. Since the infrastructure information of the CSP
is proprietary, the CSP and FPGA vendor can share a list of
pseudo identifiers (PIDs) for each FPGA instance, such that
a PID is never given twice. Alternatively, the actual FPGA
identifier is encrypted using a secret key between the CSP
and FPGA vendor, such that the client only sees an encrypted
message.

The client forwards the FPGAID to the FPGA vendor
and gets back two messages. The first message contains
the trusted shell Tsh, a nonce Ni, a challenge Ci, and a
reference proof of integrity of the trusted shell PoIV . The
FPGA vendor computes the proof of integrity as follows:
PoIV = HMAC(Ri, Ni||CD). Such that, HMAC is a keyed-
hash message authentication code used to verify both the
integrity and the authenticity of data, Ri is the secret key
used in the HMAC and corresponds to the response of the
CPUF to the challenge Ci: Ri = CPUF (Ci), and CD
is the configuration data of the targeted FPGA. The second
message from the FPGA vendor to the client contains the CRP
(Ci+1, Ri+1).

Step 2 : Bitstream check. The client encrypts the appli-
cation partial bitstream pBSA using Ri+1 and sends it to
the CSP. An enclave on a TEE residing on the CSP side

 FPGA Request

FPGAIDStep

Step

Step

Step

Enroll PUFs on FPGAs

Step
Client CSP FPGAFPGA Vendor

TSh, PoIV, Ni, Ci

BSS

TSh

Verify PoIV = PoIF

PoAC = HMAC(Ri+1, Ni+1||CD)

pBSA = Dec(Ri+1, CpBS   )
Configure pBSAStep

PoIV = HMAC(Ri, Ni||CD)

Ci+1, Ri+1

PoIF = HMAC(Ri, Ni||CD)

Generate Ni+1

TSh

CApp

Step

CpBS   = AuthEnc(Ri+1, pBSA)A

0

1

3

4

5

2

6

PoIF

Ci, Ni

Check VScan(pBSA)

CpBS  A

Ni+1

Ci+1, PoAC

A

Attest Enclave

Exchange SKclient

CR      = AuthEnc(SKclient , Ri+1)i+1
CRi+1

TEE

VSCAN

Verify PoAC = PoAF

CpBS  A

Ni+2

PoIF' = 
HMAC(Ri+1, Ni+2||CD)PoIF'

Step 7

PoAF = 
HMAC(Ri+1, Ni+1||CD)

PoIC'= HMAC(Ri+1, Ni+2||CD)

Verify PoIC' = PoIF'

FPGA
FPGAID

Fig. 2. TruFPGA Protocol. AuthEnc(): authenticated encryption algorithm,
Dec(): decrypt and verify algorithm, and V Scan(): virus scanner algorithm.

is initiated to check the application bitstream against known
virus signatures. The enclave code includes a key exchange
algorithm, a decryption algorithm and the virus scanner code.
The client first attests the enclave binaries [43]. After enclave
attestation, the client exchanges a session key SKclient to
establish a secure link with the enclave. Through this secure
channel, the secret key Ri+1 is sent to the enclave to decrypt
the application bitstream prior to the virus scan. The CSP
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receives only a report generated by the virus scanner about
the bitstream status. The CSP has neither access to the secret
key Ri+1 nor to the plain application bitstream. The protocol
proceeds if the bitstream is proven to be virus-free.

3) Online Phase: In this phase, the protocol is aborted, if
any of the following steps fails.

Step 3 : Trusted shell configuration. We assume the
trusted shell is an open-source IP core provided by the FPGA
vendor. The CSP configures the trusted shell bitstream BSS

on the intended FPGA. The trusted shell next deactivates all
external configuration ports. Note that the trusted shell can be
also provided by a 3rd party, therefore, it must be checked for
rogue circuits before configuration on the FPGA.

Step 4 : Trusted shell attestation. In this step the client
verifies the installation of the trusted shell on the FPGA.
Therefore, the client sends the challenge Ci and the nonce Ni,
which are received from the FPGA vendor, to the FPGA.
The challenge Ci is fed to the CPUF and the resulting
response Ri is used to compute the integrity proof on the
entire configuration memory, which contains at the moment the
trusted shell only: PoIF = HMAC(Ri, Ni||CD). The CSP
sends PoIF back to the client for comparison to the reference
attestation report PoIV . In this context, remote attestation
provides not only a means to verify the integrity of the trusted
shell and the deactivation of external configuration ports, but
also a proof of execution on the intended FPGA.

Step 5 : Client authentication. Next, the client authenti-
cates itself to the FPGA. For that, the trusted shell generates
a fresh nonce Ni+1 and sends it to the client. The client then
computes PoAC = HMAC(Ri+1, Ni+1||CD) and sends it
back to the trusted shell, together with Ci+1. The trusted
shell computes PoAF = HMAC(Ri+1, Ni+1||CD), using
Ri+1 = CPUF (Ci+1), and verifies that PoAC = PoAF .

Step 6 : Application bitstream configuration. The CSP
sends the encrypted application bitstream to the intended
FPGA. The trusted shell decrypts CpBSA

into the plain bit-
stream pBSA using the secret key Ri+1. The trusted shell
then configures the application bitstream on the FPGA. As
a result, the client application, denoted as CApp, is loaded
on the FPGA and ready for use. Note that we use the same
secret response Ri+1 for client authentication and bitstream
decryption to associate the bitstream to the client. Therefore,
it is not possible for the CSP or other entities to load a different
encrypted application bitstream after client authentication.

Step 7 : Application attestation. As in step 3 the client
attests the entire configuration memory of the FPGA including
the application to ensure the intended application is running
on the intended FPGA.

V. SECURITY ANALYSIS

In this section, we discuss possible attacks on TruFPGA.
We assume that the cryptographic cores, i.e., the decryption
core and the HMAC core, are cryptographically secure.

Pirated shell. To prevent the configuration of a pirated shell,
whose target is to leak PUF-based keys or to compromise the
computation of authenticity or integrity proofs. We discuss

in § IV-A, design space, two approaches to prevent a pirated
shell and to protect the integrity of the trusted shell: i)
enforcing authentication on the cloud FPGA, thus only an
authentic shell bitstream is configured or ii) hardening some
of the components of the trusted shell.

Unauthorized configuration of client’s IP. A CSP has
access to all exchanged messages between the user and the
allocated FPGA. After the client releases the FPGA, the CSP
may use the same FPGA and instantiates it with the trusted
shell. The CSP then replays prior exchanged messages with
the trusted shell in order to run the client’s application on the
FPGA. In order to prevent unauthorized configuration of the
client encrypted bitstream on the same FPGA, we add client
authentication (step 5 ). In this step, the client or the party
communicating with the FPGA must prove the possession
of the secret response Ri+1 used for bitstream encryption.
The fresh nonce Ni+1, which is used to compute the proof
of authenticity PoAC , must be therefore truly random and
is generated by the trusted shell. Note that a pseudo-random
number generator (PRNG) cannot be used, because PRNG will
generate the same nonce each time the trusted shell is config-
ured on the FPGA (thus the CSP can replay recorded PoAC).
Therefore, the CSP cannot compute PoAC since the CSP has
no access to the secret Ri+1.

TEE security. Secure TEEs are expected to provide three
properties: integrity, confidentiality, and secure remote attes-
tation. These properties are essential to TruFPGA in order to
ensure the integrity of the enclave code and the confidentiality
of the bitstream (or the integrity of the report generated by the
virus scanner in the case the TEE is assumed running on the
client side, see § VII). Recent attacks on TEEs focused on
extracting secret information, e.g., extracting attestation keys
to spoof attestation reports [44], [45] or introducing small
changes in TEE execution [46], [47]. However, influencing
the computation inside a TEE in a meaningful way has not
been shown yet. In response, TEE vendors are continuously
patching their hardware vulnerabilities [48]. Nevertheless,
TEE security is an orthogonal problem to the problem we
are tackling in this paper. TEE security is an active field of
research and new TEE architectures [24]–[26] are developed
that try to tackle the weaknesses of current TEEs. Moreover,
TruFPGA is TEE-agnostic and can seamlessly migrate to
newer TEE technologies.

Configuration memory read-out. Major FPGA vendors
allow reading back the FPGA’s configuration memory after
bitstream configuration and also provide the clients with the
option to block this feature to prevent unauthorized read-out.
However, in the cloud setting, the client has no physical access
to the FPGA to enforce/ensure that this feature is blocked.
Therefore, the trusted shell is designed to block configuration
memory read-out after it is configured on the FPGA. Once
the trusted shell is configured, the CSP cannot read out the
client’s application in plain form.

PUF security. As discussed in § IV-A PUF enrollment
is assumed to be done by the FPGA vendor in a secure
facility before shipping the FPGAs to the CSP. To prevent PUF
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emulation or modeling attacks [27], we deploy a controlled
PUF (CPUF) [49], [50]. As such, actual raw responses are
processed internally, within the CPUF circuit, to generate the
final responses. This prevents a malicious party from collecting
raw CRPs for modeling attacks. Further, the FPGA vendor can
set a quota of CRPs per client/day targeting the same FPGA.

VI. TRUFPGA: IMPLEMENTATION & EVALUATION

A. Trusted Shell

We prototype a configurable trusted shell, depicted in Fig. 3,
on a Xilinx VCU118 evaluation board.

Components. We describe each of the components and list
their required resources. The configuration memory controller
is implemented using the AXI HWICAP core, which interfaces
with the internal configuration access port (ICAP) primitive.
The main tasks of the configuration memory controller (1161
LUTs, 1451 FFs, a BRAM, an ICAPE3) are to i) prevent
configuration memory read-out ii) read the configuration
memory for the computation of PoIF & PoAF , and iii)
partially configure the application bitstream. Readback of
configuration memory is disabled by setting the security bits
SBITS in the Control Register to 1x, which disables writes
and reads through external configuration ports, but not to
the ICAPE3 [51]. The verification & decryption core (3171
LUTs and 1004 FFs) includes an AES-128 core for bitstream
decryption in the counter mode as well as a keyed hash
function (AES-CMAC) for the integrity verification of the
incoming client application bitstream. Note that for higher
security assurance, a side-channel resilient AES core with
higher security parameter (key width of 256-bit) can be used.
The HMAC (1955 LUTs and 1455 FFs) for the computation
of the integrity/authenticity proofs is implemented also with
an AES-CMAC core with the 128-bit secret key generated by
a CPUF circuit. In our prototype, we implemented a TRNG
core for fresh nonces (1069 LUTs and 137 FFs) and a dummy
CPUF that generates a random value for demonstration pur-
poses only. However, we propose the use of CPUF as in [49],
[50]. Commercial soft PUF IP cores are also available, e.g.,

Intrisic-ID Inc. (https://www.intrinsic-id.com). Note that the
trusted shell must be designed to keep no records of secret
keys after their usage to minimize the physical attack window.
The trusted shell clears all intermediate key-related values
immediately after their usage. Further, the trusted shell can
be designed to configure unencrypted IP bitstreams directly
for clients that do not need IP protection.

Integrity Protection. We leverage RSA authentication,
which can be used independently of bitstream encryption [51],
to authenticate the static trusted shell bitstream before con-
figuration. RSA authentication is enforced by setting the
OTP eFUSE Security Register (FUSE SEC) [51], thus, only
authentic bitstreams can be configured. FPGA vendor support
is required to program the RSA public key and enforce the
authentication prior to deployment in the cloud.

B. Virus Scanner in the TEE

In order to prove the feasibility of performing privacy-
preserving checks on clients’ bitstreams, we run the virus
scanner on a commodity TEE with limited memory resources
resembling a client machine for demonstration purposes only.
We run our experiments on a computer with modest resources
(Core i7-7700 CPU clocked at 3.6 GHz and 8 GB of RAM)
running Ubuntu 18.04.4 LTS. We use the Graphene-SGX
framework [52] to embed the virus scanner into an Intel
SGX enclave [20]. We chose the open-source virus scanner
FPGADefender [53], which is designed to detect short-circuits
and self-oscillating circuits in bitstreams. We test our setup
with a number of FPGA designs used also in [53] and
implemented on a on a Zynq UltraScale+ MPSoC: parallel
scrambler, stepper motor, encoder/decoder, coded decimal
adder, RS 232 UART, I2C Bus, DES, AES, SHA3, PSNG,
TRNG, SPI, CAN controller, Cordic, MIPS CPU, RISC-V
CPU, Mandelbrot and FPGA miner. Due to the limited space,
we report the runtime of the biggest tested design, SHA3 core,
which is approximately 36 minutes. The runtime overhead
of SHA3 compared to the runtime of unprotected version is
8.82×, whereas the geometric mean of the runtime overheads
of the aforementioned designs is approximately 3.21×. This
is due in our setup SGX can only access up to 128 MB of
encrypted memory at a time. Therefore, for benchmarks that
require more than 128 MB, the SGX driver for Linux relies on
paging, i.e., least-recently-used encrypted pages are replaced
when other pages are needed. Note that optimizing the virus
scanner performance, as evident in [8], will significantly
improve our results. To account for bigger FPGAs, e.g., with
multiple super logic regions (SLR), the client can provide a
bitstream for each SLR to be scanned individually. The CSP
then approves the client design when bitstreams of all SLRs
are scanned. To further reduce the overhead, the scan can be
done once per client’s bitstream. This is feasible by keeping
encrypted and integrity-protected records, e.g., the scan report
and a hash of the bitstream, of scanned bitstreams. The enclave
then checks whether the incoming bitstream is within the list
of records, by comparing its hash to existing hash values. The
bitstream gets scanned, only if it is not scanned before.
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VII. DISCUSSION

Location of the virus scanner. It is also feasible to scan
the bitstream in a TEE on the client side. However, it requires
slight modifications to step 2 . The enclave code includes the
virus scanner, an encryption algorithm and an algorithm to
compute PoIEnclave of both, the resulting scan report and
the encrypted bitstream. This is required to prove for the CSP
that i) the scan report has not been compromised by the client
after its generation, and ii) the scanned bitstream is the one
encrypted afterward. Since the TEE is on the client side, the
client provides as an input to the enclave the plain application
bitstream and the secret key for encryption. After initiating the
enclave, the CSP attests the enclave binaries to ensure their
integrity. Then, the CSP exchanges a session key with the
enclave to establish a secure link with the enclave. Through
this secure link, the CSP sends a secret key for the computation
of PoIEnclave. At the end of step 2 , the CSP receives the
encrypted application bitstream and PoIEnclave.

CSP side vs. client side: trade-offs. In terms of perfor-
mance, it is more efficient to run the virus scan on the CSP
side than on the client side, assuming the client has access to a
TEE in the first place, due to the limited computing resources
of the client. In terms of security, compromising the TEE on
the client side could result in forging the virus scan report to
label a bitstream with rogue primitives as a benign bitstream.
This could pose serious threats on the CSP infrastructure or
functional failure of the FPGA shell. Whereas for a compro-
mised TEE on the CSP side, the bitstream confidentiality is no
longer guaranteed. This could lead to problems for companies
in which IP theft has a financial impact. In principle, the CSP
and the client could negotiate where the scan should happen.
In practice, however, the solution where the TEE resides on
the CSP side is most likely to be adopted.

Trusted shell: CSP propriety infrastructure information.
We assume the trusted shell to be open-sourced to assure
clients the integrity of the deployed cryptographic primitives
that will process their bitstreams on the cloud FPGA and
the protected access to the configuration engine. Thus, the
client does not need to attest the integrity of the trusted shell
interfaces (PCIe core, DRAM controller, etc.), which might be
considered as proprietary information for the CSP. To achieve
the goal of this work while protecting the CSP proprietary
design, the trusted shell can be split into an open-sourced part
(the attestable part) by the FPGA vendor and a customized
part whose configuration is done through the attestable part.
The customized part, which contains the proprietary FPGA
interfaces, is not revealed to cloud clients. However, the
customized part can be scanned for viruses by a trusted party,
similar to client bitstreams in step 2 , and a hash of the
customized part is published instead. This is to assure the
clients that the shell does not contain rogue circuits spying
on their logic. FPGA configuration data of the customized
part, are replaced with their hash value during the computation
of the reference attestation report in step 1 and the proofs
computed in steps 4 and 5 .

VIII. RELATED WORK

To the best of our knowledge, there are few solutions that
tackle IP protection in cloud FPGAs, these are thoroughly dis-
cussed in [54]. We briefly discuss the most relevant work [29]–
[31]. The schemes in [29], [31] rely on an initial bitstream
configured on a cloud FPGA to enable the protection and the
configuration of clients’ IP bitstreams. The initial bitstream
contains a cryptographic core for decryption of IP bitstreams
using secret session keys, which are obtained through a key
exchange protocol that deploys public key cryptography, e.g.,
RSA or Diffie-Hellman. In [29], RSA private key is embedded
in the RSA core in the initial bitstream, thus, the confidentiality
of the initial bitstream must be protected and this is achieved,
e.g., by leveraging the hardened AES core in Xilinx FPGAs.
For that, the authors propose the FPGA vendor to program
the AES secret key before deploying the FPGA in the cloud.
In [31], the authors assume that the FPGA vendor configures
the FPGA with the initial bitstream prior to deployment in
the cloud and that the FPGA is constantly powered, even
during shipping to the CSP, to maintain its configuration.
In [30] the authors leverage the hardened SRAM-PUF, elliptic
core cryptography and AES cores on SmartFusion-2 FPGAs
of Microsemi. However, partial reconfiguration of the FPGA
fabric is not available in these FPGAs, therefore the client
should design and implement the interfaces to the host, which
is inconvenient for the CSP.

Unlike TruFPGA, these solutions attempt to solve one part
of the problem that is IP protection for cloud clients under the
assumption of untrusted CSP. while the CSP has no assurance
that the encrypted bitstreams do not include rogue circuits.
Moreover, they do not prevent unauthorized configuration of
client’s IP by the CSP, since the CSP can replay client’s
messages and freely load the encrypted bitstream after the
client releases the FPGA.

IX. CONCLUSION

We presented, discussed, and demonstrated TruFPGA the
first trusted configuration scheme for cloud FPGAs that i)
protects the intellectual property of clients through the support
of encrypted bitstreams and ii) enables the cloud service
provider to check the client’s application bitstream for rogue
circuits that could damage or disable the FPGA or attack the
integrity of the cloud infrastructure. With solving both security
challenges in one feasible protocol, TruFPGA provides the
means for practical FPGA TEEs, which not only allows more
clients to use FPGA cloud services but also the processing of
sensitive data on cloud FPGAs.
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