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Abstract

This paper introduces ZUCL 2.0, which extends abstraction services for FPGA applications on ARM-FPGA hybrids. The
ZUCL 2.0 management services include 1) FPGA multi-tasking and context-switching based on dynamic reconfiguration
and cooperative scheduling, 2) communication abstraction based on the ARM AMBA standard, and 3) memory isolation
for privacy and security purposes. Moreover, FPGA applications deployed on ZUCL 2.0 and the ZUCL 2.0 kernel itself
can be built and maintained independently. This is a crucial feature for higher design productivity and more flexible
system updates. Prototypes were implemented for latest Xilinx UltraScale+ ZCU102, UltraZed and Ultra96 platforms to
demonstrate the capabilities of ZUCL 2.0.

1 Introduction

Field Programmable Gate Array (FPGA) technology is be-
coming more popular in virtually all computing systems
ranging from embedded devices to data centres [1, 2, 3, 4].
This is being driven by the size and performance of new
FPGAs, that are targeting emerging workloads such as
deep learning, blockchain, and computer vision [5]. Due
to widespread availability of High-Level Synthesis [6, 7],
designing for FPGAs has become easier than ever before.
However, despite the availability of large capacity devices
and demand for more complex applications, FPGA man-
agement is still rather rudimentary without abstraction lay-
ers to underlying resources. This renders FPGA acceler-
ation similar to traditional bare-metal embedded applica-
tion use cases (see Figure 1). Those applications are able
to access the underlying hardware freely but are not able
to switch to another application arbitrarily or to start new
processes at run-time. For many computing systems, there
is a need to adapt quickly to changing workloads and/or
to a different number of tasks to execute [3]. These sce-
narios do not fit traditional methods of operating FPGAs.
To achieve high utilisation, individual systems may have
a number of active tasks, each operating without any im-
pact or knowledge of each other, which is the core theme
of multi-tenanted computing systems.
We believe that multi-tenancy is strongly needed and that
this should be provided in fashion analogous as is provided
in traditional software operating systems (OSs). This re-
quires tackling the following questions:
• Design Productivity: How to speed up the design, im-

plementation, and deployment of hardware applica-
tions?

• Process Management: How to launch and manage
multiple hardware tasks transparently? How to load
and unload hardware tasks when necessary without
affecting the rest of the system? How to dynamically

FPGA app. 
deployment

Software app. 
deployment

Embedded 
systems

Personal 
computers

No 
abstraction 

layers

Operating 
systems

Abstraction/
virtualisation???

Data centres/
cloud systems

Hypervisors/
VMMs

No 
abstraction 

layers

Figure 1 Analogue of software deployment and FPGA deploy-
ment roadmaps.

orchestrate hardware tasks for better performance and
better utilisation of resources?

• Memory Management: How to manage and isolate
the memory accesses of hardware tasks on shared
platforms?

• Protection: How to protect data and execution of a
specific user from another on a multi-tenanted plat-
form?

As a solution to this problem, this paper introduces ZUCL
2.01 — an extension of the ZUCL framework [12] that pro-
vides the following features:

1. Decoupled Implementation: static systems (often
called shells) and reconfigurable modules are imple-
mented independently (see Sections 3 and 4).

2. Multiple Design Languages: supports most appli-
cation design techniques such as HLS (OpenCL,
C/C++), RTL (Verilog/VHDL), and netlist (see Sec-
tion 4).

3. Bus Virtualisation: supporting different AXI inter-
faces (Master/Slave/Stream as well as 32/64/128-bit
data width) transparently (Section 5).

4. Run-time Flexibility: supporting different partial con-
figuration styles: 1) island-style (where a module is
placed exclusively in a reconfigurable region); 2) slot-

1ZUCL 2.0 is available at https://github.com/khoapham/fos.git.
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Table 1 Summary of related works on various OS features.

OS features FPGA version Related work

Process isolation Physical isolation IDF [8], SDF [9], IPRDF [10]
Dependency decoupling PCIeHLS [11], ZUCL [12]

Access control Protection rings VMMs [13, 14], ReconOS [15], BORPH [16]

Multi-tasking Run to completion ReconOS [15], BORPH [16], SDAccel [17], SDSoC [18]
Relocatable PCIeHLS [11], ZUCL [12]

Standard interface Hardware tasks ReconOS [15], H-threads [19]
Unix BORPH [16]

Inter-process
communication Network-on-Chip Yazdanshenas et al.[20], HopliteRT[21]

I/O virtualisation High level BORPH [16], AXI over Ethernet [22]
Physical not done

File system File system access BORPH [16]

style (where multiple modules can be daisy-chained
within one shared region); and 3) 2-dimensional mod-
ule placement as modules may occupy multiple adja-
cent regions (see Section 6).

5. Cooperative Scheduling: allowing hardware context-
switching to adjust resource allocation dynamically
and transparently through a user-friendly API (see
also Section 6).

6. Memory Isolation: enabling isolation of concurrent
tasks in multi-tenant environment through memory
management layer (Section 7).

2 Background/Related Work

There have been numerous efforts on building operating
systems for FPGAs in the past with different aims and ap-
proaches as summarised in Table 1.
ReconOS [15] and BORPH [16] tackled the main prob-
lem of integrating FPGAs into standard software systems
by providing hardware task interfaces to FPGA accelera-
tors and to UNIX process interfaces respectively. This not
only addresses the accessibility but also process isolation at
software stack level. However, for a hardware developer,
the physical interface for communication with the rest of
the system is not yet standardised and tailored to a specific
system. Current community-wide efforts in shell devel-
opment address this issue by forcing applications to fixed
well-defined interfaces (commonly AXI interfaces includ-
ing master and slave). However, we believe that this is too
restrictive and ZUCL 2.0 therefore allows a developer to
choose from a wider range of interfaces entirely transpar-
ent.
NoCs (Network-on-Chip) have been proposed several
times for implementing an OS Shell infrastructure (e.g.,
[20]). However, for ZUCL 2.0, we decided to support a
plurality of buses (AXI masters or slaves at different bit-
sizes as needed) and streaming ports for module-to-module
communication [23]. With this, we are better matching an
applications needs (e.g., when implementing an accelera-
tor in OpenCL, that doesn’t match most NoC protocols)
and prevent an over-provisioning of the network which is
common for NoC implementations.

State-of-the-art FPGA Shell approaches [20, 33, 13, 30,
31, 36, 37] are suffering in lengthy module implementa-
tion overhead. Moreover, as they do not allow users to
build modules independently from the shell, a single up-
date or modification of the underlying infrastructure will
require the whole physical implementation process to be
restarted. This is very different from the task deployment
schemes that we know from the software world in which
the OS kernels are freely updated without requesting their
applications to be rebuilt.
Preemptive scheduling approaches have been proposed for
accelerators using configuration read-back [24] and scan-
chains [25]. These techniques have also been presented
for allowing dynamic reallocation of resources for multi-
tasking environments (e.g., [26]). However, these tech-
niques often impose heavy context-switching penalties in
terms of time (when using configuration readback [26])
and/or in terms of logic (when using scan chains [27]).
Moreover, preemptive hardware execution enforces sub-
stantial restrictions on the hardware design. For example,
multi-cycle paths, bursts on I/O transactions, DSP-blocks,
etc. are commonly not supported for hardware preemp-
tion. Therefore, cooperative scheduling has been proposed
for minimal context-switching overhead (e.g., [28]). In a
cooperative scheduling system, a large compute problem
is partitioned into chunks and context switching will only
take place after a chunk had been processed (e.g., after a
frame in an object classifier is processed).
Hardware resource elasticity is a very distinguished fea-
ture of FPGA-based systems which allow a hardware ac-
celerator to change its resource allocation transparently to
the task that is using it. When combined with coopera-
tive scheduling, resource elasticity allows a trading of re-
sources for throughput at run-time as proposed in [28, 36].
ZUCL [12] is a development framework for OpenCL
applications only which is able to support cooperative
scheduling as well as resource elasticity. However, it is
lacking some essential levels of abstraction such as mem-
ory isolation and system bus abstractions. Ultimately,
OpenCL kernels with their default direct memory access
(DMA) engines can perform reads and writes to the whole
physical memory, which has to be prohibited in multi-
tenanted computing systems. Access control has been an
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Figure 2 The overall organisation of ZUCL 2.0.

important aspect for FPGAs that are to be deployed in
cloud system for security and management purposes and is
often addressed with various ring level privileges for stake-
holders provided by Virtual Machine Monitors (VMMs)
and run-time systems [13, 30, 31] and ZUCL 2.0 adapts
these techniques.
Recent implementations of FPGA run-time systems have
provided multi-tenanted placement of FPGA accelerators
but have not provided security mechanisms to protect from
rogue hardware elements [32, 33] yet. In [32] Ng et al.
provided FPGA memory virtualisation via the implemen-
tation of an MMU attached to a PCIe bus, thus enabling
memory translation for the FPGA accelerators but with no
provision for multiple PR regions. In addition, this ap-
proach consumes FPGA resources and increases latency
due to the low clock speed attainable due to the presence
of the MMU on the FPGA. In [33], memory virtualisation
and isolation is achieved by using Isolators and ID check-
ers on the PCIe bus. An improved approach is to use the
hardware IO Memory Management Unit (IOMMU), such
as System Memory Management Unit (SMMU) [34], that
provides virtualisation and protection facilities between the
Programmable Logic (PL) and the Processing System (PS)
sub-systems, as presented later in this paper for ZUCL 2.0.
From a practical point of view, the two most important
issues ZUCL 2.0 is protecting against are 1) accesses to
shared memory (through using an SMMU [34]) and 2)
ensuring that configurations are protected. For the latter,
ZUCL 2.0 ensures that a process can only partially recon-
figure resources in its allocated FPGA region without be-
ing able to accidentally compromise other modules or the
static infrastructure.

3 Architecture Overview

Although ZUCL [12] is supporting the development and
deployment of partially reconfigurable systems, ZUCL
2.0 is providing important novel features towards build-
ing a complete FPGA OS. ZUCL 2.0 is targeting the lat-
est Xilinx ZYNQ UltraScale+ devices that includes hard-
ened ARM CPUs in the Processing System (PS) part, cou-
pled with a UltraScale+ FPGA fabric in the Programmable

0

1

2

Reconfigurable part

XCZU3EG-
SFVA625

St
at

ic
 p

ar
t

Figure 3 The physical implementation of ZUCL 2.0 on the
UltraZed and Ultra96 platforms. This version has 3 slots which
can host up to 3 FPGA applications simultaneously.

Logic (PL) part. Other hardened primitives in ZYNQ Ul-
traScale+ FPGAs are the AXI interfaces, memory con-
trollers, and clock domain crossing which ZUCL 2.0 is
utilising to build a light-weight but feature-rich FPGA op-
erating system services.
The FPGA resources are divided into 2 parts: 1) the fixed
part is analogous to an OS kernel, called shell, which pro-
vides all essential infrastructure, and 2) the changeable
part, which is analogous to software applications to per-
form the actual compute work, as illustrated in Figure 2.
The fixed part includes the ARM cores, other hardened
primitives in the PS, and a small portion of reconfigurable
resources. In ZUCL 2.0, the PL provides the AXI sys-
tem bus and PR decouplers for bus communication en-
abling/disabling which are forming the FPGA shell for pro-
viding basic services for deploying partially reconfigurable
FPGA applications. The PR decouplers switch off modules
from the rest of the system when the FPGA is partially re-
configured in order to prevent possible glitches which may
compromise the AXI interconnect. The changeable part is
reserved for acceleration and provides about 83% of the
available FPGA logic on UltraZed and Ultra96 platforms
and contains multiple PR regions, called slots, which can
host FPGA applications (see Table 4) as well as bus virtu-
alised layers if necessary (see Section 5 for details).
Building partially reconfigurable systems comes with
some extra complexity for implementing critical physical
constraints, partitioning the system into static and dynamic
parts, and floorplanning the FPGA resources. ZUCL 2.0
addresses this by providing compilation scripts for static
systems (shells) and the modules. Figure 3 shows an im-
plementation of ZUCL 2.0 on the UltraZed platform. Like
it is common in the software world to use an operating sys-
tem without changes, our ZUCL 2.0 shells are designed to
meet the requirements of most users.
Memory isolation is achieved by utilising the available
System Memory Management Unit (SMMU) core which
is available in the hardened PS. The SMMU core is an in-
dustrial standard developed by ARM [34] which provides
a common view on the memory to all system components
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Table 2 Designs implemented on ZUCL 2.0.

Program Category
Discrete Cosine Transform* Signal processing

FIR filter* Signal processing
Sobel filter* Image processing

3D Normal Estimation* Image processing
Sparse Matrix-Vector Mult.* Machine learning

Histogram* Data analytics
AES* Security

Vector addition* Arithmetic
Matrix Multiplication* Arithmetic

Mandelbrot set** Arithmetic
SHA-3*** Security

* in OpenCL; ** in C; *** in RTL.

and that takes charge of all memory management issues in-
cluding caching and memory virtualisation. In order to use
the SMMU, we have built and integrated a kernel driver
onto the ZUCL 2.0’s run-time execution and management
system (see also Section 7).

4 Module Compilation

The ZUCL 2.0 module compilation is carried out by TCL
scripts which it adopted from the ZUCL [12] framework.
These scripts take care of all the low-level FPGA details of
the partial design and the user just has to provide a mod-
ule specification that meets any of our supported (AXI) in-
terfaces. This also implies that a user of ZUCL 2.0 does
not need any extra licenses for partial reconfiguration from
FPGA vendors. In addition, the module implementation
scripts are agnostic to specific ZUCL 2.0 shells so that
modules can even be used with different ZUCL 2.0 shells.
Our experiments show that the implementation phase of
the module compilation takes less than 6 minutes per 1-
slot module on a Windows 7 machine with Intel Core i7-
4930K CPU at 3.4GHz, 64GBs RAM and 512GBs SSD. It
has been verified with 11 different designs in various do-
mains such as signal processing (DCT and FIR filter), data
analytics (Histogram), machine learning (SPMV), security
(AES and SHA-3), and arithmetic (VADD, Mandelbrot set,
and MM), as illustrated in Figure 4. Note that the SHA-3
source code is in RTL, the Mandelbrot set is written in C,
while the remaining are made in OpenCL from the aca-
demic Spector benchmark [35], as shown in Table 2.

5 Bus Virtualisation

Operating a hardware accelerator needs communication
with the host CPU to issue commands as well as access to
memory for the data to process. The original ZUCL frame-
work provides a 32-bit AXI-Lite interface for control reg-
ister access and another 32-bit AXI4 Master port for mem-
ory access. Even though this interface corresponds directly
to the default interface of OpenCL kernels when compil-
ing with Vivado HLS, it is neither compatible with wider
64/128-bit AXI4 Master ports nor the other AXI Stream in-

terface standard. Moreover, OpenCL kernels are equipped
with DMA engines for fetching data from memory by de-
fault, which is not always the case with hand-crafted RTL
or customised netlist accelerators. This limits either the
system throughput or the deployment flexibility as we need
to replace or adjust the current static infrastructure to sup-
port another interface.
We have tackled this issue by providing another level of ab-
straction for bus interfaces between the FPGA applications
and the ZUCL 2.0 shell, where the interface of the 32-bit
AXI-Lite protocol and the 128-bit AXI4 protocol are fixed.
Depending on what exact physical interface will be used
by a module, ZUCL 2.0 provides a set of bus adaptors that
will be instantiated in a module wrapper such that a module
can communicate with the rest of the system as required by
the given individual FPGA application. An example of this
process is illustrated in Figure 5. With this, the ZUCL 2.0
shell can remain light-weight, operational and unchanged
while the FPGA applications can be wrapped up with the
provided bus adaptor at design-time or run-time. ZUCL
2.0 supports up to 128-bit wide datapaths for memory ac-
cesses because this is the native width to the ARM SoC.
We also use a bus adaptor to translate between AXI Master
and AXI Stream protocols. ZUCL 2.0 provides different
versions of AXI Stream adaptors to be used depending on
the AXI Stream channel width.
A ZUCL 2.0 user can either re-compile their modules with
a logical wrapper of the appropriate bus adaptor at design
phase or stitch their modules with a pre-built binary of that
bus adaptor at run-time. However, because a fixed portion
of the slot is allocated to those bus adaptors in all scenar-
ios, the resource overhead is significant, as shown in Ta-
ble 3. Figure 6 shows the implementation of the bus adap-
tor with control register, AXI MM2S, and AXI DMA ser-
vices for the module which has 32-bit AXI-Lite and 32-bit
AXI Stream interface.

6 Run-time Management

In the ZUCL 2.0 run-time management layer (shown in
Figure 7), the configuration controller is inherited en-
tirely from the ZUCL framework [12] while the hard-
ware task scheduler is extended to support more advanced
scheduling policies such as Resource Elastic Scheduling
(RES) [28] and Heterogeneous Resource Elastic Schedul-
ing (HRES) [29], along with the existing Round Robin pol-
icy. The overhead of the Round Robin scheduler is 1µs
while the HRES takes 2.9µs on the UltraZed board with a
Quad-core ARM Cortex-A53 CPU at 1.5GHz and 2GB of
DDR4 memory. This time needed for taking a scheduling
decision is much less than the configuration time which is
in range of milliseconds for a slot on ZUCL 2.0 platforms.
Moreover, the memory management stack is newly inte-
grated into this ZUCL 2.0 run-time management layer.

7 Memory Isolation/Management

Since the FPGA interface is capable of addressing the en-
tire memory space of a system, simple zero-copy data
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AES – 1 slot

DCT – 3 slots

FIR filter – 1 slot Histogram – 1 slot

Mandelbrot – 1 slot

MM – 2 slots

Normal est. – 1 slot

SHA-3 – 1 slot

SPMV – 1 slotVADD – 1 slot

Sobel filter – 2 slots

Figure 4 11 designs, which are written various design languages such as RTL, OpenCL, and C, are physically implemented by
ZUCL 2.0 compilation flow on UltraZed and Ultra96 boards.

Table 3 Resource overheads for bus virtualisation at the logical and physical levels.

Module interface Shell Interface Bus adaptor’s ser-
vices

Resource overhead

Primitives Logical Level Physical Level

32-bit AXI-Lite and
32-bit AXI4 Master

32-bit AXI-Lite and
128-bit AXI4 Master AXI Inter-connect

LUTs 153 2400
FFs 284 4800
BRAMs 0 12

32-bit AXI -Lite and
32-bit AXI Stream

32-bit AXI-Lite and
128-bit AXI4 Master

Control register,
AXI MM2S, and
AXI DMA

LUTs 1952 2400
FFs 2694 4800
BRAMs 2.5 12

Processing system

AXI-Lite 
interface

AXI DMA

Control 
register

AXI MM2S 
interface

Module with 
AXI Stream 
interface

DDR memory

AXI-Lite

AXI4

PS PL

Figure 5 An example for bus virtualisation: the module has
a 32-bit AXI-Lite interface and a 32-bit AXI Stream interface
without DMA engine. In this case, the bus adaptor (see the
dashed box) with AXI DMA and AXI MM2S IPs are chosen
to carry out the communication with the rest of system.

transfers of control between software and accelerators can
remove the induced communication overhead of intermedi-
ate software layers. Moreover, in the case where there are
multiple applications running on the system, the memory
access model should provide memory isolation and being
able to guarantee non-interference between applications’
separate virtual address spaces, as shown in Figure 8.

Bus macros Blockers 

OS Shell
Bus Abstraction 

Layer
FPGA App.

Figure 6 Implementation of a bus abstraction layer on ZUCL
2.0. The bus adaptor is implemented as a module binary and
stitched to the system at run-time by partial reconfiguration.
The adaptor is a partial module that in turn interfaces to other
partial modules. This technique helps users avoid re-compiling
of modules at some logic overhead for the bus adaptor.

48

Sixth International Workshop on FPGAs for Software Programmers (FSP 2019)

ISBN 978-3-8007-5045-0 © VDE VERLAG GMBH ∙ Berlin ∙ Offenbach



Hardware Task Scheduler

Configuration Controller

Kernel’s XMLFile and Placing Location

Xilinx’s fpga_manager

Final Partial Bitstream

PCAP

FPGA fabric

User Space

Kernel 
Space

PS Side

PL Side

pr_decoupler driver

User App

Kernel Device Driver

SMMU

Figure 7 Run-time execution and management. The configu-
ration controller is taken from the ZUCL framework [12] while
the hardware task scheduler is featured with more advanced
scheduling policies. The memory management stack is newly
integrated in the ZUCL 2.0 platforms.

     SMMU
Register 
interface

Main memory
Translation tables

Manager 
device

PR Region 0
(Client Device)

PR Region 1
(Client Device)

PR Region n
(Client Device)

...

Figure 8 The implementation of the ARM SMMU in the
memory system. Client devices in the PR regions are connected
through the memory interconnect to the SMMU in the upstream
bus. The connection between the SMMU and the rest of the
memory system is the downstream bus. When the SMMU is set,
the client devices agnostically issue transaction requests to the
SMMU. After a successful translation, the SMMU performs the
memory access and returns a valid response, or faults otherwise.

7.1 Accelerator Memory Management Re-
quirements

It is essential that the memory management subsystem is
flexible, thus allowing a resilient reconfiguration, with the
most common case being the allocation or de-allocation of
FPGA resources to applications in a multiple memory con-
text approach. One context should not be able to block an-
other context, except where this is desired for the operation
of a device. Contexts must also have the ability to be reset,
so when devices are reassigned to different applications. In
any case, being able to dynamically configure the memory
management subsystem to match or even update the actual

application user-space with the address space that the ac-
celerator is allowed to access poses a challenge. Failing
to do so may lead to performance slowdown such as the
case when there are no available translation contexts left;
the applications would then contend for limited resources,
that may lead to stalling of application execution, until the
required resources become available.

7.2 Input-Output Memory Management
Unit

The System Memory Management Unit (SMMU) is
an ARM implementation of an IOMMU [34], a com-
puter hardware unit in which all memory references pass
through, performing the translation of virtual memory ad-
dresses to physical addresses while also providing memory
protection and isolation when configured. If left unconfig-
ured, no checks are performed and the SMMU is essen-
tially bypassed. The SMMU implementation in ZYNQ Ul-
trascale+ supports a physical address width of 48 bits in
various page size granularities.
Each client device generates a Stream ID which is unique
for each client device and may be associated with an
SMMU context that contains the configuration of the
SMMU on how transactions should be processed. Stream
matching is used to find the appropriate context for a par-
ticular Stream ID inside the SMMU. By inserting Stream
IDs in different Stream Match Registers (SMR), the dy-
namic association of SMR registers to different contexts
and consequently the ability of having a different setup for
each context are allowing us to achieve several configura-
tion combinations, such as fully isolated contexts or even
shared memory regions between client devices on discrete
PR regions. In addition, any local external memory di-
rectly connected to the FPGA that is associated to a por-
tion of the total PL address space can be treated as a shared
memory region with an appropriate SMMU configuration
as described above.

7.3 Memory Management Framework for
FPGA

By utilising the aforementioned hardware, we designed a
framework that provides secure virtualised access to the
user-space virtual address by the application accelerators.
The framework consists of two components: the kernel
driver and the user-space library. The kernel driver can
be called by the wider application flow to allocate memory
resources to the application, virtual machine, or container
that the accelerators can access. The following sections
describe each component and the challenges addressed.

7.3.1 Kernel Driver
The driver layer provides an interface to enable the recon-
figuration controller to specify the region and associated
stream mappings that have been occupied by the acceler-
ator provided by the user, given the possibility that mul-
tiple PR regions are occupied. The driver creates a mmap
endpoint in the /dev file system that is restricted to those
accelerators owned by the user and this reference is then
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passed back to the PR controller to apply the appropriate
group ownership settings for user access. The driver is re-
sponsible for:
• Associating new Stream IDs or invalidating existing

entries in the SMR registers of the SMMU.
• Configuring the Page Table pointer of a particular

SMMU context to point to the userspace application
page table.

• Setting the appropriate cacheability attributes for the
user page table.

• Flushing the Page Table Entries from the CPU cache,
due to lack of memory coherence support.

Usually during the SoC design process, IOMMU imple-
mentations such as the SMMU on the ZYNQ MPSoC
utilise a non-coherent Page Table Walker (PTW). This de-
cision is usually taken to save resources on the die as the
coherency mechanisms require additional complexity in
the cache to implement a coherent interconnect. In addi-
tion, memory regions accessed via the IOMMU are usually
static and long-lived in e.g., kernel allocated ring buffers
for devices. Additionally, memory regions committed to
the accelerators are usually non-cacheable and therefore
coherency of the PTW is deemed unnecessary. This poses a
challenge when providing accelerator access to user-space
memory where allocations can be dynamic during the life
cycle of the application. To overcome this we provide the
user-space with an API for page table management, such
as flushing.

7.3.2 User-space library
The user-space library binds to the endpoint created by the
driver and wraps a number of system calls to provide an
abstraction to the user in order to:
• Create handles that are used to associate the user’s

page table and accelerators with the SMMU.
• Allocate memory and pin it to RAM so it can be used

by user accelerators.
• Free and de-associate user-space memory and accel-

erators.

8 Evaluation

We evaluate the development and deployment overheads
of ZUCL 2.0 in this Section. Design trade-offs made for
ZUCL 2.0 platforms in terms of FPGA resources are re-
ported in Section 8.1, while the cost to deploy the memory
management is analysed in Section 8.2. Finally, the run-
time overhead of a deploying application is examined in
Section 8.3.

8.1 Analysis of Resource Overhead
Available resources for slots are summarised in Table 4.
On the ZCU102 platform, ZUCL 2.0 introduces exactly the
same number of resources for partial modules as ZUCL
framework as the integration of memory management is
taken only in the hardened ARM cores and its software
stack. It means that we do not need to compromise FPGA
primitives in the PL for the enhanced memory protection.

Table 4 Available resources for 1 slot of the ZUCL 2.0
versions on the ZCU102 platform and the UltraZed &
Ultra96 platforms. The version on ZCU102 has 4 slots in
total while the other platforms provide 3 slots in total.

Resources
on
ZCU102

Number of
resources
(1 Slot)

Slot utilisa-
tion (%)

Total utili-
sation (%)

CLB LUTs 32640 11.70 46.80
CLB Regs. 65280 11.90 47.60
BRAMs 108 12.10 48.40
DSPs 336 13.30 53.20
Resources
on Ultra96
& UltraZed

Number of
resources
(1 Slot)

Slot utilisa-
tion (%)

Total utili-
sation (%)

CLB LUTs 17760 25.17 75.51
CLB Regs. 35520 25.17 75.51
BRAMs 60 27.78 83.33
DSPs 96 26.67 80

However, as we have less FPGA primitives on UltraZed
and Ultra96 boards than on ZCU102 counterpart, we de-
cided to reserve as many of these precious resources as
possible for the partial modules while making the ZUCL
2.0 infrastructure much more compact and lightweight.

8.2 Analysis of Memory Management
Overhead

The total overhead of the procedure of registering an ap-
plication to the SMMU by using the driver is measured at
1.3ms, where the driver function of Page Table flushing
takes up the significant portion of 1.26ms. Given the fact
that page table flushing takes place only once before any
translation occurs, we consider that this is outside the crit-
ical path of the overhead.
The overhead of using the SMMU was determined in two
experiments by measuring the number of clock cycles in
the FPGA logic for the read part of a DMA transfer. The
source and destination addresses are provided by the appli-
cation associated with the accelerator (DMA engine) and
the FPGA logic clock frequency was set to 100MHz. In
the first experiment, the DMA uses virtual addresses and
the SMMU is configured to translate, where in the second
run, the SMMU was set to bypass and physical DMA ad-
dresses were used. The results that are shown in Table 5.
The increased latency of the first iteration (“cold miss") can
be attributed to the initial page table miss from the TLBs
of the SMMU and the subsequent fetching operation by the
PTW.

8.3 Analysis of Run-time Overhead
To evaluate the performance improvement and system
overhead of ZUCL 2.0, we use a memory bound applica-
tion rather than compute bound application as the perfor-
mance of a compute bound application is primarily tied to
the logic resources and not to the run-time overhead caused
by the shell. To this advent we use the application with
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Table 5 The overhead of using the SMMU. In the first iteration
of a DMA transfer, DMA read was completed in 90 cycles (900
ns) on average, where all following iterations took 20 cycles
(200 ns) to complete. When SMMU is not used, the comple-
tion times are identical, but the anomaly of the first iteration is
absent.

With SMMU
(ns)

Without transla-
tion (ns)

First iteration ∼900 ∼200
Next iterations ∼200 ∼200
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on ZUCL 2.0

64-bit VADD 
on ZUCL 2.0

32-bit VADD 
on ZUCL 2.0

32-bit VADD 
on ZUCL

Figure 9 The Vector Addition (VADD) design which has 2 in-
puts and 1 output (i.e. conducting 2 operand reads and 1 operand
write at a time) is being used for this experiment.

the most common access pattern of 2 read operation and
1 write operation behaviour: vector addition (VADD). We
compare the results of ZUCL 2.0 with the ZUCL frame-
work [12] to identify and quantify the worst-case overhead
caused by the communication interface and the memory
virtualisation.
We test the system with 32-bit, 64-bit, and 128-bit bus-
width memory bound VADD accelerators, over memory
access of 512kB and 1 MB and numbers of users ranging
from 1 to 3 which access the memory concurrently of the
same application type. Note, the 32-bit bus-width applica-
tion are deployed on both ZUCL 2.0 and ZUCL while the
64-bit and 128-bit ones are available on ZUCL 2.0 only.
Results of these experiments are presented in Figure 9.
The end-to-end time of module operation includes over-
heads of the hardware scheduler, configuration controller,
memory management, and the module execution itself, as
summarised in Equation 1:

ttotal = tsched + tcon f + tmem + texe (1)

Overhead of the hardware scheduler, tsched , is the time to
make its decision of which hardware module is selected
to launch. tsched ranges from 1µs in ZUCL to 2.9µs in
ZUCL 2.0, as mentioned in Section 6. However, this tsched
is marginal for the total overhead.
tcon f summarises the configuration time and software over-
head to load a hardware module to the FPGA. The through-
put of the Processor Configuration Access Port (PCAP) is

measured at 256MB/s while the software overhead is mea-
sured at 13ms on average. Because these overheads are
the same on both ZUCL and ZUCL 2.0 platforms, we omit
them in the final comparison.
tmem is the penalty we pay to integrate the memory isola-
tion stack into the run-time management layer. The over-
head of registering a new application is measured at 1.3ms
while the overhead of using SMMU is 0.9µs for the first
iteration is negligible, as mentioned in Section 8.2.
The module execution time, texe, is measured from fetching
the processing data to its completion.
As mentioned above, VADD computation is lightweight
but memory intensive. Thus, by expanding the commu-
nication bus-width from 32-bit to 128-bit, we are able to
boost the performance up to 3.1× compared to the previous
ZUCL framework. This noticeable speed-up is achieved
even when we have already paid a penalty for the mem-
ory isolation, which helps to enhance the security and ro-
bustness of a system. The exact benchmarking results are
shown in Figure 9.

9 Conclusion

We have introduced ZUCL 2.0 — Virtualised Memory and
Communication for ZYNQ UltraScale+ FPGAs, which of-
fers many levels of vital resource abstraction and virtu-
alisation for heterogeneous multi-tenanted reconfigurable
computing systems. This is achieved with a combination
of hardware static systems (Shells) and a software stack.
The ZUCL 2.0 shell provides 1) variable width and proto-
cols with bus communication virtualisation, 2) relocatable
and re-adjustable acceleration modules, and 3) decoupled
accelerator development from the shell using a custom PR
flow. In addition, the software stack provides 1) standard
I/O virtualisation with SMMU integration, 2) multi-tasking
and 3) dynamic management of FPGA with a cooperative
scheduler and a slotted shell architecture. Overall, these
key features provide easier, faster, maintainable and se-
cure development for FPGA accelerators in embedded sys-
tems and provide a direction for FPGAs virtualization in
the cloud.
The complexity of ZUCL 2.0 is embedded in a freely avail-
able distribution offering user-friendly interfaces for im-
plementing partial modules and deploying them. With this,
ZUCL 2.0 allows an application-centric implementation
and execution in the ARM-FPGA heterogeneous comput-
ing platforms with ease.
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